Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Frederik Benzing *! Marcelo Matheus Gauy “! Asier Mujika' Anders Martinsson' Angelika Steger '

Abstract

One of the central goals of Recurrent Neural Net-
works (RNNs) is to learn long-term dependen-
cies in sequential data. Nevertheless, the most
popular training method, Truncated Backpropaga-
tion through Time (TBPTT), categorically forbids
learning dependencies beyond the truncation hori-
zon. In contrast, the online training algorithm
Real Time Recurrent Learning (RTRL) provides
untruncated gradients, with the disadvantage of
impractically large computational costs. Recently
published approaches reduce these costs by pro-
viding noisy approximations of RTRL. We present
a new approximation algorithm of RTRL, Opti-
mal Kronecker-Sum Approximation (OK). We
prove that OK is optimal for a class of approxi-
mations of RTRL, which includes all approaches
published so far. Additionally, we show that OK
has empirically negligible noise: Unlike previous
algorithms it matches TBPTT in a real world task
(character-level Penn TreeBank) and can exploit
online parameter updates to outperform TBPTT
in a synthetic string memorization task.

Code available at GitHub.

1. Introduction

Learning to predict sequential and temporal data is one of
the core problems of Machine Learning arising for example
in language modeling, speech generation and Reinforcement
Learning. One of the main aims when modeling sequen-
tial data is to capture long-term dependencies. Most of the
significant advances towards this goal have been achieved
through Recurrent Neural Nets (RNNs). More specifically,
different architectures (e.g. the Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) and the Recur-
rent Highway Network (RHN) (Zilly et al., 2017)) were
developed to facilitate learning long-term dependencies and

“Equal contribution 'Department of Computer Science, ETH
Zurich, Zurich, Switzerland. Correspondence to: FB <benz-
ingf@inf.ethz.ch>, MMG <marcelo.matheus@inf.ethz.ch>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

achieved notable successes. However, few improvements
have been made regarding the training methods of RNNss.
Since Williams and Peng (1990) developed Truncated Back-
propagation through Time (TBPTT), it continues to be the
most popular training method in many areas (Mnih et al.,
2016; Mehri et al., 2017; Merity et al., 2018) - despite the
fact that it does not seem to align well with the goal of
learning arbitrary long-term dependencies. This is because
TBPTT ‘unrolls’ the RNN only for a fixed number of time
steps T' (the truncation horizon) and backpropagates the
gradient for these steps only. This almost categorically
forbids learning dependencies beyond the truncation hori-
zon. Unfortunately, extending the truncation horizon makes
TBPTT increasingly memory consuming, since long input
sequences need to be stored, and considerably slows down
learning, since parameters are updated less frequently, a phe-
nomenon known as ‘update lock’ (Jaderberg et al., 2017).

An alternative avoiding these issues of TBPTT is Real Time
Recurrent Learning (RTRL) (Williams & Zipser, 1989). The
advantages of RTRL are that it provides untruncated gradi-
ents, which in principle allow the network to learn arbitrarily
long-term dependencies, and that it is fully online, so that
parameters are updated frequently allowing faster learn-
ing. However, its runtime and memory requirements scale
poorly with the network size and make RTRL infeasible for
practical applications. As a remedy to this problem, Tallec
and Ollivier (2017a) proposed replacing the full gradient of
RTRL by an unbiased, less computationally costly but noisy
approximation (Unbiased Online Recurrent Optimisation,
UORO). Recently, Mujika et al. (2018) reduced the noise
of this approach and demonstrated empirically that their im-
provement (Kronecker factored RTRL, KF-RTRL) allows
learning complex real world data sets (character-level Penn
TreeBank (Marcus et al., 1993)). Nevertheless, the noise in-
troduced by KF-RTRL remains a problem, leading to slower
learning and worse performance when compared to TBPTT.

To address this problem, we propose a new approximation
of RTRL, Optimal Kronecker-Sum Approximation (OK).
Extending ideas of KF-RTRL, it approximates the gradi-
ent by a sum of Kronecker-factors. It then introduces a
novel procedure to perform the online updates of this ap-
proximation. We prove that this procedure has minimum
achievable variance for a certain class of approximations,
which includes UORO and KF-RTRL. Thus, OK does not

https://github.com/marcelomatheusgauy/optimal_kronecker_approximation

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

only improve all previous approaches but explores the theo-
retical limits of the current approximation class. Empirically,
we demonstrate that OK reduces the noise to a negligible
level: In contrast to previous algorithms, OK matches the
performance of TBPTT on a standard RNN benchmark
(character-level Penn TreeBank) and also outperforms it
on a synthetic string memorization task exploiting online
parameter updates. Similarly to KF-RTRL, OK is applica-
ble to a subclass of RNNs. Besides standard RNNs this
includes LSTMs and RHNs thereby covering some of the
most widely used architectures.

Our theoretical findings include a construction (and proof)
of a minimum-variance unbiased low-rank approximator
of an arbitrary matrix, which might be applicable in other
contexts of Machine Learning relying on unbiased gradients.

As a more exploratory contribution, we develop another
algorithm, Kronecker-Triple-Product (KTP). Its main nov-
elty is to match the runtime and memory requirements of
TBPTT, even when measured per batch-element. Our exper-
iments show that KTP is more noisy than OK, but that it can
learn moderate time dependencies. In addition, we design an
experiment to suggest directions for further improvements.

2. Related Work

The most prominent training method for RNNs is Trun-
cated Backpropagation through Time (TBPTT) (Williams
& Peng, 1990), often yielding good results in practice. It
calculates truncated gradients forbidding the network to
learn long-term dependencies beyond the truncation horizon.
The untruncated version of this algorithm, Backpropagation
Trough Time (BPTT) (Rumelhart et al., 1986), stores all
past inputs and unrolls the network from the first time step,
often making its computational cost unmanageable.

We now review some alternatives to TBPTT. Besides Real
Time Recurrent Learning and its approximations, which will
be described in detail in the next section, this includes An-
ticipated Reweighted Backpropagation (Tallec & Ollivier,
2017b) which samples different truncation horizons and
weights the obtained gradients to calculate an overall unbi-
ased gradient. Sparse Attentative Backtracking (Ke et al.,
2018) uses an attention mechanism (Vaswani et al., 2017)
and propagates the gradient along paths with high attention
to extend the time span of learnable dependencies.

Other ideas avoid unrolling the network. For example, De-
coupled Neural Interfaces (Jaderberg et al., 2017) use neural
nets to learn to predict future gradients, while Ororbia et
al. (2018) propose a predictive coding based approach.

For RNNs where the hidden state converges, it is also pos-
sible to avoid BPTT as shown for example by Recurrent
Backpropagation (Liao et al., 2018) and the closely related

Equilibrium Propagation (Scellier & Bengio, 2017).

Another approach fixes the recurrent weights and only trains
the output weights. This is known as Reservoir comput-
ing (Lukosevi¢ius & Jaeger, 2009) and was applied for
example in (Jaeger, 2001; Maass et al., 2002).

3. RTRL and its Approximations

In this section, we derive Real Time Recurrent Learning
(RTRL) (Williams & Zipser, 1989) and provide a common
framework describing approximation algorithms for RTRL.
We then embed previous algorithms and our contribution
into this framework. The class of approximators for which
OK is optimal, as well as a precise optimality statement
are given in section 3.4, Definition 1 and Theorem 1. The
section concludes with a theoretical comparison of the differ-
ent approximation algorithms including concrete examples
illustrating the advantages of OK.

Since the two main goals of approximating RTRL are (a)
providing unbiased estimates of the gradient with (b) as
little noise as possible, we make these notions precise. For
a matrix A and a random variable A’, we say that A’ is
an unbiased approximator of A if E[A’] = A and define
the noise/variance of A’ to be Var[A'] = E [||4’ — A|?],
where we use the Frobenius norm for matrices.

3.1. RTRL and a General Approximation Framework

We start by formally defining RNNs before deriving RTRL.
A RNN maintains a hidden state h; across several time steps.
The next hidden state h; is computed as a differentiable
function f of hy, the input x4 1 and a set of learnable param-
eters 0, hi11 = f(xty1, he, 0). Predictions for the desired
output (for example predicting the next character of a given
text) are a function of h; and 0. We aim to minimize some
loss function L, of our predictions and therefore compute

% to perform gradient descent on 6.

To derive RTRL, we use the chain rule to rewrite % =

dLi dhy Next we observe

dhy do -
dhy _ Ohydey | b dhyy | Ohyd0
d9 Oxy d = Ohy_y db 00 do’
Writing G, := %, H;, = 82:: and F}; = %, this simpli-
fies to (note dx¢/df = 0 as x; does not depend on 6)
Gt = HiGy_1 + Iy (D

RTRL simply calculates and stores G; at each time step us-
ing the recurrence (1) and uses it to calculate % = %Z %.
This shows that RTRL is fully online and can perform fre-

quent parameter updates.

However, we already see why RTRL is impractical for ap-
plications. For a standard RNN with n hidden units and

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

n? parameters, G; has dimensions n x n? and we need to
evaluate the matrix multiplication H;G;_1, so that RTRL
requires memory n> and runtime n* per batch element. This
contrasts with TBPTT, which needs memory 7'n and run-
time T'n?, where T is the truncation horizon (Williams &
Peng, 1990). To make RTRL competitive, we therefore need
to find computationally efficient approximations.

The core of RTRL is the recurrence equation (1) and it
should be the focus of any approximation. Previous ap-
proaches to approximate RTRL can be summarised as fol-
lows (see also Algorithm 1): Firstly, decide on a format
in which the approximator G of the gradient G, is stored.
This format should require less memory than storing all
n x n? numbers explicitly. Secondly, assuming G}_ is
given in the desired format, bring H:G}_, and F; in this
format. Thirdly, ‘mix’ the two terms H;G}_; and F}, to
bring their sum in the desired format.

Algorithm 1 One step of unbiasedly approximating RTRL.
This algorithm describes a framework for approximating
RTRL. It assumes that the approximation is stored in a
given format, called ®, and that routines Ap(-), Mix(-,-)
for bringing (sums of) matrices into this format are known.

Input: input z;, hidden state h;_1, parameters 6, unbi-
ased approximator G}_; of G;_; stored in prescribed
format &®.

Output: hidden state h;, unbiased approximator G} of
G in format ®.

/* Preliminary calculations */

hy +— new hidden state, based on hy_1,0,

az?fl , F o Gy

/* Bring addends HG,_,, F; in desired format ®*/
Ay + Ap(HG)_,), where Ap(x) is an unbiased approx-
imator of x in format ®

/* Mix two addends A, Ay */

G} + Mix(Ay, Ay), where Miz(x,y) is an unbiased
approximator of x + y in format ®

In order to obtain convergence guarantees for gradient de-
scent with noisy gradients, it is crucial that the approximator
G}, be unbiased and we therefore make all approximations
unbiased. In the appendix (A.2.3), we empirically evaluate
the difference between biased and unbiased approximators.

Another important consideration for the convergence of
RTRL and its approximation is the stability (boundedness)
of gradients and noise, which could in principle accumu-
late indefinitely over time. Under reasonable assumptions,
which are standard in order to avoid the exploding gradient
issue in RNNs (Pascanu et al., 2013), it is shown in Theo-
rem 1 of (Mujika et al., 2018) that the approximations of
RTRL are stable over time. This result applies to all the

approximations presented below.

3.2. Unbiased Online Recurrent Optimization (UORO)

We now present UORO (Tallec & Ollivier, 2017a), the
first approximation algorithm of RTRL. UORO follows
the framework described above. It stores the approxi-
mation G_; as the outer-product (or Kronecker-product)
of two vectors' w;_1,v,_1 of dimensions n and n?, i.e.
G}_1 = ur—1 ® vs_1. Next, it rewrites H;G}_; observing
Hi(up1 Qi) = (Hyup—1) @ 41 = Up—1 @ vp—1. We
omit the details of approximating F} by a product r; ® s,
and simply note that this process creates noise. We now ex-
plain how the two terms ;1 ® v;_1 and 74 ® s; are ‘mixed’
in an unbiased way. This can be achieved by the so called
‘sign-trick’. This means choosing a uniformly random sign
c € {#1} and writing? G, = (U_1+c-7¢) @ (vs_1 +C-5¢).
A simple calculation shows

E[(ﬂtfl +eory) @ (ve—1 +C'3t)} = Up—1 QU1+ 7 D 5¢,

so that G} | ; is an unbiased approximator of H,G} | + F}.
Induction on ¢ and linearity of expectation now show that
G}, is an unbiased approximator of Gy. It is easily checked
that UORO needs runtime and memory of order n?.

3.3. Kronecker Factored RTRL (KF-RTRL)

The algorithm KF-RTRL (Mujika et al., 2018) is similar in
spirit to UORO. The main difference is that it approximates
G, as the Kronecker-product of a vector u; € R'*" and a
matrix 4; € R"*" je. G} = u; ® A;. While this looks
equivalent to UORO at first glance, Mujika et al. observed
that for many RNN architectures, including standard RNNSs,
RHNs and LSTMs, it is possible to factor F; as a Kronecker-
product Fy; = h; ® Dy, without adding any noise. Here, Dy
is a diagonal matrix. Similarly to UORO, we can exploit
properties of the Kronecker-product to rewrite H;G};_, =
ui—1 ® (HyAy—1) in the desired format and use a sign trick
to mix the two addends H;G_, and F} to obtain Gj.

Note that KF-RTRL has memory requirements of roughly
n? for storing the matrix A; and runtime of order n* due
to the matrix-matrix multiplication H; A;_1. No additional
memory is required to obtain % as we can write % =

oGy = (@A) = @ (% A,).

3.4. Optimal Kronecker-Sum Approximation (OK)

We now describe our algorithm OK. The calculations car-
ried out by OK are reasonably simple as can be seen in

!For concreteness, we consider a standard RNN with 7 hidden
units and n? parameters, so that G has dimension n X n?.

*We remark that UORO additionally introduces a variance re-
duction technique which rescales the factors of each outer-product
to have the same norm.

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

the pseudo-code below. However, their correctness is not
immediate and relies on the proof given in the appendix.
We give some intuition and concrete examples illustrating
the improvements of OK in Section 3.6, which can be read
independently of the detailed implementation.

Let us start by briefly reconsidering the previous two algo-
rithms. In our framework, there are two noise sources for
approximating RTRL. Firstly, we rewrite addends F} and
H;Gy_1 in the desired format and secondly, we mix them.
The first noise source is eliminated by KF-RTRL since it
factors Ft = ht ® Dt and HtG:f—l = U1 Q@ (HtAt—l)
noiselessly. The second noise source, stemming from mix-
ing the terms, is the focus of our algorithm, and we shall
prove below that OK not only improves previous algorithms
in this step but has minimum achievable variance.

We also note that UORO and KF-RTRL both approximate
G} by a ‘1-Kronecker-Sum’ G}, as defined below.

Definition 1 (Kronecker-Sum, format). For a matrix G €
R™*™ we say that G is given as a r-Kronecker-Sum, if we
are given uy, ..., u, € R and A, ... A, € R with
ac =m,bd = nsothat G =Y ._, u; @ A;. We refer to
(a,b,c,d) as the format of the Kronecker-Sum.

3.4.1. OUTLINE OF OK

Our new algorithm, OK, has a parameter r, and approx-
imates G; by a r-Kronecker-Sum, where each summand
is the product of a vector u; € R!*™ and a matrix
A; € R™" similar to KF-RTRL. Concretely, we have
Gy_1 =>_,u; ® A;. We will refer to the algorithm as
r-OK, or simply OK depending on the context. Usually, r is
a small constant and much smaller than the network size n.

Analogously to KF-RTRL, we focus on situations where
F;, = h; ® Dy can be factored as a Kronecker product. A
precise condition (Mujika et al., 2018)[Lemma 1] for when
this is possible is given in the appendix (A.0.1). When we
can factor F; = hy ® Dy, the remaining task for OK is to
unbiasedly approximate the (r 4+ 1)-Kronecker-Sum

by a r-Kronecker-Sum G/. Equivalently, OK finds random
vectors uf, . .., u,. and matrices Af, ..., A, so that for

s
G'=> u;® A
i=1

we have E[G'] = G. We now state the main optimality
property of our algorithm.

Theorem 1. Let G be an (r + 1)-Kronecker-Sum and let G’
be the random r-Kronecker-Sum constructed by OK. Then
G’ unbiasedly approximates G. Moreover, for any random

r-Kronecker-Sum'Y of the same format as G’ which satisfies
E[Y] = G, it holds that Var[Y] > Var[G'].

We defer the proof to the appendix and only describe the
main ideas for constructing G’. The first step, carried out in
Algorithm 2, is to use linear algebra to reduce the problem
to the following: Given a matrix C' € R("+Dx("+1) "find
a minimum-variance, unbiased approximator C’ of C, so
that the (matrix-)rank of C’ is always at most r, i.e. C’
can be factored as L' R’ for some L', R' € RO+1)X7_ The
next two steps are handled by Algorithm 3: It calculates the
singular value decomposition (SVD) of C, so that it remains
to approximate a diagonal matrix D, and then constructs an
optimal approximator D’ of D. In the appendix, we give a
duality argument to prove that D’ is indeed optimal.

In total, the runtime of OK is of order rn?, due to performing
r matrix-matrix multiplications (see equation (2)), and the
memory requirement is of order 7n2. The cost of calculating
the optimal approximator G’ is asymptotically negligible.

We also state the following, more general theorem. It might
be useful in other settings where unbiased gradient approxi-
mations are important. Its proof is given in the appendix.

Theorem 2. Given C' € R™*" and r < min{m,n}, one
can (explicitly) construct an unbiased approximator C' of
C, so that C'" always has rank at most r, and so that C'
has minimal variance among all such unbiased, low-rank
approximators. This can be achieved asymptotically in the
same runtime as computing the SVD of C.

3.4.2. DETAILS OF OK

Here, we present pseudo-code for OK (Algorithm 2). We
make use of the algorithm SVD, a standard Linear Algebra
algorithm (Golub & Van Loan, 1996; Cline & Dhillon, 2006)
calculating the singular value decomposition of a matrix C.
SVD finds a diagonal matrix D and orthogonal matrices
U,V so that C = UDVT. We only apply SVD to ‘small’
matrices C' € ROHD> (1) 'where it needs runtime O (r®)
and memory O (r?).

3.5. Kronecker Triple Product (KTP)

Finally, we present another, more exploratory algorithm
approximating RTRL still following the framework from Al-
gorithm 1. KTP approximates G; by a sum of Kronecker-
triple-products, i.e. G, = > a; ® b; ® ¢; where
a;,c; € RY™™ and b; € R™*!. Before describing the re-
maining details of KTP, we motivate the suggested changes:
On the one hand, KTP only requires memory of order rn
rather than n2 for each batch element. On the other hand,
when computing H;G;_1 we can write each of the addends
as Hi(a; ® b; ® ¢;) = a; @ (Hib;) ® ¢;. Computing H,b;
only? takes time n?, as opposed to time n? for the matrix-
matrix multiplications of KF-RTRL and OK. Thus, KTP

3t is possible to evaluate H.b without storing H; for each
batch element, see appendix A.0.3.

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Algorithm 2 The OK approximation

Input: Vectors w1, ..., u,y1 and matrices Ay, ...

7Ar+1
Output: Random vectors u’l,...,u’r and matrices
Al . AL, such that Y| ui ® A} is an unbiased,
minimum-variance approximator of 3771 u; © A,

/*Rewrite in terms of orthonormal basis (onb)*/
V1y...,VUpp1 < onb of span{u, ..., ury1}
Bi,...,Byy1 < onbspan{Ay,..., A1}
for1 <i,j<r+1do

Lij (visug), Rij < (Bi, 4j)
end for
/*Find optimal rank r approximation of matrix C' */
C < LRT
(L', R') + Opt(C) {see Algorithm 3 for Opt(-)}
/*Generate output*/
forl1 <j<rdo

uf ZTH L jvi,
end for

AL ST R B,

matches the memory and runtime of TBPTT.

We now describe the remaining details of KTP. In order to
bring H;G;_1 into the original format, we simply rewrite
Hi(a;®b;®@¢;) = a; @ (Hb;) @c¢; = a; @b; @c¢;. To bring
F in the same format, we again make use of the fact, that
F; can be factored as F; = h ® D where D is a diagonal
matrix. This allows us to easily find an optimal, unbiased
rank-r approximator D' = Y"7_, d;®d! of D, where the d;
are random vectors constructed with Algorithm 3. Note that
this algorithm is similar to the original UORO approach, but
uses its knowledge about D in order to construct an optimal
(rather than non-optimal) low-rank approximator of D and
in order to reduce memory requirements from n? to n.

All in all, we have rewritten F/ = > h @ d; @ d}
in the desired format. It remains to mix the two ad-
dends H,G}_; and F{. To this end, we mix, for each
i, the i-th summands of H;G}_, and F/ using a gener-
alisation of the sign trick: We choose a vector of three
signs (s1, $2,8182), where s1, $o are uniform and inde-
pendent, and approximate a; ® b; ® ¢; + h @ d; ® dF’ by
(a; +s1-h) @ (b; + s2-d;) @ (c; + 5182 - dT'), so that al-
together we obtain

r

G =Y (ai+s1-h)

i=1

(61 + 59 - dz) X (Ci =+ Slsgdf).

The ‘mixing’ procedure presented above is based on heuris-
tics. We show in the appendix (A.0.2) that heuristics are
somewhat necessary since the concept of an ‘optimal’ ap-
proximator is not well-defined in this case and related to
NP-hard problems (Hillar & Lim, 2013).

Algorithm 3 Opt(C)

Input: Matrix C' € R("+1)x(r+1)
Output: Random matrices L', R' € RU+1DX" 5o that
L'R'T is an unbiased, min-variance approximator of C'

/* Reduce to diagonal matrix D*/

(D,U,V) + SVD(C)

(di,...,dr4+1) < diagonal entries of D

/* Find approximator ZZ7 for small d; (i > m)*/
m < min{i: (r —i+1)d; <377, d;}

s1 N d ker—m+1

T
20 <\/1dm’< \/1‘““) € R+DX1
s1 ’ S1

21, ..., 2k < sothat zg, 21, . . . , 25 is an onb of R(FF1)x1
s < vector of k£ + 1 uniformly random signs

Z /5 (sOz,...,50 z) {pointwise product ©}
/* Initialise L', R’ to approximate D*/

L' R « diag(\/dy,...,\/dm_1,Z) {Block-diagonal}
/*Appr0x1mate C = UDVT¥

L'+~ UL, R+ VR

3.6. Comparison

When comparing different unbiased approximations of
RTRL, the focus lies on comparing noise/variance of the
respective approximators, since this determines the speed
of convergence and the final performance. To make compar-
isons as fair as possible we will also consider the different
runtime and memory requirements, see also Table 1 for an
overview. Here, we focus on theoretical considerations. Ex-
perimental evaluations of the noise will be presented in the
next section.

In (Mujika et al., 2018) it was already shown that KF-RTRL
has significantly less noise than UORO, so that we shall
focus on KF-RTRL and OK only.

We first compare 1-OK to KF-RTRL, as the memory and
runtime requirements for these two algorithms are asymp-
totically equal. The difference between the two algorithms
is how they mix a sum of two Kronecker-products to obtain
one Kronecker-product. From Theorem 1 it is immediate
that OK performs at least as well as KF-RTRL. In general,
it depends on the two Kronecker-products, which need to
be mixed, how much better OK performs than KF-RTRL.
We show two extreme cases here - the ‘average’ case arising
during learning lies somewhere inbetween, and is assessed
empirically in the next section. Suppose we need to approx-
imate u ® A + h ® D unbiasedly by a single Kronecker-
product. For simplicity, let us assume that all vectors and
matrices have norm 1. This makes the variance reduction
technique of UORO and KF-RTRL, which is also implicitly
included in the OK algorithm, unnecessary.

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Case 1: u = h. Then, we can simply rewrite u® A+h®D =
u ® (A + D), which is a single Kronecker-product and
doesn’t need a noisy approximation. This shows that an
optimal approximator like OK has variance 0. On the other
hand, KF-RTRL performs the sign trick and approximates
the sum either by (u+h) ® (A+ D) = 2u® (A+ D) or by
(u—h) ® (A — D) = 0 and thus has variance |A + D|%.

Case2: u 1 hand A L D. With the methods presented
in the appendix, it can be shown that the sign-trick per-
formed by KF-RTRL is optimal and that therefore there is
no difference between KF-RTRL and OK in this case.

We now inspect 7-OK for r > 1. In this case, OK takes r
times more runtime and memory than KF-RTRL. To make
comparisons fair, we compare OK to running r independent
copies of KF-RTRL and taking their average to perform
gradient descent®, let us refer to this algorithm as r-KF-
RTRL-AVG, or simply KF-AVG. Again, it can be deduced
from Theorem 1 that the noise of OK is at most that of KF-
AVG. To see this, observe that KF-AVG stores » Kronecker-
products at each step and mixes them with h; ® D; to obtain
another r Kronecker-factors for the next step.

For » > 1 there is an additional, important phenomenon
improving OK over KF-AVG, which we illustrate now. Sup-
pose r = 2 and we want to approximate 11 @ A; +us @ Ao+
h ® D unbiasedly by a sum of two Kronecker-products. As-
sume that uy, uo, h and Ay, Ay, D respectively are pairwise
orthogonal® and consider the case where one of the sum-
mands is larger than the other two, say ||u; ® A;|| = 10 and
[lua®As|| = ||h@D|| = 1. Then, the optimal approximator
OK will keep u; ® A; fixed and mix only the other two sum-
mands creating noise of order 1. More naive approaches,
including the sign trick of KF-AVG, mixes all factors and
create noise of order 10/r, r = 2. This phenomenon of
keeping important parts of the gradient and only mixing less
important parts to reduce the noise becomes important and
appears more frequently as r gets larger, see also Figure 3
for experimental evidence.

4. Experiments

Here, we empirically analyze the advantage of using the
optimal approximation from OK as opposed to the sign trick
from KF-RTRL. Moreover, we compare OK to TBPTT,
showing that the noise in OK is so small that it does not hin-
der its learning performance. We posit that this is due to the
noise of OK being smaller than that of Stochastic Gradient
Descent (Robbins & Monro, 1951). This is independent of
the batch size b, as both sources of noise are divided by the
same factor b. Figure A.1 in the appendix, which is similar
to Figure 2 but with larger batches, portrays this point.

“This reduces the noise of KF-RTRL by a factor of 7.
SIn fact, any sum can be rewritten in such a way. This is
equivalent to SVD.

Table 1. Computational costs for different algorithms, measured
per batch element and parameter update. These values reflect the
cost in an actual implementation. The additional cost of storing
the model (memory n?) does not scale with the batch size and is
therefore negligible when training with large mini-batches.
Dashed horizontal lines group algorithms with comparable costs.
r is a parameter of the algorithms, 7" is the truncation horizon of
TBPTT. See Section 3 for details.

MEMORY RUNTIME
RTRL n3 nt
“r-OK mZ " ¥
r-KF-RTRL-AVG rn? rn®
"UORO n? n?
“r-KTP m rn?
TBPTT-T Tn Tn?

Following (Mujika et al., 2018), we assess the learning per-
formance of OK in two tasks. The first, termed Copy task,
is a synthetic binary string memorization task which evalu-
ates the RNN’s ability to store information and learn long-
term dependencies. The second, character-level language
modeling on the Penn TreeBank dataset (CHAR-PTB), is
a complex real-world task commonly used to assess the
capabilities of RNNs. We compare the performance of OK
to KF-RTRL and TBPTT based on ‘data time’, i.e. on how
much data the algorithm is given. Moreover, we perform
an experiment analyzing the variance of OK and KF-RTRL
by comparing them to the exact gradients given by RTRL.
Lastly, we measure the performance of our second algorithm
KTP on the Copy task and show that it can learn moderate
time dependencies. For all experiments, we use a single-
layer Recurrent Highway Network (Zilly et al., 2017)°.

4.1. Comparisons between OK, KF-RTRL and TBPTT
4.1.1. COPY TASK

For the Copy task, a binary string of length 7" is presented
sequentially to an RNN. Once the full string is presented,
the RNN should reconstruct the original string without any
extra information (example for a sequence of length 5: in-
put #01101#*#*** and target output ******#01101). The
results are shown in Figure 1. OK outperforms KF-RTRL
when making a comparison that equates the memory and
runtime requirements between the two approaches (see Sec-
tion 3.6). Furthermore, by exploiting the online updates,
OK also outperforms TBPTT when giving both algorithms
the same network and batch sizes. It is important to note
that the runtime and memory advantage of TBPTT imply

SFor implementation simplicity, we replace tanh(z) by 2 *
sigmoid(z) — 1 as the non-linearity function. These functions
have similar properties, so this should not have any significant
effect on learning.

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

50
l_
c 40
=
o
c
@ 30
(0]
O
c 20
(]
=] — 16-0K
g 10 —— 16-KF-RTRL-AVG
n TBPTT-50

—— TBPTT-80
0
0 500000 1000000 1500000 2000000
data time

Figure 1. Copy task. We plot the mean and standard deviation
(shaded area) over 5 trials. 16-OK learns sequences on average up
to 42, 16-KF-RTRL-AVG up to 32, TBPTT-50 and 80 up to 33.
We trained an RHN with 128 units for all models.

that it could be run on a larger network and for longer. The
comparison done here is fair in the sense of giving both
algorithms the same amount of data and assesses whether
the noise of OK has been reduced to the point where it does
not harm learning.

We now describe the details of our implementation. As
in (Mujika et al., 2018), we use curriculum learning and start
with T" = 1, increasing 7" by one when the RNN error drops
below 0.15 bits/char. After each sequence, the hidden states
are reset to zero. To improve performance, the length of the
sequence is sampled uniformly at random from 7" — 5to T'.
This forces the network to learn a general algorithm, as op-
posed to one suited only for sequences of length 7. We use
a RHN with 128 units and a batch size of 16. We optimize
the log-likelihood using the Adam optimizer (Kingma & Ba,
2015) with default Tensorflow (Abadi et al., 2016) parame-
ters, 51 = 0.9 and 52 = 0.999. For each model, we pick the
best learning rate from {1072-5,1073,1073, 1074}, We
repeat each experiment 5 times.

4.1.2. CHAR-PTB ON THE PENN TREEBANK DATASET

For the CHAR-PTB task, the network receives a text char-
acter by character, and at each time step it must predict the
next character. This is a standard, challenging test for RNNs
which requires capturing long- and short-term dependencies.
It is highly stochastic, as there are many potential contin-
uations for most input sequences. Figure 2 and Table 2
show the results. 8-OK outperforms 8-KF-RTRL-AVG,
and matches the performance of TBPTT-25. In fact, 8-OK
even takes advantage of its online updates to achieve faster
convergence when compared to TBPTT-25. The advantage
observed in Figure 2 is even larger when using longer trunca-
tion horizons as suggested by Figure 1. This fact showcases
the strength of performing online updates as in RTRL as
opposed to having an update lock as in TBPTT.

For this experiment we use the Penn TreeBank (Marcus
et al., 1993) dataset, a collection of Wall Street Journal arti-
cles commonly used for training character level models. We
split the data following (Mikolov et al., 2012). In addition,
we reset the hidden state to zero with a probability of 0.01
at every step (Melis et al., 2018). The experimental setup is
the same as in Section 4.1.1, except the RHN has 256 units
and the batch size is 32. The learning rates are chosen in the
same range.

— 8-0K
—— 8-KF-RTRL-AVG

TBPTT-5
—— TBPTT-25

2.4

2.2

1.8

1.6

200000 400000 600000 800000 1000000
data time

Figure 2. Validation performance on Penn TreeBank in bits per
character (BPC). 8-OK matches the performance of TBPTT-25.
We trained a RHN with 256 units for all models. Table 2 summa-
rizes the performances.

Table 2. Results on Penn TreeBank. Merity et al. (2018) is the
current state of the art. Standard deviations are smaller than 0.01.

NAME VALIDATION TEST #PARAMS
8-KF-RTRL-AVG 1.82 1.77 133K
8-OK 1.74 1.69 133K
TBPTT-5 1.78 1.73 133K
TBPTT-25 1.73 1.69 133K
MERITY ET AL. (2018) - 1.18 13.8M

4.2. Empirical Exploration of Noise

Here, we empirically evaluate how the noise evolves over
time. We report the cosine between the true gradient and the
approximated one. The results for an untrained network are
given in the appendix (Figure A.2). There, already 2-OK
achieves a cosine of almost exactly 1. However, the most
interesting behavior arises later in training. Figure 3 shows
that, after a million steps of training on CHAR-PTB, the
cosine is much smaller for 8-KF-RTRL-AVG than for 8-OK.

For this experiment, we train a RHN with 256 units on
CHAR-PTB for 1 million steps. Then, we freeze the weights
of the network and compute the angle ¢ between the gradi-
ent estimates provided by OK and KF-RTRL and the true
RTRL gradient for 1000 steps. We plot the mean and stan-

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

dard deviation of 20 repetitions of each experiment. In the
appendix, Figure A.3 provides similar experiments for the
Copy task.

1.0

0.8

0.6

0.4

cos(e)

— 8-0K
— 4-0K
—— 8-KF-RTRL-AVG

4-KF-RTRL-AVG
—— KF-RTRL

0.2

0.0

-0.2

0 200 400 600 800 1000
timesteps

Figure 3. Variance analysis in a RHN trained for 1 million steps on
CHAR-PTB. We plot the cosine of the angle between the approx-
imated and the true value of %. A cosine of 1 implies that the
approximation and the true value are aligned, whereas a random
vector has an expected cosine of 0.

4.3. Kronecker Triple Product

We now analyze the performance of KTP. While KTP has
the same memory and runtime requirements as TBPTT, this
comes at the cost of extra noise. KTP possesses two sources
of noise (see Section 3.5). The first is added by a low-rank
approximation D’ of the diagonal D, the second is added in
the mixing procedure. Here, we show experiments indicat-
ing that the first noise source is not significant by artificially
introducing it to KF-RTRL. This is done by unbiasedly ap-
proximating F; = h ® D by h ® D’, where D' is as in
Section 3.5. The rest of the KF-RTRL algorithm remains as
usual. We term this adapted version KF-RTRL-r-APPROX
when D is approximated by a rank r matrix. Figure 4 shows
that KF-RTRL-16-APPROX performs almost as well as the
original KF-RTRL, suggesting that the noise added in the
mixing procedure is what hurts KTP the most.

For the experiment, we use the same setup as in Section 4.1.1
except that the batch sizes used were 256. We plot the mean
for 5 repetitions of the experiment.

5. Conclusions

We presented two new algorithms, OK and KTP, for train-
ing RNNs. Both are unbiased approximations of Real Time
Recurrent Learning (RTRL), an online alternative to Trun-
cated Backpropagation through Time (TBPTT) giving un-
truncated gradients. For OK, we do not only show that it
has less variance than previous approximations, but show
that our approximation is in fact optimal for the class of
Kronecker-Sum approximations, which includes all previ-

o
=)

16-KTP

KF-RTRL
KF-RTRL-32-APPROX
KF-RTRL-16-APPROX
8-KF-RTRL-APPROX

0 500000

>
S

w
o

Sequence length T

-
)

0

1000000
data time

1500000 2000000

Figure 4. KTP performance on the Copy task. From top to bottom
as in the legend, the learned sequence lengths are: 17, 33, 32, 30,
25. Standard deviations were around 3 for all algorithms.

ously published approaches. We empirically show that this
improvement makes the noise of OK negligible, which dis-
tinguishes OK from previous approximations of RTRL. This
is evaluated on the standard benchmark of Penn TreeBank
(PTB) character-level modeling, where OK matches the
performance of TBPTT. In the case of a synthetic string-
memorization task, OK can exploit frequent online param-
eter updates to outperform TBPTT. Our second algorithm,
KTP, is more exploratory and paves the way towards more
memory and runtime efficient approximations of RTRL. Its
computational cost matches that of TBPTT and we show
that it can learn moderate time dependencies. Reducing the
noise of KTP provides an interesting problem for further
research.

Our theoretical optimality result shows that, if the noise
of RTRL is to be reduced further, new classes of approx-
imations need to be explored. Moreover, the result can
be extended to test the theoretical limitations of new ap-
proximations of RTRL which obey a similar structure as
the Kronecker-Sum. We also presented a more general al-
gorithm to construct unbiased, low-rank approximators of
matrices with minimum achievable variance. This might
be useful in other areas of machine learning which rely on
unbiased gradients.

Conceptually, we explore an alternative to TBPTT. We be-
lieve that this is a necessary step towards learning long-term
dependencies and for making full use of the architectural
developments that have recently advanced RNNs. While
RTRL itself is infeasible due to large computational costs,
our results indicate that it is possible to reduce its memory
and runtime requirements by a factor of n while keeping
the noise small enough to not harm learning. Further im-
provements in this direction would already make RTRL a
viable alternative to TBPTT and impact modeling data with
inherent long-term dependencies.

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Acknowledgements

We would like to thank Florian Meier and Pascal Su for
helpful discussion and valuable comments on the presenta-

tion of this work. We also thank the anonymous reviewers
for their helpful feedback.

Frederik Benzing was supported by grant no.
200021.169242 of the Swiss National Science Foun-
dation. Marcelo Matheus Gauy was supported by CNPq
grant no. 248952/2013-7. Asier Mujika was supported by
grant no. CRSII5S_173721 of the Swiss National Science
Foundation.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, volume 16, pp. 265-283, 2016.

Cline, A. K. and Dhillon, I. S. Computation of the Singular
Value Decomposition. CRC Press, jan 2006.

Golub, G. H. and Van Loan, C. F. Matrix Computations
(3rd Ed.). Johns Hopkins University Press, Baltimore,
MD, USA, 1996. ISBN 0-8018-5414-8.

Hillar, C. J. and Lim, L.-H. Most tensor problems are
np-hard. J. ACM, 60(6):45:1-45:39, November 2013.
ISSN 0004-5411. doi: 10.1145/2512329. URL http:
//doi.acm.org/10.1145/2512329.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O.,
Graves, A., Silver, D., and Kavukcuoglu, K. Decoupled
neural interfaces using synthetic gradients. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1627-1635. JMLR. org, 2017.

Jaeger, H. The echo state approach to analysing and training
recurrent neural networks-with an erratum note. Bonn,
Germany: German National Research Center for Infor-
mation Technology GMD Technical Report, 148(34):13,
2001.

Ke, N. R., GOYAL, A. G. A. P, Bilaniuk, O., Binas, J.,
Mozer, M. C., Pal, C., and Bengio, Y. Sparse attentive
backtracking: Temporal credit assignment through re-
minding. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp- 7651-7662. Curran Associates, Inc., 2018.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K.,
Pitkow, X., Urtasun, R., and Zemel, R. Reviving
and improving recurrent back-propagation. In Dy, J.
and Krause, A. (eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 3082—
3091, Stockholmsmssan, Stockholm Sweden, 10-15 Jul
2018. PMLR. URL http://proceedings.mlr.
press/v80/1iaol8c.html.

LukoSevicius, M. and Jaeger, H. Reservoir computing ap-
proaches to recurrent neural network training. Computer
Science Review, 3(3):127-149, 2009.

Maass, W., Natschlédger, T., and Markram, H. Real-time
computing without stable states: A new framework for

neural computation based on perturbations. Neural com-
putation, 14(11):2531-2560, 2002.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The Penn
Treebank. Computational linguistics, 19(2):313-330,
1993.

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain,
S., Sotelo, J., Courville, A. C., and Bengio, Y. Sam-
plernn: An unconditional end-to-end neural audio gen-
eration model. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings,
2017. URL https://openreview.net/forum?
id=SkxKPDvb5xl.

Melis, G., Dyer, C., and Blunsom, P. On the state of the art
of evaluation in neural language models. In International
Conference on Learning Representations, 2018.

Merity, S., Keskar, N. S., and Socher, R. An analysis of neu-
ral language modeling at multiple scales. arXiv preprint
arXiv:1803.08240, 2018.

Mikolov, T., Sutskever, 1., Deoras, A., Le, H.-S., Kom-
brink, S., and Cernocky, J. Subword language modeling
with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 2012.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928—

1937, 2016.

Mujika, A., Meier, F., and Steger, A. Approximating real-
time recurrent learning with random kronecker factors.
In Bengio, S., Wallach, H., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 31, pp. 6594—
6603. Curran Associates, Inc., 2018.

http://doi.acm.org/10.1145/2512329
http://doi.acm.org/10.1145/2512329
http://proceedings.mlr.press/v80/liao18c.html
http://proceedings.mlr.press/v80/liao18c.html
https://openreview.net/forum?id=SkxKPDv5xl
https://openreview.net/forum?id=SkxKPDv5xl

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Ororbia, A., Mali, A., Giles, C. L., and Kifer, D.
Online learning of recurrent neural architectures by
locally aligning distributed representations. CoRR,
abs/1810.07411, 2018. URL http://arxiv.org/
abs/1810.07411.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310-1318, 2013.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):
400407, 1951.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Parallel
distributed processing: Explorations in the microstruc-
ture of cognition, vol. 1. chapter Learning Internal Rep-
resentations by Error Propagation, pp. 318-362. MIT
Press, Cambridge, MA, USA, 1986. ISBN 0-262-68053-
X. URL http://dl.acm.org/citation.cfm?
1d=104279.104293.

Scellier, B. and Bengio, Y. Equilibrium propagation: Bridg-
ing the gap between energy-based models and backprop-
agation. Frontiers in Computational Neuroscience, 11:
24, 2017. ISSN 1662-5188. doi: 10.3389/fncom.2017.
00024. URL https://www.frontiersin.org/
article/10.3389/fncom.2017.00024.

Tallec, C. and Ollivier, Y. Unbiased online recurrent opti-
mization. arXiv preprint arXiv:1702.05043, 2017a.

Tallec, C. and Ollivier, Y. Unbiasing truncated backpropa-
gation through time. arXiv preprint arXiv:1705.08209,
2017b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Guyon, L., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 30, pp. 5998-6008. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
7181l-attention-is-all-you—-need.pdf.

Williams, R. J. and Peng, J. An efficient gradient-based
algorithm for on-line training of recurrent network trajec-
tories. Neural Computation, 2:490-501, 1990.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
computation, 1(2):270-280, 1989.

Zilly, J. G., Srivastava, R. K., Koutnik, J., and Schmidhu-
ber, J. Recurrent highway networks. In Precup, D. and
Teh, Y. W. (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 4189—4198,

International Convention Centre, Sydney, Australia, 06—
11 Aug 2017. PMLR. URL http://proceedings.
mlr.press/v70/zillyl7a.html.

http://arxiv.org/abs/1810.07411
http://arxiv.org/abs/1810.07411
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
https://www.frontiersin.org/article/10.3389/fncom.2017.00024
https://www.frontiersin.org/article/10.3389/fncom.2017.00024
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://proceedings.mlr.press/v70/zilly17a.html
http://proceedings.mlr.press/v70/zilly17a.html

