
APPENDIX
We begin this appendix by stating a precise condition on
the subclass of RNNs to which the algorithms OK and
KF-RTRL can be applied (Section A.0.1) and show that
in a setting as given by the algorithm KTP, the concept
of a minimum-variance approximator is not well defined
(Section A.0.2). We also give details on how the memory
requirement of KTP can be kept at O(n) (Section A.0.3).

In the remaining two sections, we prove Theorems 1 and 2
from the paper (Section A.1) and provide additional experi-
ments (Section A.2).

A.0.1. Subclass of RNNs for OK and KF-RTRL

Recall, that similarly to KF-RTRL (Mujika et al., 2018),
we restrict our attention to RNNs for which the term Ft
(see description of RTRL in the paper) can be factored as
Ft = ht ⊗Dt. We restate the condition given in (Mujika
et al., 2018):

Lemma A.1. Assume that the learnable parameters θ are
a set of matrices W 1, ...,W r, let ĥt−1 be the hidden state
ht−1 concatenated with the input xt and let zk = ĥt−1W

k

for k = 1, ..., r. Assume that ht is obtained by point-wise
operations over the zk’s, that is, (ht)j = f(z1j , ..., z

r
j ). Let

Dk ∈ Rn×n be the diagonal matrix defined by Dj
kk =

∂(ht)j
∂zkj

, and let D = (D1| . . . |Dr). Then, it holds that
∂ht

∂θ = ĥt−1 ⊗D.

We refer the reader to (Mujika et al., 2018) for the simple
proof. There, it is also shown that this class of RNNs in-
cludes standard RNNs and the popular LSTM and RHN
architectures.

A.0.2. No Optimal Approximation for 3-Tensors

Here, we show that the concept of a minimum-variance
approximator is ill-defined for a situation as encountered by
KTP. We also explain how similar problems are related to
NP-hardness.

For the next lemma, we slightly adapt an example
from (Hillar & Lim, 2013) based on an exercise in (Knuth,
1997). We first recall some notions related to 3-tensors. For
a, b, c ∈ Rn \ {0}, we call a ⊗ b ⊗ c a rank-1 tensor. In
general, the rank of a tensor X is the minimum number k,
so that X can be written as the sum of k rank-1 tensors. The
following is related to the fact that the set of rank-2 tensors
is not closed.

Lemma A.2. For i = 1, 2, 3, let xi, yi ∈ Rn so
that the pairs xi, yi are linearly independent and define
X = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x2.
Then, there are rank-2 approximators of X with arbitrarily
small variance, but no rank-2 approximator of variance 0.

Thus, the concept of a ‘minimum-variance’ rank-2 approxi-
mator of X is ill-defined.

Proof. The statement that there is no rank-2 approximator
with variance 0 is equivalent to X having rank larger than 2,
the details of which we leave to the reader.

Now, let s ∈ {±1} be a uniformly random sign and for each
positive integer n define a random variable

Xn = x1 ⊗ x2 ⊗ (y3 − s · nx3)

+

(
s · x1 +

1

n
y1

)
⊗
(
x2 + s · 1

n
y2

)
⊗ nx3

A simple calculation showsXn = X+s· 1n (y1 ⊗ y2 ⊗ x3) .
From this we conclude E[Xn] = X and Var[Xn] → 0 as
n→∞, finishing the proof of the lemma.

In addition to the concept of a minimum-variance approx-
imator not being well defined, we note that finding ‘good’
approximators (which might still be possible given the above
lemma) seems to be closely related to finding the rank
of a 3-tensor, which is, like many other problems for 3-
tensors (Hillar & Lim, 2013), NP-hard.

A.0.3. Memory of KTP

Here, we describe how the memory requirement of KTP
can be kept at O(n) despite the need of calculating Htb
(see description of KTP in the paper, Ht ∈ Rn×n, b ∈
Rn×1). One way to do this was already used in (Tallec
& Ollivier, 2017). Recall ht = f(xt, ht−1, θ) and Ht =
∂ht

∂ht−1
. Therefore, Htb is a directional derivative of ht in

the direction of b, which implies

Htb = lim
ε→0

f(xt, ht−1 + εb, θ)− f(xt, ht−1, θ)
ε‖b‖

. (1)

To evaluate Htb it therefore suffices to choose a small ε and
evaluate the expression above. The expression above can be
calculated together with the forward pass of the RNN, so
that no additional batch-memory is needed.

A.1. Proofs
In this section, we prove Theorems 1 and 2 from the main pa-
per. Their statements and the related algorithms are restated
below for convenience.

The outline of this section is as follows. We start in Section
A.1.1 by introducing some notation and reviewing the con-
cept of a Singular Value Decomposition along with some of
its properties, which will be useful later. In Section A.1.2
we prove Theorem A.1 assuming correctness of Algortihm
A.2 and Theorem A.2. These are then jointly proved in
Section A.1.3.



Theorem A.1. Let G be an (r + 1)-Kronecker-Sum and
let G′ be the random r-Kronecker-Sum constructed by OK.
Then G′ unbiasedly approximates G. Moreover, for any
random r-Kronecker-Sum Y of the same format asG′ which
satisfies E[Y ] = G, it holds that Var[Y ] ≥ Var[G′].

Theorem A.2. Given C ∈ Rm×n and r ≤ min{m,n},
one can (explicitly) construct an unbiased approximator C ′

of C, so that C ′ always has rank at most r, and so that C ′

has minimal variance among all such unbiased, low-rank
approximators. This can be achieved asymptotically in the
same runtime as computing the SVD of C.

Algorithm A.1 The OK approximation

Input: Vectors u1, . . . , ur+1 and matrices A1, . . . , Ar+1

Output: Random vectors u′1, . . . , u
′
r and matrices

A′1 . . . A
′
r, such that

∑r
i=1 u

′
i ⊗ A′i is an unbiased,

minimum-variance approximator of
∑r+1
i=1 ui ⊗Ai

/*Rewrite in terms of orthonormal basis (onb)*/
v1, . . . , vr+1 ← onb of span{u1, . . . , ur+1}
B1, . . . , Br+1 ← onb span{A1, . . . , Ar+1}
for 1 ≤ i, j ≤ r + 1 do
Li,j ← 〈vi, uj〉, Ri,j ← 〈Bi, Aj〉

end for
/*Find optimal rank r approximation of matrix C */
C ← LRT

(L′, R′)← Opt(C) {see Algorithm A.2 for Opt(·)}
/*Generate output*/
for 1 ≤ j ≤ r do
u′j ←

∑r+1
i=1 L

′
i,jvi, A′j ←

∑r+1
i=1 R

′
i,jBi

end for

A.1.1. Preliminaries

A.1.1.1. NOTATION

We denote matrices by upper case letters, e.g. C ∈ Rm×n,
and denote their entries by indexing this letter, e.g. Ci,j
where 1 ≤ i ≤ m and 1 ≤ j ≤ n. For vectors
s, z1, . . . , zn ∈ Rn×1, we denote by s � zi the pointwise
product and by Z = (z1, . . . , zr) ∈ Rn×r the matrix whose
i-th column is zi. We write Idn for the identity matrix of
dimension n.

For a random variable X ′ ∈ Rn×m and some fixed value
X ∈ Rn×m, we say that X ′ is an unbiased approximator of
X , if E[X ′] = X . We further call X ′ a rank-r approxima-
tor, if X always (with probability 1) has rank at most r. We
will usually name random variables by adding a “ ’ ” to the
deterministic quantity they represent. The variance of X ′

is defined as Var[X ′] = E[‖X ′ − E[X ′]‖2], where we use
the Frobenius norm and the corresponding inner product
〈X1, X2〉 = Tr(XT

1 X2) throughout.

Algorithm A.2 Opt(C)

Input: Matrix C ∈ R(r+1)×(r+1)

Output: Random matrices L′, R′ ∈ R(r+1)×r, so that
L′R′T is an unbiased, min-variance approximator of C
/* Reduce to diagonal matrix D*/
(D,U, V )← SVD(C)
(d1, . . . , dr+1)← diagonal entries of D
/* Find approximator ZZT for small di (i ≥ m)*/
m← min{i : (r − i+ 1)di ≤

∑r
j=i dj}

s1 ←
∑r+1
i=m di, k ← r −m+ 1

z0 ←
(√

1− dmk
s1
, . . . ,

√
1− dr+1k

s1

)T
∈ R(k+1)×1

z1, . . . , zk ← so that z0, z1, . . . , zk is an onb of R(k+1)×1

s← vector of k + 1 uniformly random signs
Z ←

√
s1
k · (s� z1, . . . , s� zk) {pointwise product �}

/* Initialise L′, R′ to approximate D*/
L′, R′ ← diag(

√
d1, . . . ,

√
dm−1, Z) {Block-diagonal}

/*Approximate C = UDV T */
L′ ← UL′, R′ ← V R′

A.1.1.2. SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) is a standard tool
from Linear Algebra, and has countless applications in and
outside Machine Learning. We refer to the textbook (Golub
& Van Loan, 1996) for an introduction and (Cline & Dhillon,
2006) for a review of algorithms to compute the SVD.

To simplify notation, we restrict our attention to square ma-
trices. The concepts straightforwardly generalise to arbitrary
matrices, we refer to the above mentioned textbook.

For a matrix C ∈ Rn×n, the Singular Value Decomposi-
tion (SVD) of C is a triple of matrices U, V,D ∈ Rn×n
satisfying C = UDV T , so that U, V are orthogonal and
D = diag(d1, . . . , dn) is a diagonal matrix with non-
negative, non-decreasing entries. The existence of a SVD is
a standard result in Linear Algebra.

The values di are refered to as singular values of C and
are uniquely determined by C. In fact they are the square-
roots of the eigenvalues of CCT . The number of non-zero
singular values of C equals the rank of C. The columns
of U, V are called left, respectively right, singular vectors.
They correspond to eigen-bases of the matrices CCT and
CTC, respectively. The singular vectors are uniquely deter-
mined if and only if the singular values are pairwise distinct.
If a singular value di appears more than once, the corre-
sponding singular vectors form an orthonormal basis of a
subspace uniquely determined by C and di (corresponding
to an eigen-space of CCT or CTC).

One of the important applications of the SVD is the follow-



ing result, known as the Eckart-Young Theorem (Eckart &
Young, 1936).

Theorem A.3 (Eckart-Young Theorem). Let C ∈ Rn×n be
a matrix with singular values d1, . . . , dn and letX ∈ Rn×n
be a fixed (non-random) matrix of rank at most r.
Then, ‖C − X‖2 ≥

∑n
i=r+1 d

2
i and equal-

ity is achieved if and only if X is of the form
X = U · diag(d1, . . . , dr, 0 . . . , 0) · V T for an arbirarty
singular value decomposition C = UDV T of C.

Noting that every SVD of the identity matrix Idn is of the
form Idn = U · Idn ·UT for some orthogonal matrix U , we
can deduce the following observation.

Observation A.1. Let X ∈ Rn×n be a fixed (non-random)
matrix of rank at most r. Then ‖X − Idn‖2 ≥ n − r
and equality is achieved if and only if X is of the form
X =

∑r
i=1 uiu

T
i , where the ui are orthonormal vectors in

Rn×1.

A.1.2. Proof of Theorem A.1

Let us first restate the objective encountered by OK. We
are given vectors u1, . . . , ur+1 ∈ R1×n and matrices
A1, . . . , Ar+1 ∈ Rn×n and we want to construct random
vectors u′1, . . . , u

′
r and matrices A′1, . . . , A

′
r such that the r-

Kronecker-Sum G′ =
∑r
i=1 u

′
i ⊗A′i is an unbiased approx-

imator of the (r + 1)-Kronecker-Sum G =
∑r+1
i=1 ui ⊗Ai,

and such that G′ has minimum variance.

Theorem A.1 follows directly from the following lemma.

Lemma A.3. Assume that Algorithm A.2 gives a minimum-
variance rank-r approximation C ′ = L′R′T of the matrix
C = LTR as constructed by Algorithm A.1. Then Algorithm
A.1 gives a minimum-variance unbiased approximatorG′ =∑r

i=1 u
′
i ⊗A′i of G =

∑r+1
i=1 ui ⊗Ai.

Proof. The first important observation is that for an opti-
mal approximator G′, the random variables u′i are always
elements of span{u1, . . . , ur+1} and the A′i are always
elements of span{A1, . . . , Ar+1}. Otherwise, we could
simply take the u′i and project them (orthogonally) onto
span{u1, . . . , ur+1} (and similarly for the A′i) to obtain a
new unbiased approximator G′′ of G which has less vari-
ance than G′.

From this observation, it follows that the u′i are a (random)
linear combination of the ui (and similarly for A′i). In or-
der to be able to get simple closed-form expressions for
the variance of G′, we now choose orthonormal bases of
the spaces span{u1, . . . , ur+1} and span{A1, . . . , Ar+1},
let us denote them by v1, . . . , vr+1 and B1, . . . , Br+1 re-
spectively. Now define matrices L,R ∈ R(r+1)×(r+1) by
setting Li,j := 〈vi, uj〉 and Ri,j := 〈Bi, Aj〉. Especially,
we have uj =

∑r+1
i=1 Li,jvi (and an analogous equation

for Aj). Observe that the matrix C := LRT has coeffi-
cients representing G in terms of an orthogonal bases, more
precisely

G =
∑

1≤i,j≤r+1

Ci,j (vi ⊗Bj) , (2)

where it is not difficult to see that the (vi ⊗Bj)i,j are or-
thonormal.

As noted above, the u′i, A
′
i forming G′ are linear combina-

tions of ui, Ai respectively, so they can be written in terms
of the ONBs u′i, A

′
i. Let us record all the corresponding co-

efficients in (random) matrices L′, R′ ∈ R(r+1)×r meaning
that L′i,j = 〈vi, u′j〉 (or equivalently u′j =

∑
i L
′
i,jvi ) and

R′i,j = 〈Bi, Aj〉. The same calculations as above then show
that, for the matrix C ′ := L′R′T , we have

G′ =
∑

1≤i,j≤r+1

C ′i,j (vi ⊗Bj) . (3)

Now, with linearity of expectation and independence of
(u′i ⊗A′j)i,j , we can conclude from (2), (3) that

E[G′] = G ⇔ E[C ′] = C.

From the orthonormality of (u′i⊗A′j)i,j we moreover obtain

Var[G′] = E

∑
i,j

(
C ′i,j − E[C ′i,j ]

)2 = Var[C ′].

Combined, the last two statements show that finding a mini-
mum variance, unbiased approximator G′ of G is equivalent
to finding a minimum variance, unbiased rank-r approxi-
mator C ′ = L′R′T of C. This finishes the proof of the
lemma.

A.1.3. Proof of Theorem A.2, Correctness of Algorithm
A.2

Here, we prove Theorem A.2. The calculations carried out in
the proof precisely match the ones carried out by Algorithm
A.2, so that its correctness is an immediate consequence of
the proof given below. Theorem A.2 is a direct consequence
of Theorems A.4 and A.5 below.

To simplify notation, we shall assume that C has dimen-
sion C ∈ Rn×n, the more general case C ∈ Rm×n can
be proved in the same way without additional complica-
tions. The outline of the proof is as follows: We will first
reduce finding an unbiased rank-r approximator of C to the
problem of finding an unbiased, rank-r approximator of a
diagonal matrix D using SVD. We will then use a duality
argument to give a sufficient condition for an approximator
ofD to have minimal variance and conclude by constructing
an approximator fulfilling this condition.



A.1.3.1. REDUCING THE PROBLEM TO DIAGONAL
MATRICES

In this subsection, we give the simple explanation of how
finding an optimal rank-r approximator C ′ of C ∈ Rn×n
can be reduced to finding an optimal rank-r approximator
D′ of a diagonal matrix D = diag(d1, . . . , dn) with non-
negative entries.

Lemma A.4. Let C be as above and let UDV T = C be a
SVD of C. Then, given an unbiased rank-r approximator
D′ of D, it holds that C ′ = UD′V T is an unbiased approx-
imator of C. Moreover, C ′ is optimal if D′ is optimal.

Proof. The proof is almost immediate. The fact that C ′

unbiasedly approximates C follows from the fact that D′

unbiasedly approximates D, linearity of expectation and
C = UDV T . Note that given C ′, we can write D′ =
UTC ′V , so that there is a one-to-one correspondence be-
tween C ′ and D′. Since U, V are orthogonal, it follows that
Var[C ′] = Var[D′], so that C ′ is optimal if and only if D′

is optimal.

A.1.3.2. OPTIMALLY APPROXIMATING DIAGONAL
MATRICES

In this subsection, we construct a minimum-variance,
unbiased approximator for diagonal matrices D =
diag(d1, . . . , dn) with non-negative, non-increasing entries.
The first step is giving a sufficient condition for any such
approximator to be optimal. The second step is the construc-
tion of an unbiased approximator satisfying this condition.

SUFFICIENT OPTIMALITY CONDITION

For stating our condition, we first need some notation. Let
D = diag(d1, . . . , dn) be a diagonal matrix such that d1 ≥
d2 . . . ≥ dn ≥ 0. Let

m = min

i : (r − i+ 1)di ≤
n∑
j=i

dj

 , k = r−m+1.

We can already give some intuition on the meaning of m.
We will see later that it is defined so that the first m − 1
diagonal entries are so large, that an optimal approximation
consists of approximating D by

D′ =


d1 . . . 0

0
. . . 0

0 . . . dm−1

0

0 D′2

 (4)

where D′2 is an optimal, unbiased rank-k approximator of
diag(dm, . . . , dn) (note that if the rank of D′2 was larger
then k then the rank of D′ would be larger than r). In other
words, some large diagonal entries are kept deterministically

and only smaller ones are ‘mixed’ into a matrix of lower
rank.

Defining

s1 :=

n∑
j=m

dj and s2 :=

n∑
j=m

d2j

we can state our optimality condition.

Theorem A.4. Let D,m, k, s1, s2 be as above. Then, any
unbiased rank-r approximator D′ of D satisfies

Var[D′] ≥ s21
k
− s2.

Equality is achieved if and only if, in addition to being
unbiased, D′ satisfies the following two conditions:

1. D′ is of the form given in equation (4), such that

2. D′2 always (with probability 1) satisfies∥∥∥∥ ks1D′2 − Idn−(m−1)

∥∥∥∥2 = n− r.

Before proving the theorem, let us explain Condition 2. of
the theorem. Note thatD′2 has (square) dimension n−(m−
1) and must have rank at most k = r − (m− 1). Thus, by
the Eckart-Young Theorem∥∥∥∥ ks1D′2 − Id

∥∥∥∥2 ≥ ((n− (m− 1))− k))
)
= n− r.

In other words, the approximator D′2 is optimal, if and only
if k
s1
D′2 is as close to Id as it can be (given its rank).

Proof of Theorem A.4. As mentioned before, we will prove
the theorem using a duality argument. LetD′ be an unbiased
rank-r approximator of D. Observe that for any matrix
B ∈ Rn×n, due to linearity of expectation, it holds that
E
[
Tr[(D′ −D)B]

]
= 0. We can therefore write

Var[D′] = E

[
Tr
[
(D′ −D)(D′ −D)T

]]

= E

[
Tr
[
(D′ −D)(D′ −D)T

]
+ 2Tr

[
(D′ −D)BT

]]

= E

[
Tr
[
(D′ −D +B) (D′ −D +B)

T
]
− Tr

[
BBT

]]
= E

[
‖D′ − (D −B)‖2

]
− E

[
‖B‖2

]
≥ min

X∈Rn×n,
rank(X)≤r

(
‖X − (D −B)‖2

)
− ‖B‖2. (5)



Thus, for any B ∈ Rn×n, we get the lower bound from
equation (5) on the variance of D′. We now choose B to
maximize the lower bound. Namely, we choose B so that

D −B =


d1 . . . 0

0
. . . 0

0 . . . dm−1

0

0 s1
k Idr−(m−1)

 .

This implies

‖B‖2 =

n∑
j=m

(
dj −

s1
k

)2
= s2 − 2

s21
k

+ (n−m+ 1)
s21
k2
. (6)

Moreover, note that the diagonal entries of D −B are non-
increasing. Form = 1 this is immediate, form > 1, the def-
inition ofm implies (r−(m−1)+1)dm−1 >

∑n
j=m−1 dj

giving dm−1 > s1
k showing that diagonal entries are indeed

non-decreasing. Thus, by the Eckart-Young Theorem, we
have

min
X∈Rn×n,
rank(X)≤r

(
‖X − (D −B)‖2

)
≥ (n− r) s

2
1

k2
. (7)

We now obtain the statement of the theorem by plugging (6)
and (7) into (5) and recalling k = r −m+ 1

Var[D′] ≥ s21
k2

(
(n− r) + 2k − (n−m+ 1)

)
− s2

=
s21
k
− s2.

Note that equality is achieved if and only if it is always
achieved in (7). Since dm−1 > s1

k , it follows from the
Eckart-Young Theorem that equality in (7) is achieved if an
only if the Conditions 1 and 2 from the theorem hold.

CONSTRUCTION OF APPROXIMATOR FULFILLING THE
OPTIMALITY CONDITION

We now show that the condition from Theorem A.4 can be
satisfied by a rank-r approximator D′ of D.

Theorem A.5. In the setting of Theorem A.4, there is an
unbiased approximator D′ of D satisfying the optimality
Conditions 1 and 2 from Theorem A.4.

To simplify the exposition of the proof of this theorem, we
state two lemmas. Their proofs are given in the end of this
section.

Lemma A.5. Let D = diag(d1, . . . , dn) such that
d1, . . . , dn ∈ [0, 1] with

∑n
i=1 di = r a positive inte-

ger. Moreover, assume there exist orthonormal vectors

z1, . . . , zr ∈ Rn×1 so that the matrix Z =
∑r
i=1 ziz

T
i

has diagonal entries d1, . . . , dn (in this order). For a vec-
tor s ∈ Rn×1 of uniformly random signs (i.e. each entry
is chosen uniformly and independently from {±1}), and
z′i = s� zi, define D′ =

∑k
i=1 z

′
iz
′
i
T .

ThenD′ is an unbiased rank-r approximator ofD satisfying
the optimality Conditions 1 and 2 from Theorem A.4.

The pointwise multiplication by random signs s in this
lemma can be interpreted as a generalization of the ‘sign-
trick’ from (Tallec & Ollivier, 2017).

To make use of the above lemma, we need to construct
z1, . . . , zr as described in its statement. This is achieved by
the following lemma, whose proof uses ideas from (Israel,
2011)

Lemma A.6. Let D = diag(d1, . . . , dn) such that
d1, . . . , dn ∈ [0, 1] with

∑n
i=1 di = r a positive integer.

Then, there exists orthonormal vectors z1, . . . , zr ∈ Rn×1
so that the matrix Z :=

∑r
i=1 ziz

T
i has the same diagonal

entries d1, . . . , dn as D (in this order).

Note that Z as defined in this lemma is a symmetric idem-
potent matrix with trace r. It is not difficult to show that
every symmetric, idempotent matrix Z with trace r can be
decomposed as a sum Z =

∑r
i=1 ziz

T
i , where the zi are

orthonormal. So the Lemma can also be interpreted as the
following statement about symmetric, idempotent matrices:
Symmetric idempotent matrices can have any diagonal up to
the constraint that diagonal entries are between 0 and 1 and
sum up to an integer. It is easy to check that any symmetric,
idempotent matrix also satisfies these two conditions, so
that the lemma fully classifies the diagonals of symmetric,
idempotent matrices.

We are now ready to give the proof of Theorem A.5.

Proof of Theorem A.5. Note that in order to construct an
optimal rank-r approximator D′ of D it suffices to find a
rank-k approximator D′2 of D2 = diag(dm, . . . , dn) satis-
fying condition 2. from Theorem A.4.

Note that k
s1
D2 satisfies the conditions of Lemma A.6, since

its diagonal entries sum to k and are in [0, 1] by the defi-
nition of m. Therefore, there exist orthonormal vectors
z1, . . . , zk ∈ R(n−m+1)×1 so that Z =

∑k
i=1 ziz

T
i has the

same diagonal as k
s1
D2. By Lemma A.5, choosing a vector

s ∈ R(n−m+1)×1 of random signs (i.e. each entry is uni-
formly and independently drawn from {±1}) gives an opti-
mal unbiased rank-k approximator

∑k
i=1(s� zi)(s� zi)T

of k
s1
D2 satisfying the (rescaled) Conditions 1 and 2 from

Theorem A.4. Multiplying this approximator by s1
k there-

fore gives an unbiased rank-k approximator ofD2 satisfying
the same conditions.



PROOF OF LEMMA A.5

Proof. We will first check that D′ is actually an unbiased
approximator of D and then check the condition from Theo-
rem A.4.

In order to show E[D′] = D, consider the (a, b)-th entry
(z′iz

′
i
T
)a,b of the matrix z′iz

′
i
T . Observe that (z′iz

′
i
T
)a,b =

sasb(ziz
T
i )a,b, so that for a 6= b we have E[(z′iz

′
i
T
)a,b] = 0

and for a = b we have E[(z′iz
′
i
T
)a,a] = (ziz

T
i )a,a. From

this, it follows that E[D′] has 0 off-diagonal entries and that
its diagonal entries equal the ones of Z. In other words,
E[D′] = D as desired.

We now check the conditions given by Theorem A.4. First
of all, note that in the notation of the theorem we have
m = 1 (since d1 ≤ 1 by assumption) and therefore s1 =
r, so that we just have to show ‖D′ − Idr‖2 = (n − r).
This is immediate from the fact that the z′i always inherit
orthonormality from the zi and Observation A.1.

PROOF OF LEMMA A.6

Let us first give a simplified construction for the special case
n = r+1 which is used by Algorithm A.2. We simply define
the unit-norm vector z0 = (

√
1− d1, . . . ,

√
1− dr+1)

T .
Now, we find z1, . . . , zr completing an orthonormal bases
z0, z1, . . . , zr of Rr+1(for example, one can first complete
the basis arbitrarily and then apply the (modified) Gram-
Schmidt algorithm). We then have

∑r
i=0 ziz

T
i = Idn and

therefore Z =
∑r
i=1 ziz

T
i = Idn − z0zT0 has the desired

diagonal entries.

We now give the full proof of the lemma, it uses ideas
from (Israel, 2011).

Proof. First, we may without loss of generality assume that
d1 ≥ . . . ≥ dn, since reordering the diagonal entries of Z
can be achieved by reordering the coordinates of the zi.

We will prove the statement by induction on r and we note
that the proof can easily be turned into an algorithm con-
structing the zi.

For r = 1, the statement is trivial: Simply set z1 =
(
√
d1, . . . ,

√
dn) and note that it has norm 1.

Now assume the statement holds for r−1. We want to show
that it holds for r. Our plan is as follows: We will change
two diagonal entries dm, dm+1, so that the first m diagonal
entries sum up to 1 and the remaining ones sum up to r − 1.
We then apply the induction hypothesis to find vectors xi
such that

∑
i xix

T
i has the slightly changed values on the

diagonal (with new dm, dm+1) and then apply a rotation R
to restore the original diagonal entries dm, dm+1 and giving
the desired zi = Rxi.

We now give the details. Set

m = max

{
j ∈ {1, . . . , n} :

j∑
t=1

dt ≤ 1

}

and let α = 1−
∑j
t=1 dt. Now, set d′i = di for i 6= m,m+1

and set d′m = dm + α as well as d′m+1 = dm+1 − α (note
that 1 ≤ m < r so that m,m+ 1 are valid indices). Then
we claim that d′m+1, . . . , d

′
n satisfy the conditions of the

lemma for r − 1.

This is not difficult to see: Note that
∑m
i=1 d

′
i =

∑m
i=1 di +

α = 1 by the definition of α. Moreover,
∑n
i=1 d

′
i =∑n

i=1 di = r. Therefore, we get
∑n
i=m+1 d

′
i = r −∑m

i=1 d
′
i = r − 1. Moreover, d′m+1 ≤ dm+1 ≤ 1 and

d′m+1 = dm+1 − α = dm+1 −

(
1−

m∑
i=1

di

)

=

m+1∑
i=1

di − 1 ≥ 0

by definition of m. For i > m+ 1, the condition d′i ∈ [0, 1]
is trivial. So we have indeed checked that d′m+1, . . . , d

′
n

satisfy the conditions of the lemma for r − 1.

By induction, there exist vectors y1, . . . , yr−1 ∈
R(n−m)×1, so that Y =

∑r−1
i=1 yiyi

T has diagonal entries
d′m+1, . . . , d

′
n. We write q = (

√
d′1, . . . ,

√
d′m)T and let

xi =

(
0
yi

)
∈ Rn×1 and xr =

(
q
0

)
∈ Rn×1.

Then, the xi are clearly orthonormal and the matrix X =∑r
i=1 xix

T
i can be written as a block diagonal matrix of the

form

X =

(
qqT 0
0 Y

)
.

Especially, X has diagonal entries d′1, . . . , d
′
n. On top of

that, when we restrict the indices of X to be m or m + 1,
we obtain the submatrix(

d′m 0
0 d′m+1

)
= diag(dm + x, dm+1 − x) =: Dm.

Let

R(φ) =

(
cosφ sinφ
− sinφ cosφ

)
be a rotation matrix (with angle φ) and choose φ so
that R(φ)DmR(φ)

T has diagonal entries dm, dm+1, i.e.

φ = arcsin

(√
x

2x+dm−dm+1

)
, which is well-defined since

dm ≥ dm+1.



Now, consider the block-diagonal matrix

R =

Idm−1 0 0
0 R(φ) 0
0 0 Idn−m−1

 .

By the choice of φ, we then get that RXRT =∑r
i=1(Rxi)(Rxi)

T has diagonal entries d1, . . . , dn. Since
R is orthogonal, we get that the zi = Rxi are orthonormal
and we have therefore constructed the zi as desired.

A.2. Additional Experiments
Here we include 5 additional experiments complementing
the ones presented in the main paper. The first one illustrates
that the batch size chosen does not affect the observation
that the performance of OK matches that of TBPTT. The
next three analyze the cosine between the true gradient and
the approximated one. The first of the three shows the co-
sine for untrained networks on CHAR-PTB. The second of
the three shows the cosine on the Copy task after training
until the algorithm learns sequences of length 40. The third
one shows that the specific set of trained weights does not
affect the cosine significantly, by repeating the previous ex-
periment while retraining the network. The last experiment
analyzes the quality of r-OK, the optimal unbiased Kro-
necker rank r approximation, from a different point of view:
by comparing it to the ’best’ biased rank r approximation of
the gradient, that is, the approximation that stores the clos-
est approximation of the gradient as an r-Kronecker-Sum.
Intuitively, the performance of the biased version of the
algorithm measures how far away the gradient is from a low
rank approximation, which also influences how well one
can do unbiased low-rank approximations of the gradient.

A.2.1. CHAR-PTB with larger batch size

For the first experiment, we would like to illustrate that
the results obtained in Figure 2, regarding 8-OK matching
TBPTT-25 did not depend on the batch size. As noted in the
paper, this is in principle clear as the batch size b divides
the batch noise and the approximation noise by the same
factor b. Figure A.1 shows the validation performance of
8-OK and TBPTT-5 and 25 on the Penn TreeBank dataset in
bits per character (BPC). The experimental setup is exactly
the same as in Figure 2, except the batch size chosen is 64.
Table A.1 summarizes the results.

Table A.1. Results on Penn TreeBank with a batch size 64. Stan-
dard deviations are smaller than 0.01.

NAME VALIDATION TEST #PARAMS

8-OK 1.69 1.64 133K
TBPTT-5 1.72 1.67 133K
TBPTT-25 1.68 1.63 133K

A.2.2. Cosine analysis between the true gradient and
the approximated one

For the second experiment, we pick an untrained RHN with
256 units in the CHAR-PTB task. This contrasts with Fig-
ure 3, where we first trained the network weights to assess
the gradient estimate at the end of training (which, as indi-
cated there, is more challenging). We compute the cosine of
the angle φ between the gradient estimates provided by OK
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Figure A.1. Validation performance on CHAR-PTB in bits per
character (BPC). Even with larger batch sizes, 8-OK matches the
performance of TBPTT-25. We trained a RHN with 256 units,
with a batch size of 64.

and KF-RTRL and the true RTRL gradient for 10000 steps.
We plot the mean and standard deviation for 20 different un-
trained RHNs with random weights. Figure A.2 shows that
the gradient can be almost perfectly approximated by a sum
of 2 Kronecker factors, at least at the start of training. This
illustrates the advantage of using an optimal approximation,
as opposed to the one in KF-RTRL.
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Figure A.2. Variance analysis on an untrained RHN for the CHAR-
PTB task. At the start of training, even a sum of 2 Kronecker
factors suffices to perfectly capture the information in the gradient.

Naturally, as shown in the paper, the most interesting be-
havior appears later in training. The third experiment in
the appendix is equivalent to the one performed to produce
Figure 3, except we use the Copy task and a RHN with 128
units trained until it learns a sequence of length 40. The
results are similar in spirit to the Figure shown in the main
paper and are shown in Figure A.3. Observe that datapoints

where the true gradient is smaller than 0.0001 were removed.
This is necessary in the Copy task because there are a lot
of steps (say when the network is reading the input), where
the task is trivial and the performance has already saturated
(leading to very small gradients). Of course, small gradient
steps are also irrelevant for learning so removing them is
justified.
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Figure A.3. Variance analysis on the Copy task for a RHN trained
until it has learned sequences of length T = 40. Even later in
training, 16-OK keeps a very good estimate of true gradient. For
this plot, we remove datapoints where the true gradient is smaller
than 0.0001, as those are irrelevant for learning. In particular,
the steps corresponding to the network reading the input are not
plotted.

One might wonder whether the behavior observed in Fig-
ure A.3 was not specific to the set of trained weights used
there. To that end, we retrain the network and repeat the
experiment. Figure A.4 shows that the behavior of the co-
sine does not depend much on the particular set of trained
weights used.

Lastly, we analyze the effect of changing the number of
units in the RHN. First, we pick untrained RHNs with sizes
as powers of 2 from 8 to 512 in the CHAR-PTB task. We
compute the cosine of the angle φ between the gradient
estimates provided by OK and KF-RTRL and the true RTRL
gradient after 100 steps. We plot the mean and standard
deviation for 10 different untrained RHNs with random
weights (in the case of KF-RTRL and 2-KF-RTRL-AVG,
we use 100 untrained RHNs). Figure A.5 shows that the
number of units does not affect the results seen in Figure A.2,
at least for an untrained network.

As mentioned above, the most interesting behavior occurs
at the end of training. To this end, we make Figures A.6
and A.7 analogous to Figure A.3 and Figure 3 from the main
paper, where we include also an RHN of size 512 for com-
parison. Observe that there is only a small difference in the
performance of both OK and KF-RTRL when the network
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Figure A.4. Variance analysis on the Copy task for a RHN trained
until it has learned sequences of length T = 40. Repeated experi-
ment with retrained weights.
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Figure A.5. Variance analysis on an untrained RHN for the CHAR-
PTB task, varying the number of units from 8 to 512.

size is increased in Figure A.6. However, in Figure A.7, OK
drops more than KF-RTRL, with the advantage of using the
optimal approximation almost completely vanishing. We
believe that this is due to the gradients in the larger network
containing longer term information than the gradients in the
smaller network (that is, taking longer to vanish, due to the
spectral norm of Ht being closer to 1). In particular, this
effect is not present in Figure A.6, as both networks were
trained until they learned sequences of length 40. As a result,
the gradients probably contain comparable amount of long
term information. Naturally, the better test of the quality
of the approximations used would be to train a network of
larger size in either task. However, due to the computational
costs, we have been unable to fully explore the effect of
changing the network size experimentally.
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Figure A.6. Variance analysis on the Copy task for a RHN trained
until it has learned sequences of length T = 40. We vary the size
of the RHN used, to show that both the OK and KF-RTRL-AVG
approximations do not decay significantly, even later in training,
for larger network sizes. As in Figure A.3, we remove datapoints
where the true gradient is smaller than 0.0001.

A.2.3. Bias experiments

For the last set of experiments, we perform a Copy task
experiment where we compare the optimal unbiased approx-
imations used in OK to the corresponding optimal, biased
ones. We first describe the biased approximations and then
present the experiments.

A.2.3.1. DESCRIPTION OF THE OPTIMAL BIASED
APPROXIMATION

In the paper, we were faced with approximating an (r + 1)-
Kronecker-Sum

G = u1 ⊗ (HtA1) + . . .+ ur ⊗ (HtAr) + h⊗D (8)

by an r-Kronecker-Sum G′. We solved the problem of
finding an optimal, unbiased approximator G′ of G. In-
stead, one can also construct an optimal biased approximator.
Concretely, this means approximating G by a (fixed, non-
random) r-Kronecker-Sum G′, which minimizes ‖G−G′‖.
To clearly distinguish between unbiased and biased approxi-
mations, we refer to the corresponding algorithms as Unbi-
ased Optimal Kronecker-Sum, r-U-OK, and Biased Optimal
Kronecker-Sum, r-B-OK.

We now give details of how to construct r-B-OK. Similarly
to r-U-OK, we first reduce the problem to approximating
a matrix C ∈ R(r+1)×(r+1) optimally by a rank-r matrix
C ′ (which is now deterministic). The steps are exactly the
ones given in Section A.1.2 and the matrix C is also the
same as the one presented there. Now, we need to minimize
‖C − C ′‖ subject to C ′ having rank at most r. This is a
well known problem and solved by the Eckart-Young Theo-
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Figure A.7. Variance analysis on the Copy task for a RHN trained
for 1 million steps, with sizes either 256 or 512. Observe that
8-OK decays more than 8-KF-RTRL-AVG with the increase in
network size. As in Figure A.3, we remove datapoints where the
true gradient is smaller than 0.0001.

rem (see Section A.1.1). This finishes the construction of
r-B-OK. We also note that almost the same pseudo-code as
Algorithm 2 from the paper (Algorithm A.1) can be used.
Rather than calling Opt(C), we need to call OptBias(C)
as described in Algorithm A.3, which is basically an imple-
mentation of the Eckart-Young Theorem.

Algorithm A.3 OptBias(C)

Input: Matrix C ∈ R(r+1)×(r+1)

Output: Matrices L′, R′ ∈ R(r+1)×r, so that C ′ =
L′R′T minimizes ‖C − C ′‖.
/* Reduce to diagonal matrix D*/
(D,U, V )← SVD(C)
(d1, . . . , dr+1)← diagonal entries of D
/* Initialise L′, R′ to approximate D*/
L′, R′ ← 0
for 1 ≤ i ≤ r do
L′i,i, R

′
i,i ←

√
di

end for
/*Approximate C = UDV T */
L′ ← UL′, R′ ← V R′

A.2.3.2. EXPERIMENTS

The last experiment has essentially two goals. The first is
to illustrate that biased approximations are not really desir-
able when doing gradient descent. This becomes clear in
the difference in performance between the biased version
of OK and the unbiased ones. The second goal is to show
that, throughout training, and not just for specific points as
shown in the cosine plots, the gradient can be well approx-

imated by an r-Kronecker-Sum, for small values of r. In
particular, this indicates that the noise in r-U-OK is small.
Figure A.8 shows that 16-B-OK performs almost as well
as 16-U-OK. The performance of 1-B-OK is far worse than
the corresponding unbiased OK. For the experiment, we use
the same setup as described in Section 4.1.1 of the main
paper. Apart from that, the rank 1 algorithms shown in the
plot have been run with a batch size of 256. We repeat each
experiment 5 times and plot the mean and standard deviation
for each.
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Figure A.8. Analysis of the Kronecker rank of the gradient. The
biased rank 16 approximation of the gradient performs almost as
well as the 16-OK. This implies the rank of the gradient throughout
training can be well approximated by a sum of 16 Kronecker
factors.
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