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Supplementary Material
Analysis of alternative loss functions

Let (X,U,S) be a collection of random vectors. we wish to
optimize the following constrained optimization problem:

min
p(y�x) I(U ;X � Y )
s.t. I(S;Y ) ≤ k. (11)

A natural approach, similar to the one used in the informa-
tion bottleneck literature would be to minimize

min
p(y�x) I(S;Y ) − �I(U ;Y ), (12)

where � controls the relative tradeoff between utility preser-
vation and secret obfuscation. We show here how these
problems are not equivalent when S and U are univariate
gaussian and Y is a linear transformation:

X = �U
S
� ;X ∼ N(0, �1 ⇢

⇢ 1
�). (13)

Y = OX +Z;Z ∼ N(0,1);O ∈R1×2 (14)

Without loss of generality we factorize Y as:

Y = U +R⇢S + ✏Z. (15)

Under these assumptions the quantities of interest are:

I(U ;Y ) = 1

2
log

R2⇢2 + 2R⇢2 + 1 + ✏2
R2⇢2(1 − ⇢2) + ✏2 ,

I(S;Y ) = 1

2
log

R2⇢2 + 2R⇢2 + 1 + ✏2
(1 − ⇢2) + ✏2 ,

(16)

and their derivatives w.r.t R:

@I(U ;Y )
@R

= ⇢
2[R2

⇢
2(⇢2 − 1) +R(⇢2(1 + ✏2) − 1) + ✏2][R2⇢2 + 2R⇢2 + ✏2 + 1][R2⇢2(1 − ⇢2) + ✏2] ,

@I(S;Y )
@R

= 1 − ⇢2 + ✏2[R2⇢2 + 2R⇢2 + 1 + ✏2]⇢2(R + 1).
(17)

From these equations we can conclude the following:

♣I(S;Y ) has a minimum in R = −1 and is convex in R.

♣I(U ;Y ) has one minima, one maxima (RM
✏ ) and an horizontal

asymptote in I(U ;S) as R →∞.

♣ The local maxima of I(U ;Y ) is attained at R
M
✏ =

−(1−⇢2(1+✏2))+√�
2⇢2(1−⇢2) where � = (⇢2(1+ ✏2)− 1)2 + 4⇢2(1− ⇢2)✏2.

When ✏→ 0 R
M
✏ → 0.

Figure 9. Top figure shows I(U ;Y ) as a function of R for different
✏ values. Dotted red lines show their maximum values (RM

✏ ).
Bottom figure shows I(S;Y ), minimum value is reached when
R = −1 independently of ✏. Both figures are computed for ⇢ = 0.5

Figure 9 illustrates these points.

The solution to the constrained problem in Eq. 11 involves iden-
tifying the interval [RK− ,R

K+ ] where I(S;Y ) ≤ k and setting
R = RM

✏ if RM
✏ ∈ [RK− ,R

K+ ] otherwise pick the interval extrema
that maximizes I(U ;Y ). Figure 10 shows the solution intervals
as a function of k and the tradeoff curve that arises from varying k

from 0 to∞.

SOLUTIONS TO UNCONSTRAINED FUNCTIONAL

We briefly analyze the behaviour of the unconstrained functional

L� = I(S;Y ) − �I(U ;Y ). (18)

Since L� is differentiable w.r.t. R and we do not impose any
additional constraints, we analyze its derivatives to find the fixed
points of the functional:

@L�

@R
= 1 − �

2

2R⇢
2 + 2⇢2

R2⇢2 + 2R⇢2 + 1 + ✏2 +
�

2

2R⇢
2(1 − ⇢2)

R2⇢2(1 − ⇢2) + ✏2
∝ C

2�R3 +R2(1 + �)+
R
[(1 − �)✏2 + �(1 − ⇢2)(1 + ✏2)]

⇢2(1 − ⇢2) +
(1 − �)✏2
⇢2(1 − ⇢2) �.
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Figure 10. Top figure shows I(S;Y ) and I(U ;Y ) as a function
of R, feasible region is shown with a thicker lineweight. Bottom
figure shows the optimal tradeoff curve we obtain by sweeping the
constraint K ∈ (0,∞) in the (I(S;Y ), I(U ;Y )) space.

where C
2 is a function of R,⇢,� and ✏, but is strictly positive.

From these equations we can conclude:

♣ This loss has at most 3 fixed points in R as a function of ✏,�,⇢.

♣ All fixed points in R belong to the [−1,0] interval.

♣ For ✏ = 0, R = 0 is always a stable fixed point.

♣ The second fixed point is unstable.

Figure 11 shows all fixed points of the unconstrained functional as
a function of �. This figure also shows that this functional exhibits
a behaviour similar to phase transition, where most tradeoff values
are only attainable as unstable fixed points of the functional.

REMARKS

Even in this simple case, the unconstrained functional is unable
to produce arbitrary tradeoffs between I(U ;Y ) and I(S;Y ). By
contrast, the quadratic penalty method used throughout the text
(Wright & Nocedal, 1999) is theoretically equivalent to the con-
strained optimization problem, and is empirically able to obtain
arbitrary tradeoffs for this simplified example.

Lower Bound Estimation
The lower bound described in Lemma 2.1 requires solving the
following constrained optimization problem:

min
p(y�u,s) I(U ;X) − I(U ;Y )

s.t. I(S;Y ) ≤ k,
I(U ;Y ) ≤ I(U ;X),

(19)

Figure 11. Fixed points of L� as a function of �. Top figure shows
attained values of I(U ;Y ) across all fixed points for several �
values. Middle figure shows I(S;Y ) under the same conditions.
Bottom row shows the tradeoff curve attained by these fixed points.
A large portion of non-trivial tradeoffs are obtained by either an
unstable fixed point, or a local minima.

where p(y � u, s) ∶ U × S → Y . There are two main barriers
to overcome to compute this bound, the first is that we want an
unconstrained formulation of this problem for ease of computation,
and the second is that Y can potentially be very large, making the
space of solutions p(y � u, s) too large to efficiently optimize.

Fortunately, both issues can be circumvented efficiently by solving
a sequence of small, unconstrained problems until a convergence
criteria is met. Let r > 1 and ni = �r × ni−1� = �Yi� the alphabet
size of the output variable of i-th problem (Yi), where n0 = �U �.
For each problem index i, we solve the following unconstrained
problem:

min
p(yi �u,s) I(U ;X) − I(U ;Yi) + �max(I(S;Yi) − k,0)2

+ �max(I(U ;Yi) − I(U ;X),0)2
s.t. �Yi� = [ni].

(20)

Let Bi be the solution to Eq.(20). The procedure iterates the
computation of Bi until Bi � Bi−1. Computation of Bi is achieved
through gradient descent as described in Algorithm 2.

In all the experiments shown in Section 5, bound computation took
no more than 10 minutes and 3 iterations for r = 1.5.

Upper Bound Proof
We additionally show an extended proof of the equality stated Eq
7 in Lemma 2.2
Lemma 6.1. Let X,U,S be three discrete random variables with
joint probability distribution p(x,u, s). For any variable Y drawn
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Algorithm 2 Restricted Cardinality Step
Input: Emprirical joint distribution of (U,S)
Pu,s ∈ R�U �×�S�; alphabet size ni; hyperparameters
(lr,�, k, I(U ;X))
Compute marginal distributions.
Pu = ∑j Pu,j

Ps = ∑k Pk,s

Compute expanded conditional distributions:
P(u,s)�u = vec{Pu,∶ � Pu}; P(u,s)�u ∈R(�U �×�S�)×�U �
P(u,s)�s = vec{P∶,s � Ps}; P(u,s)�s ∈R(�U �×�S�)×�S�
Initialize unnormalized transition matrix:
D ∈Rni×(�U �×�S�
repeat

Normalize transition matrix:
Py�(u,s) = softmax(D, axis = 0)
Compute marginal and conditional distributions of Y :
Py = Py�(u,s) × vec{Pu,s}
Py�u = Py�(u,s) × P(u,s)�u
Py�s = Py�(u,s) × P(u,s)�s
Compute mutual informations:
I(Y ;S) = ∑Py�s ○ lnPy�s � Py

I(Y ;U) = ∑Py�u ○ lnPy�u � Py

Compute functional value and do gradient descent:
L(D) = I(U ;X) − I(Y ;U) +
�max (I(Y ;S) − k,0)2 +
�max (I(Y ;U) − I(U ;X),0)2
D ←D − lr∇DL(D)

until Convergence
Return:
Py�(u,s), L(D)

from p(y � x) and conditionally independent on U,S given X we
have

I(U ;S) − I(U ;S �X)= I(S;Y ) − I(S;Y � U) + I(U ;X � Y ) − I(U ;X � Y,S).
(21)

Or, equivalently

I(U ;X � Y ) + I(S;Y )= I(U ;S) − I(U ;S �X) + I(S;Y � U) + I(U ;X � Y,S).
(22)

Proof: From the Markov property we have

I(U ;X � Y ) = I(U ;X) − I(U ;Y )
I(S;X � Y ) = I(S;X) − I(S;Y ) (23)

By adding these two equations together, we obtain

I(U ;X � Y ) + I(S;Y )= I(S;X) + I(U ;X) − I(U ;Y ) − I(S;X � Y )=H(S) −H(S �X) −H(U �X)+H(U � Y ) − I(S;X � Y )= I(U ;S) +H(S � U) − I(U ;S �X) −H(U,S �X)+H(U � Y ) − I(S;X � Y )= I(U ;S) − I(U ;S �X) +H(S � U) −H(U,S �X)+H(U � Y ) − I(S;X � Y )

(24)

Where we additionally used I(U ;S) + H(S � U) = H(S);
I(U ;S � X) + H(U ;S � X) = H(U � X) + H(S � X). The

equality in Eq.(22) can be then proven by showing:

H(S � U) −H(U,S �X) +H(U � Y ) − I(S;X � Y )=H(S � U) −H(S �X) −H(U � S,X)+H(U � Y ) −H(S � Y ) +H(S �X)=H(S � U) −H(U � S,X) +H(U � Y ) −H(S � Y )= I(S;Y � U) +H(S � Y,U) −H(U � S,X)+H(U � Y ) −H(S � Y )= I(S;Y � U) +H(S � Y,U) + I(U ;X � Y,S)−H(U � Y,S) +H(U � Y ) −H(S � Y )= I(S;Y � U) + I(U ;X � Y,S) +H(S � Y,U)−H(S � Y ) +H(U � Y ) −H(U � Y,S)= I(S;Y � U) + I(U ;X � Y,S) − I(U ;S � Y )+I(U ;S � Y )= I(S;Y � U) + I(U ;X � Y,S)

(25)

Where we used H(S � U) = I(S;Y � U)+H(S � Y,U); I(U ;X �
Y,S) = H(U � Y,S) −H(U � X,Y,S) = H(U � Y,S) −H(U �
X,S). �
Domain-Preserving and Fixed Utility Inference
Algorithm
Here we present the variant of Algorithm 1 described in Section
3.1, where we impose the additional constraint that the transforma-
tion must be a domain-preserving transformation, and the utility
inference algorithm is given and cannot be modified. The algo-
rithm is shown in Algorithm 3

Algorithm 3 Adversarial Information Obfuscation.
Domain-Preserving and Fixed Utility

Input: data {(xi, si, ui)}; hyperparameters (lr,�, k);
utility inference algorithm p�(u � ⋅)
p(s) is the empirical marginal distribution of {si}
repeat

Draw b samples from dataset(x(1), u(1), s(1)), ...(x(b), u(b), s(b)) ∼ p(x,u, s)
Draw b samples from sampling distribution
z(1), ...z(b) ∼ p(z)
Evaluate cross-entropy loss on sensitive inference net-
works:
H(⌘) = 1

b ∑b
i=1 −logp⌘(s(i) � Q✓(x(i), z(i)))

Stochastic gradient descent:
⌘ ← ⌘ − lr∇⌘H(⌘)
Evaluate unconstrained penalty loss:
⇥(✓) = 1

b ∑b
i=1 log p�(u(i)�x(i))

p�(u(i)�Q✓(x(i),z(i))) +
�max(1b ∑b

i=1 log p⌘(s(i)�Q✓(x(i),z(i))))
p(s(i)) − k,0)2

Stochastic gradient descent:
✓ ← ✓ − lr∇✓⇥(✓)

until Convergence

Implementation Details
We now describe the architectures, algorithms and hyperparameters
used for each experiment.

SYNTHETIC DATA

In Section 4, we applied Algorithm 1 to synthetic data. Variables
U and S were uniformly distributed on � U �= 6 and � S �= 2, the
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observation process X is given by X = (U,S). We controlled
the joint distribution of p(u, s) to obtain datasets with varying
I(U ;S) values to do this, we used the following joint distribu-
tion: p(u, s) ∝ 1 + ��(umod �S � = s) where � ≥ 0 directly
impacts I(U ;S) (� = 0 yields I(U ;S) = 0 while � →∞ yields
I(U ;S) = ln 2, the maximum achievable value).

The posterior inference networks p⌘(S � ⋅), p (U � ⋅) and
p�(U � ⋅) where implemented using the architecture shown in
Figure 13 shows the detailed architecture. We tried two dif-
ferent filter architectures, a linear filter (q✓(X,Z) = ⇥X + Z,
Z ∼ N(0, I)), and an stochastic neural network whose architec-
ture is also shown in Figure 13. Both filters were trained using
Algorithm 1. Hyperparameters were chosen from the following
set: learning rate lr ∈ {5e−5,1e−4,5e−4}, � ∈ {1e2,1e3,1e4},
tolerance k ∈ [0, I(U ;S)]. Figure 12 shows some of the learned
representations Y on the linear and nonlinear architectures, and
using the RCS sequence algorithm 2.

Figure 12. Results on synthetic data with I(U ;S) = 0.4. From left
to right: Input distribution (noise added for visual clarity); Linear
filter results with tolerances k = [0.9,0.27]; Nonlinear results
at same tolerances; Representation of output distribution learned
from the RCS sequences derived in Lemma 2.1.

FACIAL IMAGES

Here we describe the U-Net-based architecture used to implement
the obfuscation filter on all real data experiments. Figure 14 shows
the network diagram, the presented architecture is fully convolu-
tional, and the same network definition was used across all three
experiments.

The filter network was first initialized as a passthrough network
(trained to copy input image under RMSE loss). In the subject-
within-subject, an additional output of the filter was trained to infer
a class label on whether the subject was a consenting user or not.
We stress that this was only done on the initialization phase of the
subject-within-subject example, and that this class label was not
explicitly preserved or retrained during the normal execution of
Algorithm 3. The posterior inference networks are instances of
Xception networks, shown in Figure 15.

All examples on real data were trained using Algorithm 3, where
we impose the additional constraints of a fixed utility inference
algorithm that the obfuscation filter must conform to; the sensi-
tive attribute inference network was always trained adversarially.
Training on a single Tesla K80 for 4 different tolerance values k
under these conditions takes 3 to 6 days

Figure 13. Left figure shows architecture of the utility and secret
inference network used in the synthetic data examples. Right
figure shows architecture of the nonlinear filter network used in
the synthetic data examples

Figure 14. Obfuscation filter architecture based on U-Net ((Ron-
neberger et al., 2015)). There is a single noise layer (shown in
yellow) where standard Gaussian noise is injected into the network
to add stochasticity to the filter. The other notable component is
the auxiliary label softmax, used for the subject-within-subject
experiment. This extra layer was trained only during network ini-
tialization, but was not preserved during the final training stage.
Input image sizes are shown for the subject-within-subject experi-
ment.

Figure 15. Architecture of utility and sensible variable inference
networks used across all face experiments. These architectures are
small modifications of Xception networks proposed in (Chollet,
2017)
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Performance of Additional Attributes on Emotion vs
Gender Images
We examine how other facial attributes such as face shape
(Oval/Square) and age (Young/Old) are affected by the sanitiza-
tion mapping where we wish to preserve gender identification and
remove emotion identification. Results are shown in Table 4 for
classifiers that are trained on normal images, and classifiers that
are trained on the resulting sanitized images. Both attributes are
neither spatially co-located or correlated with the obfuscated emo-
tion attribute, this could potentially explain why these attributes
are mostly unaffected by the learned data sanitization.

Table 4. Results across several tolerance parameters k. Confi-
dence and accuracy results are shown for fixed and retrained
classifiers for facial shape (Oval/Square) and age (Young/Old).
The sanitization mapping was trained to obfuscate emotion infor-
mation (Smiling/Non-smiling) while preserving gender informa-
tion(Male/Female).

TOL
K

FIXED
SHAPE

RETRAINED
SHAPE

FIXED
AGE

RETRAINED
AGE

CONF ACC CONF ACC CONF ACC CONF ACC

∞ 0.62 71.7% 0.62 71.7% 0.75 83.4% 0.75 83.4%
0.5 0.61 70.9% 0.61 71.0% 0.73 80.0% 0.74 82.4%
0.4 0.61 70.8% 0.60 71.3% 0.73 79.8% 0.73 82.0%
0.3 0.61 70.7% 0.61 71.1% 0.72 79.6% 0.73 81.3%
0.2 0.60 70.7% 0.60 71.0% 0.69 78.3% 0.71 80.3%
GUESS 0.52 60.7% − − 0.50 51.9% − −


