Overcoming Multi-model Forgetting Supplementary Material

A. Proofs

Lemma 1. Given a dataset D and two architectures with
shared parameters 04 and private parameters 01 and 05,

and provided that p(61,05 | 85,D) = p(6; | O, D)p(6 |
05,D), we have

p(D | 62,0,)p(01,0; | D)p(62,0;)
fp(D | 017 Os)p(alves)del

p(01792708 | D) 0.8
(1

Proof. Using Bayes’ theorem and ignoring constants, we
have

p(01,02,0,,D)
p(0| D)= (D)
o p(61 | 02,0,,D)p(02,6,,D)
=p(01 | 05, D)p(D | 62,05)p(62,65)
~ p(01,05, D)p(D | 02,8;)p(62, 05)
p(D,05)
p(01,05, D)p(D | 02,65)p(62, 65)
/(D] 61,0,)p(0s,6:)d0,
o p(ohas | D)p(p ‘ 92,03)]?(02,95)
/(D] 61,60,)p(8s,6:)d0,

where we used the conditional independence assumption
p(6; | 02,05, D) = p(0; | 65,D) in the third line. O

‘We now derive a closed-form expression for the denominator
of equation (1).

Lemma 2. Suppose we have the maximum likelihood
estimate (01,0y) for the first model, write Card(0) +
Card(0s) = p1 + ps = p, and let the negative Hessian
Hp(él, 0,) of the log posterior probability distribution
log p(61, 0, | D) evaluated at (01, 0,) be partitioned into
Sour blocks corresponding to (01, 05) as

Hy, | Hys }

Hsl

Hp(élaéS) = [ H

If the parameters of each model follow Normal distributions,
ie, (61,05) ~ N,(0,0%1,), with I, the p-dimensional
identity matrix, then the denominator of equation (1), A =

I p(D|61,6,)p(8s,01)d6, can be written as

A A 1
A =exp{l,(61,0,) — 5».ﬁnv}x(%)Pl/?|det(1ar;11)|1/2,

X 2)
wherev =0, — 0, and Q = H,, — H.H; ' H,, .

Proof. We have

p(D| 61,60,)p(6,,6,) x ol(01.6:)—(61,0:)7(61,6:) /207

o< elp(elves)’

where [(61,05) = logp(D | 61,0;), and 1,(61,605) =
1(01,05) — (91,95)T(01,03)/202.

Let H,(61,05) = H(61,0,) + 0721, be the negative
Hessian of [,,(01, 0,), with I, the p-dimensional identity
matrix and H (01, 6;) the negative Hessian of [(01, ;).

Using the second-order Taylor expansion of [,(61,6;)
around its maximum likelihood estimate (601, ), we have

1,(61.0,) = 1,(61,6,) — 1 (61.6)7 H,(6,.0,)(64,0.);

o 3)
where (0/,6%) = (61,0,) — (01, 05). The first derivative
is zero since it is evaluated at the maximum likelihood
estimate. We now partition our negative Hessian matrix
as

Hy,

PO H,,
Hp(ehes) = |: Hgl ! :| 5

which gives

|
%) N

(01— 6,)"Hy1 (8, — 6:) + (0, — 0,)T H,, (0, — 6,)
+ (0, — 0,)"H,1 (0, — 61)
+ (68, — 6,)"Hy (6, - 6,)
=(61 — él)TH11(01 - él) + (05 — és)THss(as — és)
+ (6, — 6T (Hy, + HL)(6, - 6,).

Letusdeﬁneu:Bl—él,'v :05—ésandw =
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H 1_11 H,v. We then have,

C =(u+w)"H(u+w)

:uTHHu + 'u,THHw + ’UJTHH’U) + 'wTHHu

=(6, — 61)"H;1(6, — 6y)
+ (6, — él)THllHl_llHls(es — és)
+v'HLH ' H H, v
+oTHL H Hi1 (6, - 61)

=B —v'"H,v+v H H'H, v

=B —v"(Hy, — H,H{;'Hy5)v

=B — v'Qu,

with Q =
Thus

H,, - H.H'H,..

B = (u+ Hy;'Hy,v)" Hi1 (u + Hy  Hiv) + 0" Q.
“)

Given equation (4), we are now able to prove Lemma 2, as
integral

D= /elp(el,es)dgl - /elp(él’és)‘%Bdel
_ /ezp<é1,és>e—%sd91 (61,8 /e‘%Bdel
= /6_%((u+Hf11H13v)TH11(u"!‘HfllHlSv)J,-vTQv)dHl

« elo(01.0)

- / ¢~ 3 (uHL Hio) " Hu (uk Hy Hiov) o= 397 v g,

X elp(el 705)

A A T T
_ ole(01.0.)~ %o Qv/ef%(elfz) H1(0:-2) gg,

002700 (2 % [ det (HIy )|
x (2m)” 7 |det(H )| 2
X /67%(9172) Hll(elfz)del

3. O 1,7 D 1
= e (01:0:) =30 v (9 3 det(H L) |2,
where we re-arranged the terms so that the 1ntegral is over a
normal distribution with mean 2=0,-H 1 H,, (05— 0 <)
and covariance matrix H;,", which can be computed in
closed form. O

From Lemma 1 and Lemma 2, we can obtain equation 3 by
replacing the denominator with the closed form above and

taking the log on both size of equation (1). This yields

log p(0|D) o logp(D | 62, 0;) + logp(01, Oy)
+ log (62, 6;)

log{ / p(D | 61,0,)p(6:,6,)d6,}
=logp(D | 02,6;) + logp(61,6;)
o1
+ logp(GQaes) - lp(elaes) + ivTQ'U

+log {(2m) F |det (H;")| 2}
X lng(D | 027 )+10gp(0250 )

1
+logp(61,0; | D) + §’UTQU .

B. Plots for CNN Search

In our CNN search experiment, we search for a“micro” cell
as in (Pham et al., 2018). We employ the hyper-parameters
available in the released ENAS code. The plots depicting
error difference as a function of training epochs as provided
in Figure 1 (a), (b)and (c). Note that here again the original
ENAS is subject to multi-model forgetting, and our WPL
helps reducing it. In Figure 1 (d), we show the mean re-
ward as training progresses. While the shape of the reward
curve is different from the RNN case, because of a different
formulation of the reward function, the general trend is the
same; Our approach initially produces lower rewards, but
is better at maintaining good models until the end of the
search, as indicated by higher rewards in the second half of
training.

C. Best architectures found by the search

In Figure 2, we show the best architectures found by our
neural architecture search for the RNN and CNN cases.
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Figure 1. Error differences when searching for CNN architectures. Quantitatively, the multi-model forgetting effect is reduced by up
to 99% for (a), 96% for (b), and 98% for (c).
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Figure 2. Best architectures found for RNN and CNN. We display the best architecture found by ENAS+WPL, in (a) for the RNN cell,
and in (b) and (¢) for the CNN normal and reduction cells.



