Greedy Layerwise Learning Can Scale to ImageNet

A. Proof of Proposition

Proposition 3.1 (Progressive improvement). Assume that
P;j = Id. Then there exists 0y such that:

R(2j41:07.7]) < Rlzj11; 00,7 1) = R(2:05_1,7]_1) -

Proof. As p(p(z)) = p(z), we simply have to chose
such that Wy, = Id. O

We will now show that given an optimization e-optimal pro-
cedure for the sub-problem optimization, the optimization
of Algo 1. can be used directly to obtain an error on the

overall. solution. Denote the parameters {67, ..., 0%} the
optimal solutions for Algo 1.
Proposition 3.2. Assume the parameters {05, ...,6%_,}

are obtained via a optimal layerwise optimization proce-
dure. We assume that Wg;_ is I-lipschitz without loss of
generality and that the biases are bounded uniformly by
B. Given an input function g(x), we consider functions of
the type z4(x) = C,pWog(x). For € > 0, we call 0. 4 the
parameter provided by a procedure to minimize 7%(29; 0;v)
which leads to a I-lipschitz operator that satisfies:
1. loWs, , 9(x) — pWo, , (@) < lg(x) — 3(2)]],¥g. 3,

(stability)
2 |Woyai =W, . ajll < e(1+[lz5]),

(e-approximation)
. A _ S * _ * . *
with, Tj1 = pWo, , @j and 5, = pWo-x§ with x5 =
ZTo = x, then, we prove by induction:

2% — 2]l = O(J%) (5)

Proof. First observe that |25, || < ||z[| + B by non ex-
pansivity. Thus, by induction, ||z}|| < jB + ||z||. Then,

let us show that: ||z} — &;]| < e(@B + jllz|| + j) by
induction. Indeed, for 5 + 1:

2541 = T4
= [pWo:zj — pWo, , %5l
= ||pWo: 25 — prm; i+ pWow; T — W, ., ||
by non-expansivity
< [We;z5 = Wo, . 23l + llpWs, .. 25 — pWo, 5, 5l
< ellz} || + € + ||} — 2| from the assumptions
< e(iB+ |z[| + 1) + ||z} — 2| from above

by induction
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Figure 4. Intermediate Accuracies of models in Sec. 4.3. We note
that the k = 1 model is larger than the k = 2, 3 models.

As z(; = £9 = z, the property is true for j = 0.

A Note on Sec.2 From (Mallat, 2016)

We first briefly discuss the result of Sec.2 of (Mallat, 2016).
Let us introduce: Q; = {x : V2, f(z) # f(z/) =
W, - pWy @ #* W, - -pWy @'}, We introduce:
Yi={y:3z € Q;,y= pVVé%1 --~pWé1x}. Fory € V;,
we define f;(y) & f().
function, and that:

Observe this defines indeed a

Vo e Q;, f(z) = f; opWy - pWy

Observe also that ;41 C ;. The set €2; is simply the
set of samples which are well discriminated by the neural
network pVVéF1 < pWy

1

B. Additional Details on Imagenet Models
and Performance

For ImageNet we report the improvement in accuracy ob-
tained by adding layers in Figure 4 as seen by the auxiliary
problem solutions. We observe that indeed the accuracy
of the model on both the training and validation is able to
improve from adding layers as discussed in depth in Sec-
tion 4.2. We observe that £ = 1 also over-fits substantially,
suggesting better regularization can help in this setting.

We provide a more explicit view of the network sizes in Tab.
4 and Tab. 5. We also show the number of parameters in the
ImageNet networks in Tab. 7. Although some of the models
are not as parameter efficient compared to the related ones in
the literature, this was not a primary aim of the investigation
in our experiments and thus we did not optimize the models
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Layer | spatial size | layer output size
Input | 112 x 112 12

1 112 x 112 128

2 112 x 112 128

3 56 x 56 256

4 56 x 56 256

5 28 x 28 512

6 28 x 28 512

7 14 x 14 1024

8 14 x 14 1024

Table 4. Network structure for £k = 2,3 imagenet models, not
including auxiliary networks. Note an invertible downsampling
is applied on the input 224x224x3 image to producie the initial
input. The default auxillary networks for both have M = 2048
with 1 and 2 auxillary layers, respectively. Note auxiliary networks
always reduce the spatial resolution to 222 before the final linear
layer.

for parameter efficiency (except explicitly at the end of
Sec. 4.3), choosing our construction scheme for simplicity.
We highlight that this is not a fundamental problem in two
ways: (a) for the & = 1 model we note that removing
the last two layers reduces the size by 1/4, while the top
5 accuracy at the earlier J=6 layer is 78.8 (versus 79.7),
see Figure 4 for detailed accuracies. (b) Our models for
k = 2,3 have most of their parameters in the final auxiliary
network which is easy to correct for once care is applied to
this specific point as at the end of Sec. 4.3. We note also
that the model with k& = 3, M; = 512, is actually more
parameter efficient than those in the VGG family while
having similar performance. We also point out that we use
for simplicity the VGG style construction involving only
3z3 convolutions and downsampling operations that only
half the spatial resolution, which indeed has been shown
to lead to relatively less parameter efficient architectures
(He et al., 2016), using less uniform construction (larger
filters and bigger pooling early on) can yield more parameter
efficient models.

C. Additional Studies

We report additional studies that elucidate the critical com-
ponents of the system and demonstrate the transferability
properties of the greedily learned features.

C.1. Choice of Downsampling

In our experiments we use primarily the invertible down-
sampling operator as the downsampling operation. This
choice is to reduce architectural elements which may be
inherently lossy such as average pooling. Compared to max-
pooling operations it also helps to maintain the network in
Sec. 4.1 as a pure ReLU network, which may aid in analysis

Layer | spatial size | layer output size
Input | 112 x 112 12

1 112 x 112 256

2 112 x 112 256

3 56 x 56 512

4 28 x 28 1024

5 14 x 14 2048

6 14 x 14 2048

7 7T 4096

8 77 4096

Table 5. Network structure for £ = 1 ImageNet models, not in-
cluding auxiliary networks. Note an invertible down-sampling is
applied on the input 224x224x3 image to produce the initial input.
Note this network does not include any batch-norm.

Layer-wise Trained | Acc.
Strided Convolution | 87.8
Invertible Down 88.3
AvgPool 87.6
MaxPool 88.0

Table 6. Comparison of different downsampling operations

Models Number of Parameters
SIMCNN £ = 3, My = 512 46M
SimCNN k£ =3 102M
SimCNN k = 2 64M
SImMCNN k=1,J =6 96M
AlexNet 60M
VGG-16 138 M

Table 7. Overall parameter counts for SImCNN models trained in
Sec. 4 and from literature.
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Figure 5. Linear separability of differently trained sequential mod-
els. We show how the data varies for the different M, observing
similar trends to the aggregated data.

as the maxpooling introduces an additional non-linearity.
We show here the effects of using alternative downsampling
approaches including: average pooling, maxpooling and
strided convolution. On the CIFAR dataset in the setting
of £ = 1 we find that they ultimately lead to very similar
results with invertible downsampling being slightly better.
This shows the method is rather general. In our experiments
we follow the same setting described for CIFAR. The set-
ting here uses J = 5 and downsamplings at j = 2, 3. The
size is always halved in all cases and the downsampling
operation and the output sizes of all networks are the same.
Specifically the Average Pooling and Max Pooling use 2 x 2
kernels and the strided convolution simply modifies the 3 x 3
convolutions in use to have a stride of 2. Results are shown
in Tab. 6.

C.2. Effect of Width

We report here an additional view of the aggregated results
for linear separability discussed in Sec. 4.2. We observe that
the trend of the aggregated diagram is similar when compar-
ing only same sized models, with the primary differences in
model sizes being increased accuracy.

C.3. Transfer Learning on Caltech-101

Deep CNNs such as AlexNet trained on Imagenet are well
known to have generic properties for computer vision tasks,
permitting transfer learning on many downstream applica-
tions. We briefly evaluate here if the k¥ = 1 imagenet model
(Sec. 4.1) shares this generality on the Caltech-101 dataset.

Accuracy
ConvNet from scratch
(Zeiler & Fergus, 2014) 46+£1.7%
Layer 1 45.5£0.9
Layer 2 59.9+£0.9
Layer 3 70.0£0.9
Layer 4 75.0£1.0
Layer 8 82.6 £0.9

Table 8. Accuracy obtained by a linear model using the features of
the £ = 1 network at a given layer on the Caltech-101 dataset. We
also give the reference accuracy without transfer.

This dataset has 101 classes and we follow the same stan-
dard experimental protocol as (Zeiler & Fergus, 2014): 30
images per class are randomly selected, and the rest is used
for testing. The average per class accuracy is reported using
10 random splits. As in (Zeiler & Fergus, 2014) we restrict
ourselves to a linear model. We use a multinomial logistic
regression applied on features from different layers includ-
ing the final one. For the logistic regression we rely on
the default hyperparameter settings for logistic regression
of the sklearn package using the SAGA algorithm. We
apply a linear averaging and PCA transform (for each fold)
to reduce the dimensionality to 500 in all cases. We find
the results are similar to those reported in (Zeiler & Fergus,
2014) for their version of the AlexNet. This highlights the
model has similar transfer properties and also shows simi-
lar progressive linear separability properties as end-to-end
trained models.

C.4. Experiments with incremental-PCA

For CIFAR-10 and the £ = 1 model, we visualize the sepa-
rability of the representations we built via incremental-PCA
at various depths. Results are summarized in Figure 6.
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Figure 6. Projected representations of the model k¥ = 0 via an
incremental PCA, on CIFAR-10. Each color corresponds to a
distinct class.



