
Overcoming Multi-model Forgetting

Yassine Benyahia * † 1 Kaicheng Yu * 2 Kamil Bennani-Smires 3 Martin Jaggi 4 Anthony Davison 1

Mathieu Salzmann 2 Claudiu Musat 3

Abstract
We identify a phenomenon, which we refer to
as multi-model forgetting, that occurs when se-
quentially training multiple deep networks with
partially-shared parameters; the performance of
previously-trained models degrades as one opti-
mizes a subsequent one, due to the overwriting
of shared parameters. To overcome this, we intro-
duce a statistically-justified weight plasticity loss
that regularizes the learning of a model’s shared
parameters according to their importance for the
previous models, and demonstrate its effective-
ness when training two models sequentially and
for neural architecture search. Adding weight
plasticity in neural architecture search preserves
the best models to the end of the search and yields
improved results in both natural language process-
ing and computer vision tasks.

1. Introduction
Deep neural networks have been very successful for tasks
such as visual recognition (Xie & Yuille, 2017) and nat-
ural language processing (Young et al., 2017), and much
recent work has addressed the training of models that can
generalize across multiple tasks (Caruana, 1997). In this
context, when the tasks become available sequentially, a
major challenge is catastrophic forgetting: when a model
initially trained on task A is later trained on task B, its
performance on task A can decline calamitously. Several re-
cent articles have addressed this problem (Kirkpatrick et al.,
2017; Rusu et al., 2016; He & Jaeger, 2017; Li & Hoiem,
2016). In particular, Kirkpatrick et al. (2017) show how
to overcome catastrophic forgetting by approximating the

*Equal contribution,†Work done while being at Swisscom Dig-
ital Lab; 1Institute of Mathematics, EPFL; 2Computer Vision
Lab, EPFL; 3Artificial Intelligence Lab, Swisscom; 4Machine
Learning and Optimization lab, EPFL. Correspondence to: Yas-
sine Benyahia <yassine.benyahia1@gmail.com>, Kaicheng Yu
<kaicheng.yu@epfl.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

posterior probability, p(θ | D1,D2), with θ the network
parameters and D1,D2 datasets representing the tasks.

In many situations one does not train a single model for
multiple tasks but multiple models for a single task. This
is the scenario we tackle in this paper. When dealing with
many large models, a common strategy to keep training
tractable is to share a subset of the weights across the mul-
tiple models and to train them sequentially (Pham et al.,
2018; Xie & Yuille, 2017; Liu et al., 2018a). This strategy
has a major drawback. Figure 1 shows that for two mod-
els, A and B, the larger the number of shared weights, the
more the accuracy of A drops when training B; B overwrites
some of the weights of A and this damages the performance
of A. We call this multi-model forgetting. The benefits of
weight-sharing have been emphasized in tasks like neural
architecture search, where the associated speed gains have
been key in making the process practical (Pham et al., 2018;
Liu et al., 2018b), but its downsides remain unexplored.

In this paper we introduce an approach to overcoming
multi-model forgetting. Given a dataset D, we first con-
sider two models f1(D;θ1,θs) and f2(D;θ2,θs) with
shared weights θs and private weights θ1 and θ2. We
formulate learning as the maximization of the posterior
p(θ1,θ2,θs|D). Under mild assumptions we show that this
posterior can be approximated and expressed using a loss,
dubbed Weight Plasticity Loss (WPL), that minimizes multi-
model forgetting. Our framework evaluates the importance
of each weight, conditioned on the previously-trained model,
and encourages the update of each shared weight to be in-
versely proportional to its importance. We then show that
our approach extends to more than two models by exploiting
it for neural architecture search.

Our work is the first to propose a solution to multi-model
forgetting. We establish the merits of our approach when
training two models with partially shared weights and in the
context of neural architecture search. For the former, we
establish the effectiveness of WPL in the strict convergence
case, where each model is trained until convergence, and in
the more realistic loose convergence setting, where training
is stopped early. WPL can reduce the forgetting effect by
99% when model A converges fully, and by 52% in the
loose convergence case.

Overcoming Multi-model Forgetting

WA1

WB5

WA2

WA3

WA4

WB1

WB2

WB3

WB4

WB6

Op

WA1

Op

WA2

Op

WA3

Op

WA4

cls

(1) Train Model A to convergence

Parameters

Model A Model B

Op

WA1

Op

WB2

Op

WB3

Op

WB4

clsOp

WB5

Op

WB6

Op

WA1

Op

WA2

Op

WB3

Op

WB4

clsOp

WB5

Op

WB6

Op

WA1

Op

WA2

Op

WA3

Op

WB4

clsOp

WB5

Op

WB6

(2) Train three versions of Model B while
 sharing different weights with A

Op

WA4

Operation
with
param

Training iterations

To
p

1
A

cc
ur

ac
y

1 shared
2 shared
3 shared

A during (2)

Baseline
A after (1)

1 shared
2 shared
3 shared

B during (2)

multi-model
forgetting

Figure 1. (Left) Two models to be trained (A, B), where A’s parameters are in green and B’s in purple, and B shares some parameters with
A (indicated in green during phase 2). We first train A to convergence and then train B. (Right) Accuracy of model A as the training of B
progresses. The different colors correspond to different numbers of shared layers. The accuracy of A decreases dramatically, especially
when more layers are shared, and we refer to the drop (the red arrow) as multi-model forgetting. This experiment was performed on
MNIST (LeCun & Cortes, 2010).

For neural architecture search, we implement WPL within
the efficient ENAS method of Pham et al. (2018), a state-
of-the-art technique that relies on parameter sharing and
corresponds to the loose convergence setting. We show
that, at each iteration, the use of WPL reduces the forgetting
effect by 51% on the most affected model and by 95% on av-
erage over all sampled models. Our final results on the best
architecture found by the search confirm that limiting multi-
model forgetting yields better results and better convergence
for both language modeling (on the PTB dataset (Marcus
et al., 1994)) and image classification (on the CIFAR10
dataset (Krizhevsky et al., 2009)). For language modeling
the perplexity decreases from 65.01 for ENAS without WPL
to 61.9 with WPL. For image classification WPL yields a
drop of top-1 error from 4.87% to 3.81%. We also adapt
our method to NAO (Luo et al., 2018) and show that it
also significantly reduces multi-model forgetting. Our code
is public available at https://github.com/kcyu2014/multi-
model-forgetting.

2. Related work
Single-model Forgetting. The goal of training a single
model to tackle multiple problems is to leverage the struc-
tures learned for one task for other tasks. This has been
employed in transfer learning (Pan & Yang, 2010), multi-
task learning (Caruana, 1997) and lifelong learning (Silver
et al., 2013). However, sequential learning of later tasks
has visible negative consequences for the initial one. Kirk-
patrick et al. (2017) selectively slow down the learning of
the weights that are comparatively important for the first
task by defining the importance of an individual weight us-

ing its Fisher information (Rissanen, 1996). He & Jaeger
(2017) project the gradient so that directions relevant to
the previous task are unaffected. Other families of meth-
ods save the older models separately to create progressive
networks (Rusu et al., 2016) or use regularization to force
the parameters to remain close to the values obtained by
previous tasks while learning new ones (Li & Hoiem, 2016).
In (Xu & Zhu, 2018), forgetting is avoided altogether by
fixing the parameters of the first model while complement-
ing the second one with additional operations found by an
architecture search procedure. This work, however, does not
address the multi-model forgetting that occurs during the ar-
chitecture search. An extreme case of sequential learning is
lifelong learning, for which the solution to catastrophic for-
getting developed by Aljundi et al. (2018) is also to prioritize
the weight updates, with smaller updates for weights that are
important for previously-learned tasks. Teh et al. (2017) pro-
poses a reinforcement learning approach for multi-task and
multi-model scenario, but it relies on knowledge distillation
which works under the assumption of two models. Applying
it to train every two consecutive models, the knowledge of
model not in the current pair will again be forgotten.

Parameter Sharing in Neural Architecture Search. In
both sequential learning on multiple tasks and lifelong learn-
ing, the forgetfulness concerns an individual model. Here
we tackle scenarios where one seeks to optimize a popu-
lation of multiple models that share parts of their internal
structure. The use of multiple models to solve a single task
dates back to model ensembles (Dietterich, 2000). Recently,
sharing weights between models that are candidate solutions
to a problem has shown great promise in the generation of
custom neural architectures, known as neural architecture

Overcoming Multi-model Forgetting

search (Elsken et al., 2018). Existing neural architecture
search strategies mostly divide into reinforcement learn-
ing and evolutionary techniques. For instance, Zoph & Le
(2017) use reinforcement learning to explore a search space
of candidate architectures, with each architecture encoded as
a string using an RNN trained with REINFORCE (Williams,
1992) and taking validation performance as the reward.
MetaQNN (Baker et al., 2017) uses Q-Learning to design
CNN architectures. By contrast, neuro-evolution strategies
use evolutionary algorithms (Bäck, 1996) to perform the
search. An example is Liu et al. (2018a), who introduce
a hierarchical representation of neural networks and use
tournament selection (Goldberg & Deb, 1991) to evolve the
architectures.

Initial search solutions required hundreds of GPUs due to
the huge search space, but recent efforts have made the
search more tractable, for example via the use of neural
blocks (Negrinho & Gordon, 2017; Bennani-Smires et al.,
2018). Similarly, and directly related to this work, weight
sharing between the candidates has allowed researchers
to greatly decrease the computational cost of neural archi-
tecture search. For neuro-evolution methods, sharing is
implicit. For example, Real et al. (2017) define weight in-
heritance as allowing the children to inherit their parents’
weights whenever possible. For RL-base techniques, weight
sharing is modeled explicitly and has been shown to lead to
significant gains. In particular, ENAS (Pham et al., 2018),
which builds upon NAS (Zoph & Le, 2017), represents the
search space as a single directed acyclic graph (DAG) in
which each candidate architecture is a subgraph. EAS (Cai
et al., 2018) also uses an RL strategy to grow the network
depth or layer width with function-preserving transforma-
tions defined by Chen et al. (2016) where they initialize
new models with previous parameters. DARTS (Liu et al.,
2018b) uses soft assignment to select paths that implicitly in-
herit the previous weights. NAO (Luo et al., 2018) replaces
the reinforcement learning portion of ENAS with a gradient-
based auto-encoder that directly exploits weight sharing.
While weight sharing has proven effective, its downsides
have never truly been studied. Bender et al. (2018) realized
that training was unstable and proposed to circumvent this
issue by randomly dropping network paths. However, they
did not analyze the reasons for the instability. Here, by con-
trast, we highlight the underlying multi-model forgetting
problem and introduce a statistically-justified solution that
further improves on path dropout.

3. Methodology
In this section we study the training of multiple models
that share certain parameters. As discussed above, training
the multiple models sequentially as in (Pham et al., 2018),
for example, is suboptimal, since multi-model forgetting

arises. Below we derive a method to overcome this for
two models, and then show how our formalism extends to
multiple models in the context of neural architecture search,
and in particular within ENAS (Pham et al., 2018).

3.1. Weight Plasticity Loss: Preventing Multi-model
Forgetting

Given a dataset D, we seek to train two architectures
f1(D;θ1,θs) and f2(D;θ2,θs) with shared parameters θs
and private parameters θ1 and θ2. We suppose that the mod-
els are trained sequentially, which reflects common large-
model, large-dataset scenarios and will facilitate generaliza-
tion. Below, we derive a statistically-motivated framework
that prevents multi-model forgetting; it stops the training of
the second model from degrading the performance of the
first model.

We formulate training as finding the parameters θ =
(θ1,θ2,θs) that maximize the posterior probability p(θ |
D), which we approximate to derive our new loss function.
Below we discuss the different steps of this approximation,
first expressing p(θ | D) more conveniently.

Lemma 1. Given a dataset D and two architectures with
shared parameters θs and private parameters θ1 and θ2,
and if p(θ1,θ2 | θs,D) = p(θ1 | θs,D)p(θ2 | θs,D), we
have

p(θ1,θ2,θs | D) ∝
p(D | θ2,θs)p(θ1,θs | D)p(θ2,θs)∫

p(D | θ1,θs)p(θ1,θs)dθ1
.

(1)

Proof. Provided in the appendix.

Lemma 1 presupposes that p(θ1,θ2 | θs,D) = p(θ1 |
θs,D)p(θ2 | θs,D), i.e., θ1 and θ2 are conditionally inde-
pendent given θs and the dataset D. While this must be
checked in applications, it is suitable for our setting, since
we want both networks, f1(D;θ1,θs) and f2(D;θ2,θs), to
train independently well.

To derive our loss we study the components on the right
of equation (1). We start with the integral in the denominator,
for which we seek a closed form. Suppose we have trained
the first model and seek to update the parameters of the
second one while avoiding forgetting. The following lemma
provides an expression for the denominator of equation (1).

Lemma 2. Suppose we have the maximum likelihood
estimate (θ̂1, θ̂s) for the first model, write Card(θ1) +
Card(θs) = p1 + ps = p, and let the negative Hessian
Hp(θ̂1, θ̂s) of the log posterior probability distribution
log p(θ1,θs | D) evaluated at (θ̂1, θ̂s) be partitioned into
four blocks corresponding to (θ1,θs) as

Hp(θ̂1, θ̂s) =

[
H11 H1s

Hs1 Hss

]
.

Overcoming Multi-model Forgetting

If the parameters of each model follow Normal distributions,
i.e., (θ1,θs) ∼ Np(0, σ2Ip), with Ip the p-dimensional
identity matrix, then the denominator of equation (1), A =∫
p(D | θ1,θs)p(θs,θ1)dθ1 can be written as

A = exp {lp(θ̂1, θ̂s)−
1

2
v>Ωv}×(2π)p1/2|det(H−111)|1/2,

(2)
where v = θs − θ̂s, lp(θ) = l(θ) − θTθ/2σ2, and Ω =
Hss −H>1sH−111 H1s .

Proof. Provided in the appendix.

Lemma 2 requires the maximum likelihood estimate
(θ̂1, θ̂s), which can be hard to obtain with deep networks,
since they have non-convex objective functions. In prac-
tice, one can train the network to convergence and treat
the resulting parameters as maximum likelihood estimates.
Our experiments show that the parameters obtained without
optimizing to convergence can be used effectively. More-
over Haeffele & Vidal (2017) showed that networks relying
on positively homogeneous functions have critical points
that are either global minimizers or saddle points, and that
training to convergence yields near-optimal solutions, which
correspond to true maximum likelihood estimates.

Following Lemmas 1 and 2, as shown in the appendix,

log p(θ | D) ∝ log p(D | θ2,θs) + log p(θ2,θs)

+ log p(θ1,θs | D) +
1

2
v>Ωv,

(3)

apart from an additive constant. To derive a loss function
that prevents multi-model forgetting, consider equation (3).
The first term on its right-hand side corresponds to the log
likelihood of the second model and can be replaced by the
cross-entropy L2(θ2,θs), and if we use a Gaussian prior on
the parameters, the second term encodes an L2 regulariza-
tion. Since equation (3) depends only on the log likelihood
of the second model f2(D;θ2,θs), the information learned
from the first model f1(D;θ1,θs) must reside in the condi-
tional posterior probability log p(θ1,θs | D), and the final
term, 1

2v
>Ωv, must represent the interactions between the

models f1(D;θ2,θs) and f2(D;θ1,θs). This term will not
appear in a standard single-model forgetting scenario. Let
us examine these terms more closely.

The posterior probability p(θ1,θs | D) is intractable, so
we apply a Laplace approximation (MacKay, 1992); we ap-
proximate the log posterior using a second-order Taylor ex-
pansion around the maximum likelihood estimate (θ̂1, θ̂s).
This yields

log p(θ1,θs | D) = log p(θ̂1, θ̂s | D)

− 1

2
(θ′1,θ

′
s)
>Hp(θ

′
1,θ
′
s),

(4)

where (θ′1,θ
′
s) = (θ1,θs) − (θ̂1, θ̂s), and Hp(θ̂1, θ̂s) is

the negative Hessian of the log posterior evaluated at the
maximum likelihood estimate (MLE). As the first derivative
is evaluated at the MLE, it equals zero.

Equation (4) yields a Gaussian approximation to the poste-
rior with mean (θ̂1, θ̂s) and covariance matrixH−1p , i.e.,

p(θ1,θs | D) ∝ exp
{
− 1

2
(θ′1,θ

′
s)
>Hp(θ

′
1,θ
′
s)
}
. (5)

Our parameter space is too large to compute the inverse of
the negative HessianHp, so we replace it with the diagonal
of the Fisher information, diag(F). This approximation
falsely presupposes that the parameters (θ1,θs) are inde-
pendent, but it has already proven effective (Kirkpatrick
et al., 2017; Pascanu & Bengio, 2014). One of its main
advantages is that we can compute the Fisher information
from the squared gradients, thereby avoiding any need for
second derivatives.

Using equation (5) and the Fisher approximation we can
express the log posterior as

log p(θ1,θs | D) ∝
α

2

∑
θsi∈θs

Fθsi (θsi − θ̂si)
2 , (6)

where Fθsi is the diagonal element corresponding to pa-
rameter θsi in the diagonal approximation of the Fisher
information matrix and α is a hyper-parameter, which can
be obtained from the trained model f1(D;θ1,θs).
Now consider the last term in equation (3), noting that
Ω = Hss −H>1sH−111 H1s, as defined in Lemma 2. As
our previous approximation relies on the assumption of a
diagonal Fisher information matrix, we have H1s = 0,
leading to Ω =Hss, so

1

2
v>Ωv =

1

2

∑
θsi∈θs

Fθsi (θsi − θ̂si)
2 . (7)

The last two terms on the right-hand side of equation (3),
as expressed in equation (6) and equation (7), can then be
grouped. Combining the result with the first two terms,
discussed below equation (3), yields our Weight Plasticity
Loss,

LWPL(θ2,θs) =L2(θ2,θs) +
λ

2
(‖θs‖2 + ‖θ2‖2)

+
α

2

∑
θsi∈θs

Fθsi (θsi − θ̂si)
2,

(8)

where Fθsi is the diagonal element corresponding to param-
eter θsi in the Fisher information matrix obtained from the
trained first model f1(D;θ1,θs). We omit the terms depend-
ing on θ1 in equation (6) because we are optimizing with
respect to (θ2,θs) at this stage. The Fisher information in

Overcoming Multi-model Forgetting

the last term encodes the importance of each shared weight
for the first model’s performance, so WPL encourages pre-
serving shared parameters that were important for the first
model, while allowing others to undergo larger changes and
thus to improve the accuracy of the second model.

3.1.1. RELATION TO ELASTIC WEIGHT CONSOLIDATION

The final loss function obtained in equation (8) may ap-
pear similar to that obtained by Kirkpatrick et al. (2017)
when formulating their Elastic Weight Consolidation (EWC)
to address catastrophic forgetting. However, the prob-
lem we address here is fundamentally different. Kirk-
patrick et al. (2017) tackle sequential learning on different
tasks, where a single model is sequentially trained using
two datasets, and their goal is to maximize the posterior
p(θ | D) = p(θ | D1,D2). By relying on Laplace approxi-
mations in neural networks (MacKay, 1992) and the connec-
tion between the Fisher information matrix and second-order
derivatives (Pascanu & Bengio, 2014), EWC is then formu-
lated as the loss L(θ) = LB(θ) +

∑
i
λ
2Fi(θi − θ?A,i)

2,
where A and B refer to two different tasks, θ encodes the
network parameters and Fi is the Fisher information of θi.

Here we consider scenarios with a single dataset but two
models with shared parameters as shown in Figure 2, and
aim to maximize the posterior p(θ1,θ2,θs | D). The result-
ing WPL combines the original loss of the second model,
a Fisher-weighted MSE term on the shared parameters and
an L2 regularizer on the parameters of the second model.
More importantly, the last term in equation (3), v>Ωv, is
specific to the multi-model case, since it encodes the in-
teraction between the two models; it never appears in the
EWC derivation. Because we adopt a Laplace approxima-
tion based on the diagonal Fisher information matrix, as
shown in equation (7), this term can be grouped with that of
equation (6). In principle, however, other approximations
of v>Ωv could be used, such as a Laplace one with a full
covariance matrix, which would yield a final loss that differs
fundamentally from the EWC one.

3.2. WPL for Neural Architecture Search

In the previous section, we considered only two models
being trained sequentially, but in practice one often seeks
to train three or more models. Our approach is then un-
changed, but each model shares parameters with several
other models, which entails using diagonal approximations
to Fisher information matrices for all previously-trained
models from equation (3). In the remainder of this sec-
tion, we discuss how our approach can be used for neural
architecture search.

Consider using our WPL within the ENAS strategy of Pham
et al. (2018). ENAS is a reinforcement-learning-based
method that consists of two training processes: 1) sequen-

Da
ta

se
t

D 1 <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓A = (✓s, ✓1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(✓A, ✓B |D1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Low error param. space on D1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓s
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓
⇤
s|D

1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓⇤s|D2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(✓A|D1, D2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Da
ta

se
t

D 2 <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Single Model Dual Model

Low error param. space on

✓B = (✓s, ✓2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓A, ✓B
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

EWC: based on

✓
⇤
s,A

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

WPL: based on

p(✓A|D1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(✓A|D1) + v>⌦v
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓⇤s,B
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(✓A|D1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓⇤s,A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MLE: jointly optimized

✓⇤s|D1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MLE: given

✓A = (✓s, ✓1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓⇤1,A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓⇤2,B
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓1|D1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓1|D2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2. Comparison between EWC and WPL. The ellipses
in each subplot represent parameter regions corresponding to low
error. (Top left) Both methods start with a single model, with pa-
rameters θA = {θs, θ1}, trained on a single dataset D1. (Bottom
left) EWC regularizes all parameters based on p(θA|D1) to train
the same initial model on a new dataset D2. (Top right) By con-
trast, WPL makes use of the initial datasetD1 and regularizes only
the shared parameters θs based on both p(θA|D1) and v>Ωv,
while the parameters θ2 can vary freely.

tially train sampled models with shared parameters; and
2) train a controller RNN that generates model candidates.
Incorporating our WPL within ENAS only affects 1).

The first step of ENAS consists of sampling a fixed number
of architectures from the RNN controller, and training each
architecture on B batches. This implies that our require-
ment for access to the maximum likelihood estimate of the
previously-trained models is not satisfied, but we verify that
in practice our WPL remains effective in this scenario. After
sufficiently many epochs it is likely that all the parameters
of a newly-sampled architecture are shared with previously-
trained ones, and then we can consider that all parameters
of new models are shared.

At the beginning of the search, the parameters of all mod-
els are randomly initialized. Adopting WPL directly from
the start would therefore make it hard for the process to
learn anything, as it would encourage some parameters
to remain random. To better satisfy our assumption that
the parameters of previously-trained models should be op-
timal, we follow the original ENAS training strategy for
n epochs, with n = 5 for RNN search and n = 3 for
CNN search in our experiments. We then incorporate our
WPL and store the optimal parameters after each archi-
tecture is trained. We also update the Fisher information,

Overcoming Multi-model Forgetting

Iterations

To
p

1
A

cc
ur

ac
y

(a) (b) (c) (d)

Figure 3. From strict to loose convergence. We conduct experiments on MNIST with models A and B with shared parameters, and
report the accuracy of Model A before training Model B (baseline, green) and the accuracy of Models A and B while training Model B
with (orange) or without (blue) WPL. In (a) we show the results for strict convergence: A is initially trained to convergence. We then
relax this assumption and train A to around 55% (b), 43% (c), and 38% (d) of its optimal accuracy. We see that WPL is highly effective
when A is trained to at least 40% of optimality; below, the Fisher information becomes too inaccurate to provide reliable importance
weights. Thus WPL helps to reduce multi-model forgetting, even when the weights are not optimal. WPL reduced forgetting by up to
99.99% for (a) and (b), and by up to 2% for (c).

which adds virtually no computational overhead, because
Fθi = (∂L/∂θi)2, where L =

∑
i Li, with i indexing the

previously-sampled architectures, and the derivatives are al-
ready computed for back-propagation. To ensure that these
updates use the contributions from all previously-sampled
architectures, we use a momentum-based update expressed
as Fθti = (1−η)Fθt−1i +η(∂L/∂θi)2, with η = 0.9. Since
this is not computed at the MLE of the parameters, we flush
the global Fisher buffer to zero every three epochs, yielding
an increasingly accurate estimate of the Fisher information
as optimization proceeds. We also use a scheduled decay
for α in equation (8).

4. Experiments
We first evaluate our weight plasticity loss (WPL) in the
general scenario of training two models sequentially, both in
the strict convergence case and when the weights of the first
model are sub-optimal. We then evaluate the performance
of our approach within the ENAS framework.

4.1. General Scenario: Training Two Models

To test WPL in the general scenario, we used the MNIST
handwritten digit recognition dataset (LeCun & Cortes,
2010). We designed two feed-forward networks with 4
(Model A) and 6 (Model B) layers, respectively. All the
layers of A are shared by B.

Let us first evaluate our approach in the strict convergence
case. To this end, we trained A until convergence, thus
obtaining a solution close to the MLE θ̂A = (θ̂1, θ̂s), since
all our operations are positively homogeneous (Haeffele
& Vidal, 2017). To compute the Fisher information, we
used the backward gradients of θs calculated on 200 images

in the validation set. We then initialized θs of Model B,
fB(D; (θ2,θs)), as θ̂s and trained B by standard SGD with
respect to all its parameters. Figure 3(a) compares the perfor-
mance of training Model B with and without WPL. Without
WPL the performance of A degrades as training B pro-
gresses, but using WPL allows us to maintain the initial
performance of A, indicated as Baseline in the plot. This
entails no loss of performance for B, whose final accuracy
is virtually the same both with and without WPL.

The assumption of optimal weights is usually hard to en-
force. We therefore now turn to the more realistic loose
convergence scenario. To evaluate the influence of sub-
optimal weights for Model A on our approach, we trained
Model A to different, increasingly lower, top 1 accuracies.
As shown in Figure 3(b) and (c), even in this setting our
approach still significantly reduces multi-model forgetting.
We can quantify the relative reduction rate of such forgetting
as dA − dA+WPL/dA, where d = acc∗A − acc is A’s accu-
racy decay after training B. WPL can reduce multi-model
forgetting by up to 99% for a converged model, and by 52%
even for the loose convergence case. This suggests that the
Fisher information remains a reasonable empirical approxi-
mation to the weights’ importance even when our optimality
assumption is not satisfied.

4.2. WPL for Neural Architecture Search

We demonstrate the effectiveness of WPL in a real-world ap-
plication, neural architecture search. We incorporate WPL
in the ENAS framework (Pham et al., 2018), which relies
on weight-sharing across model candidates to speed up the
search and thus, while effective, will suffer from multi-
model forgetting even with random dropping of weights
and output dropout. To show this, we examine how the

Overcoming Multi-model Forgetting

Epochs Iterations

(a) Mean diff. (b) Best 5 mean diff. (c) Max diff. (d) Mean reward (R)

Er
ro

r
D

if
fe

re
nc

e
(d

if
f.)

R
ew

ard (R
)

Figure 4. Error difference during neural architecture search. For each architecture, we compute the RNN error differences err2−err1,
where err1 is the error right after training this architecture and err2 the error after all architectures are trained in the current epoch.
We plot (a) the mean difference over all sampled models, (b) the mean difference over the 5 models with lowest err1, and (c) the
max difference over all models. The plots show that WPL reduces multi-model forgetting; the error differences are much closer to 0.
Quantitatively, the forgetting reduction can be up to 95% for (a), 59% for (b) and 51% for (c). In (d), we plot the average reward of the
sampled architectures as a function of training iterations. Although WPL initially leads to lower rewards, due to a large weight α in
equation (8), by reducing the forgetting it later allows the controller to sample better architectures, as indicated by the higher reward in the
second half.

previously-trained architectures are affected by the train-
ing of new ones by evaluating the prediction error of each
sampled architecture on a fraction of the validation dataset
immediately after it is trained, denoted by err1, and at the
end of the epoch, denoted by err2. A positive difference
err2 − err1 for a specific architecture indicates that it has
been forced to forget by others.

We performed two experiments: RNN cell search on the
PTB dataset and CNN micro-cell search on the CIFAR10
dataset. We report the mean error difference for all sampled
architectures, the mean error difference for the 5 architec-
tures with the lowest err1, and the maximum error differ-
ence over all sampled architectures. Figure 4(a), (b) and
(c) plot these as functions of the training epochs for the RNN
case, and similar plots for CNN search are in the appendix.
The plots show that without WPL the error differences are
much larger than 0, clearly displaying the multi-model for-
getting effect. This is particularly pronounced in the first
half of training, which can have a dramatic effect on the final
results, as it corresponds to the phase where the algorithm
searches for promising architectures. WPL significantly
reduces the forgetting, as shown by much lower error differ-
ences. With WPL, these differences tend to decrease over
time, emphasizing that the observed Fisher information en-
codes an increasingly reliable notion of weight importance
as training progresses. Owing to limited computational re-
sources we estimate the Fisher information using only small
validation batches, but use of larger batches could further
improve our results.

In Figure 4(d), we plot the average reward of all sampled
architectures as a function of the training iterations. In the
first half of training, the models trained with WPL tend to

have lower rewards. This can be explained by the use of a
large value for α in equation (8) during this phase; while
such a large value may prevent the best models from achiev-
ing as high a reward as possible, it has the advantage of
preventing the forgetting of good models, and thus avoiding
their being discarded early. This is shown by the fact that,
in the second half of training, when we reduce α, the mean
reward of the architectures trained with WPL is higher than
without using it. In other words, our approach allows us to
maintain better models until the end of training.

When the search is over, we train the best architecture
from scratch and evaluate its final accuracy. Table 1 com-
pares the results obtained without (ENAS) and with WPL
(ENAS+WPL) with those from the original ENAS paper
(ENAS*), which were obtained after conducting an exten-
sive hyper-parameter search. For both datasets, using WPL
improves final model accuracy, thus showing the importance
of overcoming multi-model forgetting. In the case of PTB,
our approach even outperforms ENAS*, without extensive
hyper-parameter tuning. Based on the gap between ENAS
and ENAS*, we anticipate that such a tuning procedure
could further boost our results. In any event, we believe that
these results already clearly show the benefits of reducing
multi-model forgetting.

4.3. Neural Architecture Optimization

Our approach is general, and its use in the context of neural
architecture search is not limited to ENAS. To demonstrate
this, we applied it to the neural architecture optimization
(NAO) method of (Luo et al., 2018), which also exploits
weight-sharing in the search phase. In this context, we there-
fore investigate (i) whether multi-model forgetting occurs,

Overcoming Multi-model Forgetting

0 100 200 300

200

400

600

800

1000

1200
Va

lid
 P

PL

0 100 200 300

200

400

600

800

1000

1200

0 100 200 300

200

400

600

800

1000

1200

0 100 200 300

200

400

600

800

1000

1200
NAO
NAO + WPL
NAO + Drop-path

0 100 200 300
Dropout = 0.0

0.0

2.5

5.0

7.5

10.0

12.5

Di
ff.

0 100 200 300
Dropout = 0.25

0.0

2.5

5.0

7.5

10.0

12.5

0 100 200 300
Dropout = 0.50

0.0

2.5

5.0

7.5

10.0

12.5

0 100 200 300
Dropout = 0.75

0.0

2.5

5.0

7.5

10.0

12.5 NAO
NAO + WPL
NAO + Drop-path

Figure 5. Comparison of different output dropout rates for NAO. We plot the mean validation perplexity while searching for the best
architecture (top) and the best 5 model’s error differences (bottom) for four different dropout rates. Note that path dropping in NAO
prevents learning shortly after model initialization with all different dropout rates. At all the dropout rates, our WPL achieves lower error
differences, i.e., it reduces multi-model forgetting, as well as speeds up training.

Table 1. Results of the best models found. We take the best
model obtained during the search and train it from scratch. ENAS*
corresponds to the results of Pham et al. (2018) obtained after
extensive hyper-parameter search, while ENAS and ENAS+WPL
were trained in comparable conditions. For both RNN and CNN
search, our WPL gives a significant boost to ENAS, thus show-
ing the importance of overcoming multi-model forgetting. In the
RNN case, our approach outperforms ENAS* without requiring
extensive hyper-parameter tuning.

Datasets Metric ENAS* ENAS ENAS + WPL
PTB perplexity 63.26 65.01 61.9

CIFAR10 top-1 error 3.54 4.87 3.81

and if so, (ii) the effectiveness of our approach in the NAO
framework. Due to resource and time constraints, we focus
our experiments mainly on the search phase, as training
the best model that was found from scratch takes around 4
GPU days. To evaluate the influence of the dropout strategy
of Bender et al. (2018), we test NAO with or without ran-
dom path-dropping and with four output dropout rates from
0 to 0.75 by steps of 0.25. As in Section 4.2, in Figure 5,
we plot the mean validation perplexity and the best five
model’s error differences for all models that are sampled
during a single training epoch. For random path-dropping,
since Luo et al. (2018) exploit a more aggressive dropping
policy than that used in Bender et al. (2018), validation per-
plexity quickly plateaus. Hence we do not add WPL to the
path dropout strategy, but use it in conjunction with output
dropout.

At all four different dropout rates, WPL clearly reduces
multi-model forgetting and accelerates training. The level
of forgetting decreases with the dropout rate, but our loss
always further reduces it. Among the three methods, NAO
with path dropping suffers the least from forgetting, but only
because it does not learn properly. By contrast, WPL re-
duces multi-model forgetting while still allowing the models
to learn. This shows that our approach generalizes beyond
ENAS for neural architecture search.

5. Conclusion
This paper has identified the problem of multi-model forget-
ting in the context of sequentially training multiple models:
the shared weights of previously-trained models are over-
written during training of subsequent models, leading to per-
formance degradation. We show that the degree of degrada-
tion is linked to the proportion of shared weights, and intro-
duce a statistically-motivated weight plasticity loss (WPL)
to overcome this. Our experiments on multi-model training
and on neural architecture search clearly show the effec-
tiveness of WPL in reducing multi-model forgetting and
yielding better architectures, leading to improved results in
both natural language processing and computer vision tasks.
We believe that the impact of WPL goes beyond the tasks
studied in this paper. In future work, we plan to integrate
WPL within other neural architecture search strategies in
which weight sharing occurs and to study its use in other
multi-model contexts, such as for ensemble learning.

Overcoming Multi-model Forgetting

References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and

Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. The European Conference on Computer
Vision (ECCV), 2018.

Bäck, T. Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming,
Genetic Algorithms. Oxford University Press, Inc., 1996.

Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing
neural network architectures using reinforcement learn-
ing. International Conference on Learning Representa-
tions (ICLR), Conference track, 2017.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and
Le, Q. Understanding and simplifying one-shot archi-
tecture search. In International Conference on Machine
Learning, pp. 549–558, 2018.

Bennani-Smires, K., Musat, C., Hossmann, A., and
Baeriswyl, M. Gitgraph - from computational subgraphs
to smaller architecture search spaces. International Con-
ference on Learning Representations (ICLR), Workshop
track, 2018.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Efficient
architecture search by network transformation. AAAI,
2018.

Caruana, R. Multitask learning. Machine Learning, 28(1):
41–75, 1997.

Chen, T., Goodfellow, I. J., and Shlens, J. Net2net: Accel-
erating learning via knowledge transfer. International
Conference on Learning Representations (ICLR), Confer-
ence track, 2016.

Dietterich, T. G. Ensemble methods in machine learning.
Multiple Classifier Systems, pp. 1–15, 2000.

Elsken, T., Hendrik Metzen, J., and Hutter, F. Neu-
ral Architecture Search: A Survey. arXiv preprint
arXiv:1808.05377, 2018.

Goldberg, D. E. and Deb, K. A comparative analysis of se-
lection schemes used in genetic algorithms. Foundations
of Genetic Algorithms, pp. 69–93, 1991.

Haeffele, B. D. and Vidal, R. Global optimality in neural
network training. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4390–4398,
2017.

He, X. and Jaeger, H. Overcoming catastrophic interference
by conceptors. arXiv preprint arXiv:1707.04853, 2017.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 2017.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research). 2009.

LeCun, Y. and Cortes, C. MNIST handwritten digit database.
2010.

Li, Z. and Hoiem, D. Learning without forgetting. In
European Conference on Computer Vision, pp. 614–629.
Springer, 2016.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and
Kavukcuoglu, K. Hierarchical representations for ef-
ficient architecture search. International Conference
on Learning Representations (ICLR), Conference track,
2018a.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018b.

Luo, R., Tian, F., Qin, T., and Liu, T.-Y. Neural architecture
optimization. arXiv preprint arXiv:1808.07233, 2018.

MacKay, D. J. C. A Practical Bayesian Framework for
Backpropagation Networks. Neural Computation, 4(3):
448–472, 1992.

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R.,
Bies, A., Ferguson, M., Katz, K., and Schasberger, B. The
penn treebank: Annotating predicate argument structure.
In Proceedings of the Workshop on Human Language
Technology, pp. 114–119. Association for Computational
Linguistics, 1994.

Negrinho, R. and Gordon, G. DeepArchitect: Automati-
cally Designing and Training Deep Architectures. arXiv
preprint arXiv:1704.08792, 2017.

Pan, S. J. and Yang, Q. A survey on transfer learning.
IEEE Trans. on Knowl. and Data Eng., 22(10):1345–
1359, 2010.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. International Conference on Learning
Representations (ICLR), Conference track, 2014.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean,
J. Efficient Neural Architecture Search via Parameter
Sharing. International Conference on Machine Learning
(ICML), 2018.

Overcoming Multi-model Forgetting

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,
Tan, J., Le, Q. V., and Kurakin, A. Large-scale evolu-
tion of image classifiers. International Conference on
Machine Learning (ICML), 2017.

Rissanen, J. Fisher information and stochastic complexity.
IEEE Trans. Information Theory, 42, 1996.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Silver, D., Yang, Q., and Li, L. Lifelong machine learning
systems: Beyond learning algorithms. In AAAI Spring
Symposium Series, 2013.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Robust
multitask reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 4496–4506, 2017.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3):229–256, 1992.

Xie, L. and Yuille, A. Genetic cnn. IEEE International
Conference on Computer Vision (ICCV), 2017.

Xu, J. and Zhu, Z. Reinforced continual learning. In NIPS,
2018.

Young, T., Hazarika, D., Poria, S., and Cambria, E. Recent
trends in deep learning based natural language processing.
arXiv preprint arXiv:1708.02709, 2017.

Zoph, B. and Le, Q. V. Neural Architecture Search
with Reinforcement Learning. International Conference
on Learning Representations (ICLR), Conference track,
2017.

