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Abstract

Data collection and sharing are pervasive aspects
of modern society. This process can either be
voluntary, as in the case of a person taking a fa-
cial image to unlock his/her phone, or inciden-
tal, such as traffic cameras collecting videos on
pedestrians. An undesirable side effect of these
processes is that shared data can carry informa-
tion about attributes that users might consider as
sensitive, even when such information is of lim-
ited use for the task. It is therefore desirable for
both data collectors and users to design proce-
dures that minimize sensitive information leak-
age. Balancing the competing objectives of pro-
viding meaningful individualized service levels
and inference while obfuscating sensitive infor-
mation is still an open problem. In this work,
we take an information theoretic approach that
is implemented as an unconstrained adversarial
game between Deep Neural Networks in a princi-
pled, data-driven manner. This approach enables
us to learn domain-preserving stochastic transfor-
mations that maintain performance on existing
algorithms while minimizing sensitive informa-
tion leakage.

1. Introduction

Information sharing and electronic communications perme-
ate every aspect of human life. Shared data can contain
information about many attributes, some of them are of
interest for a particular task, while others can disclose irrel-
evant, conflicting, or sensitive information. As an example,
a facial image contains information about features such as
gender, emotion, ethnicity, and identity, among others. A
user sharing an image of their face might be interested in
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a particular inference task (e.g., subject verification), but
may want to remove some sensitive attribute (e.g., emotion
recognition). As an additional use-case, imagine a subset
of users wish to unlock their phone using facial identifica-
tion, while others opt instead to verify their right to access
the phone using other methods; in this setting, we wish the
face identification service to collect information only on the
consenting subset of users.

Here we address the problem of transactional information
sharing, where a user discloses data about themselves in
order to receive a service (e.g., identity-verification). Min-
imizing information leakage on a sensitive attribute (e.g.,
their emotion) while still providing a meaningful level of
individualized service is still an open problem. There is sig-
nificant prior work in related topics such as visual privacy
through image obfuscation (McPherson et al., 2016; Oh
et al., 2016; 2017; Brkic et al., 2017; Raval et al., 2017; Wu
et al., 2018) and inpanting (Sun et al., 2018a;b; Orekondy
et al., 2018), domain adaptation (Tzeng et al., 2017), protect-
ing training data in machine learning (Shokri & Shmatikov,
2015; Zhang, 2018), fairness (Madras et al., 2018) and dif-
ferential privacy (Dwork, 2008).

We introduce a learning framework based on mutual infor-
mation to approach this challenge of balancing per-subject
information obfuscation and utility preservation, where the
data is sanitized prior to disclosure. There are theoretical
works on studying utility-privacy tradeoffs using informa-
tion metrics (Sankar et al., 2013; Basciftci et al., 2016),
but, to our knowledge, none have been applied to high-
dimensional data (e.g.: images) in a data-driven manner.
The use of mutual information (MI) facilitates the theoret-
ical analysis of performance bounds, which relates to im-
portant interpretable performance metrics such as accuracy
(Feder & Merhav, 1994) and generalization error (Bassily
et al., 2018). Unique aspects of the problem addressed here
include: utility is measured per user, not as an aggregate
statistic; no assumptions are made on the structure of the
data, in particular, the utility and sensitive attribute might
be strongly codependent and/or spatially co-localized. This
differentiates us from related works on visual privacy (Sun
et al., 2018a;b; Orekondy et al., 2018) where the utility
is usually perceptual or semantical naturalness. Our sani-
tization (obfuscation) objective is set up as a constrained
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optimization problem, where different obfuscation and util-
ity tradeoffs can be achieved, the sanitization transform is
learned in a data-driven fashion using an adversarial ap-
proach with Deep Neural Networks (DNNs). Disadvantages
of this approach include lack of naturalness in the result-
ing images, this is something that is not enforced explicitly
but it could be incorporated as an additional utility objec-
tive. Another drawback is the reliance on auxiliary DNNs
to measure Mutual Information.

1.1. Main Contributions and Manuscript Organization

We consider a scenario where a user wants to share a san-
itized representation Y of high-dimensional data X in a
way that a latent variable U can be inferred, but a sensitive
latent variable S is obfuscated. X and Y can potentially be
supported on the same domain, e.g., image-in-image-out.

In Section 2 we motivate the proposed framework as a distri-
bution matching problem, and show that this can be formu-
lated as a constrained optimization problem where both the
objective function and the constraints are defined in terms
of mutual information. Additionally, we derive bounds on
the optimal performance of this proposed framework, and
validate them on controlled and real experiments. We es-
tablish connections and comparisons between the proposed
formulation and other important methodologies in related
topics such as Information Bottleneck with Side Information
(IBSI) (Chechik & Tishby, 2003; Chechik et al., 2005) and
Differential Privacy (Dwork, 2008).

Section 3 shows how this optimization problem can be
solved in a data-driven fashion by setting an adversarial
game between competing DNNs. This formulation is used
to learn domain-preserving data transformations that can
accommodate for existing processing pipelines. That is, we
can ensure that an existing algorithm that could be used to
infer the utility variable U from the original data X can still
be used to infer U from the filtered data Y that contains
minimal (obfuscated) information on the sensitive attribute

S.

Experiments on synthetic datasets are shown in Section 4.
In Section 5, we exemplify the use of this framework on real
data through the following use-cases: Gender vs Emotion,
where emotion is obfuscated from the filtered image, but
gender can still be inferred; Subject vs Gender, where face
images are trained to retain subject verification performance
while obfuscating gender inference; and Subject vs Subject,
where the goal is to allow subject verification only on a
subset of consenting users, non-consenting user’s identities
are obfuscated and made hard to recover from the filtered
images. These examples measure both utility and sensitiv-
ity at the individual level, with both utility and sensitivity
having varying degrees of dependence. Filtered images are
domain-preserving, and can be used on an utility inference
algorithm trained on the original data. Concluding remarks

and future work are provided in Section 6.

2. Problem Formulation

We consider a scenario in which we have access to a set of
three random variables X, U, and .S, with joint distribution
p(x,u,s). Here X € X is the data we observe (possibly
high-dimensional), U € U is a latent variable that we want to
communicate (utility), and S € S is a sensitive variable that
we want to obfuscate. For the purposes of the analysis in
this paper, we restrict ourselves to cases where I/ and S are
finite alphabets. The advantage of this assumption, suitable
for classification tasks, is that we ensure that the mutual
informations of interest are always bounded. Unlike some
other formulations (Chechik & Tishby, 2003; Chechik et al.,
2005), we do not make any other assumption on p(x, u, s),
i.e., there is no underlying assumption that U, S and X
define a Markov chain, or that U and S are conditionally
independent given X, or that the distribution of X given U
and S belong to any particular family.

Our goal is to find a stochastic transformation from X to
a variable Y, p(y | ), that provides information on U but
not on S. Unlike the IBSI formulation, we do not explicitly
minimize 1(X;Y’). We want to find p(y | ) such that
the posterior distributions of the utility variable are similar
given the filtered and original data, p(u | y) ~ p(u | z),
while the posterior of sensitivity variable .S given obfuscated
data Y is as close as possible to the prior, p(s | y) ~ p(s)
(meaning that observing Y does not change our beliefs about
S). In many cases, both goals cannot be met simultaneously.
However, we can formulate a problem where both objectives
reach a compromise.

In the proposed formulation, we measure distances between
distributions using K L divergence, Dx 1 (p(u | z) || p(u |
y)) and Dk (p(s|y) || p(s)) in particular. By taking the
expectation of these metrics with respect to X and Y we
recover the following mutual information:

Exy[Drr(p(ulz) | p(u]y)]=1(U;X|Y),
Ey[Drr(p(s|y) [ p(s))] = 1(S;Y).

Both quantities have intuitive interpretations, I(U; X | Y)
is the amount of information on U we lose by observing the
filtered data Y instead of the original data X, we call this
quantity information loss (Geiger & Kubin, 2011). I(S;Y")
is the mutual information we disclose on variable S by
observing variable Y, this is the information we fail to
obfuscate. Under this setting, our objective is:

min I(U; X |Y) st I(S;Y)<k. )

p(ylz)

(D

Here k£ > 0 is a constant controlling our tolerance on the
amount of information on .S disclosed via Y. Since U is
conditionally independent on Y given X, I(U; X |Y) =
I(U; X) - I(U;Y), which leads to the the equivalent ob-

jective minp(y‘z) I(U, X | Y) ~ MAXp(y|z) I(U7 Y) This
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formulation is easier to connect with the Information Bottle-
neck (IB) approach (Tishby et al., 2000; Slonim & Tishby,
2000), which has been applied to other contexts in machine
learning (see also (Achille & Soatto, 2017)). Figure 1 shows
an illustrative Venn diagram of some of the quantities of
interest in our formulation.

Note that in Eq.(1) we minimize Dy, (p(u | z) || p(u | y))
and Dg 1, (p(s|y) || p(s)) in expectation. This differs from
other frameworks such as Differential Privacy (DP) (Dwork,
2008; Dwork et al., 2015; Rogers et al., 2016; Holohan
et al., 2015) where guarantees are provided as a worst-case
scenario, a strictly stronger notion than the one proposed
here. Our formulation focuses on the problem of allowing
inference on an attribute, while protecting inference of a
different attribute as best as possible, this contrasts with
the notion of protecting the anonymity of a data sample
in its entirety. This makes our formulation suitable for a
different set of tasks, particularly when we wish to infer
attributes per data item (per user). Note that minimizing
mutual information can lead to desirable characteristics such
as tighter bounds on generalization error (Bassily et al.,
2018; Xu & Raginsky, 2017; Asadi et al., 2018; Bousquet
& Elisseeff, 2002; Nokleby et al., 2016).

H(S) H(X)

H(U)

Figure 1. Left: Dependency graph of the observed variable X and
the latent utility and sensitive variables U and S. Note that U and S
can be codependent, thereby forcing a compromise between utility
and obfuscation, this is addressed naturally via mutual information.
Right: Venn diagram illustrating conditional mutual information
that constrains the performance of any sanitization mapping Y ~
p(y | ) such that (Y 1 (U,S)) | X. The information leakage
I(S;Y") and censured information I(U; X | Y') shown in red and
blue respectively cannot always be simultaneously set to 0, since
they are partially at odds.

To solve this constrained optimization problem, we relax
it using the quadratic penalty method (Wright & Nocedal,
1999), which penalizes solutions that violate the desired
constraints. Since I(U; X | Y') and I(.S;Y") are both con-
tinuously differentiable functions of p(y | ), this relaxed
problem is equivalent to the constrained one as A\ — oo:

min [[(U; X | V) + Amax(I(S;Y) - k,0)%]. (3
p(ylz)
A counterexample on why a more intuitive loss function

I(U; X | Y)+ A(S;Y) is not used is shown in Supple-
mentary Material.

Section 3 details how to implement Eq.(3) as an adversarial
game between competing DNNs using standard training
tools. Before that, Section 2.1 shows that the best possible
performance for the global optimal solution to Eq.(2) can be
lower-bounded with terms that depend only on mutual infor-
mations and the joint distribution p(u, s). For categorical
variables (e.g., classification tasks), this joint distribution
can be easily computed from the observed contingency ta-
bles.

2.1. Performance Bounds

One key question that arises is what are the intrinsic limits
on the trade-offs attainable from the solutions to Eq.(2) for
any given problem. In this section we provide lower and
upper bounds that give insight into feasible solutions. In
particular, a large gap between upper and lower bounds sug-
gest the existence of solutions with good utility-obfuscation
trade-offs. Bounds presented in this section are also valid
for continuous X, U, S as long as I[(U; X),I(S;Y) are
bounded, but for clarity we derive them for discrete vari-
ables X, U, S.

In many real-world classification problems, the support of
the observed variable X is high-dimensional, while the sup-
port over the latent variables of interest U and S is compar-
atively smaller. Lemma 2.1, presented next, shows that we
can bound the solution of Eq.(2) by considering mappings
that go directly from the latent variables U and S to the
obfuscated variable Y. This simplifies the analysis since
U x S| << |X| for many problems of interest.

Lemma 2.1. Let U and S be a pair of latent variables, drawn
from p(u,s) and supported on finite alphabets ¢/ and S
respectively, and let X be the observed variable drawn from
the conditional distribution p(x | u,s) supported on X.
Let Y € Y be jointly distributed with U, S, and X. The
following relation holds:

min I(U;X|Y)> min I(U;X)-I(U;Y),

p(ylz)eQ p(ylu,s)eQ*
Q={p(ylz) : p(ylz) = p(ylz,u,s); I1(S;Y) <k},
O ={p(ylu,s) : I(U;Y) < I(U; X); 1(S;Y)<k}.
4

Proof: In the left term of the inequality (U, S) - X - Y
form a markov chain, by data processing inequality 2 =
QN{p(ylz) : I(U;Y) < I(U; X)} then:

min I[(U; X |Y)= min I(U;X)-1(U;Y),
p(ylz)eQ

p(y|z)eQ
> min I(U;X)-1I(U;Y)O.
p(ylu,s)eQ*
)

The main idea in Lemma 2.1 is that we can obtain lower
bounds without worrying about the details of p(z|u, s).
However, evaluating Eq.(4) can still be a challenging prob-
lem on itself, particularly when |} is large. To analyze this,
we can obtain a sequence of upper bounds to Eq.(4) where
we constrain the cardinality of | )| to be finite. We will refer
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to this as the restricted cardinality sequence (RCS). Each
element of this sequence requires optimization over a finite
transition matrix p(y | u, s). Computation details are shown
in Supplementary Material.

An alternative lower bound that can prove to be easier to
compute is provided in Lemma 2.2. This lower bound only
requires the computation of I(U;.S) and I(U; S | X).
Lemma 2.2. Let X, U, S be three discrete random variables
with joint probability distribution p(z, u, s). For any solu-
tion to Eq.(2) with tolerance k£ we have

IU;X|Y) >-1(S;Y)+I(U;S) - I(U; S | X),
>—k+I1(U;S) - I(U;S | X).
(6)

Proof: Consider the following equality, derived from prop-
erties of Shannon Information, see (Yeung, 2012).

I(U;8) - I(U3 5| X) =1(S;Y) =~ I(S;Y [U) o)
+I(U; X |Y)-I(U; X | Y, S).

A complete proof of this equality is provided in Supple-
mentary Material for completeness. The stated inequality
follows from I(S;Y") < k and the non-negativity of mutual
information O.

Finally, Lemma 2.3 provides an achievable upper bound to
the solution to Eq.(2).

Lemma 2.3. Let X, U, S be three discrete random variables
with joint probability distribution p(x, u, s). For all k > 0
There exists a conditional distribution p(y | ) such that

I(S;Y) <k, g
H(U; X |Y) = max(0,1 - &) 1(U: X)) ©

Proof: Vk > 0, let 8 = min(I(T’fx)7 1) € [0,1]. Consider
p(y|z) = Bo(y = z) +(1-B)d(y = &), where £ ¢ X'. Note
that H(S |Y = &) = H(S) and H(S | Y # €) = H(S | X).
Therefore
I(S;Y) = H(S) - H(S | Y),

_H(S) - BH(S|Y +€) - (1- B)H(S| Y =€),

- B(H(S) - H(S| X)) = BI(S; X).

©))

Analogously I(U;Y) = BI(U; X). The statement of the
lemma follows from I(U; X |Y) =I(U; X) - I(U;Y).0

2.2. Analysis of Lower Bounds

Lemmas 2.2 and 2.1 provided two lower bounds to Eq.(2).
Note that Lemma 2.2 provides a linear lower bound, while
Lemma 2.1 has no such restriction. Here we show two ex-
amples where the RCS approximation to Lemma 2.1 seems
to converge in a small number of iterations, and the bound
it suggests is comparatively tighter than the one provided by
Lemma 2.2.

Figure 2 shows the lower bound derived in Lemma 2.2,
and elements of the restricted cardinality sequence (RCS)
used to approximate Lemma 2.1 for a particular choice of
distribution of latent and observed variable (U, S, X). Note
that the infimum of the RCS sequence is a true lower bound
to Eq.(2).

|t1=10,|S|=5,a=10

— =10

1Y=30

— =50
-- Lower Bound

|1=100,|S|=5,a=10

— Y=100

|y =300

— ¥=500
-~ Lower Bound

00 02 04 06 08 10 00 02 04 06 08 10
H(U) = 1(U; Y) HU) = I(U;Y)

Figure 2. Lower bound derived in Lemma 2.2 and elements of the
RCS sequence are shown for two particular choices of joint distri-
butions. Left figure shows trade-offs when [U{| = 10, |S| = 5, while
right figure shows comparable trade-offs for || = 100,|S| = 5.
The conditional distribution generating both datasets is P (u, s) o<
1+ ad(umod|S| = s), where a > 0 is chosen to control I(U; S).
Images were produced with o = 10. Figure also shows that the
RCS sequence quickly converges to a limiting lower bound.

3. Data-Driven Implementation

Even if the joint distribution of Px 17 s is not known, it is
possible to implement Eq.(3) in a data-driven fashion to find
p(y | ) in a family of parametric stochastic neural network
architectures gg(x, z) : X x Z - ). We illustrate this now.

Let Z ~ Py be a random variable drawn from a known
distribution, and let € be the network parameters of the
transformation we wish to learn. Note that y = go(z, 2) is
a deterministic value for any pair (z, z), but Yy = qo(z, Z)
is a random variable drawn from an implicit conditional
distribution py(y | ).

Assume we have access to a labeled dataset {(z;, 5;,u;) } v,
where s; and u; are the true values of the secret and utility
variables for observation x;. Learning a parametric stochas-
tic representation Y = gp(z, z) that optimizes Eq.(3) re-
quires estimating the posteriors: Pgjy, Pyjy, and Py|x;
these estimators are obtained through parametric neural net-
works p, (s | y), pyp(u | y), and py(u | x) respectively.
Under this setup ¢ is obtained by simultaneously optimiz-
ing the following adversarial objectives:

i) = argmin, Bxs.z[ ~1og(py (s | 45(x,2))],
) = argminwEwawz[ —log(py(u | gs(z, z))],
(% = argmin¢EX7U[ —log(pe(u| x)],
0 = argming Ex z[ Dicr.(pg(u | x) | py(u | go(x, 2)))]
+)\max(Ex,Z[DKL(Ps lps(s|aqo(,2)))] - k,O)lz.
(10)
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The first three equations in Eq.(10) are cross-entropy loss
terms to ensure the estimators p, (s | gg), py(u | go), and

pg(u | z) are all good estimators to the true posterior distri-
butions. The last loss term is a direct translation of Eq.(3).
Details on the algorithmic implementation are shown in
Algorithm 1.

Algorithm 1 Adversarial Information Obfuscation

Input: data {(«x;, s;, u;)}; hyperparameters (Ir, A, k)
P(s) is the empirical marginal distribution of {s; }
repeat

Draw b samples from dataset

(z(1), w1y, 5(1)), - (T@), Uy, Sv)) ~ Px,u,s

Draw b samples from sampling distribution

Z(l), Z(b) ~ PZ

Evaluate cross-entropy loss on posterior inference net-

works:

(¢) = 1 Zszl —logPy(uey | ()

() = 3 Ti-1 —logPy (ugy | Qa(x(iy, (1))

H (1) = 3 Zizy ~logPy(s0) | Qo () 25)))

Stochastic gradient descent:

o< d=lrvy®@(d); ¥« = lrvy¥(¢)

1n<n=1rv,H(n)

Evaluate unconstrained penalty loss:

_ 15 Py (ugiylz(iy)
o(9) - b Li=1 logPT/J(u(i)lQB(x(i)vz(i)))

1 v Py (5)|Qo(x(i),2(1)))) 2
Amax(; ¥, log——2 P(Hs(ig; W22~ k,0)
Stochastic gradient descent:
0« 0-1rve0(0)
until Convergence

+

3.1. Domain-Preserving Transformations with Fixed
Utility Inference Algorithms

An attractive application of the proposed method arises
when we impose two additional restrictions. We first con-
strain transformations to be strictly domain preserving (e.g.,
an image to image transformation). The second constraint is
that we are given a fixed utility inference algorithm p s (u | -)
that works on unfiltered, original data X and cannot be mod-
ified. Therefore, we require that this algorithm also performs
well on the filtered data Y. These additional requirements
allow us to integrate sensitivity constraints on an existing
data-processing pipeline with minimal or no disruption.

These objectives can be accomplished with a small variant
of the adversarial training described in Algorithm 1, where
pg(u|-) is used in place of p;(u | -) to evaluate the uncon-
strained penalty objective ©(6), and where no stochastic
gradient descent update step is performed on the parame-
ters ¢. This Algorithm is further detailed in Supplementary
Material. Figure 3 shows a schematic representation of this
particular use-case.

p(U]) U

| p(S]) —5

Y
—— (X, Z) —

Z ~ N(0,1)

Figure 3. Schematic of the three main components in the adversar-
ial information obfuscation framework with a fixed utility algo-
rithm. Original data X can be directly fed into the algorithms that
infer the sensitive information (p(S | -)) and the utility (p(U | -)).
Since the mapping Y = qo (X, Z) is domain preserving (Y € X),
the filtered data can also be directly fed to both tasks without any
need for further adaptations.

4. Validation on Synthetic Data

We first study the performance of the proposed framework
on synthetic data and compare the results with the perfor-
mance bounds derived in Section 2.1. Here we show that the
proposed formulation is able to obtain nontrivial trade-offs
for both a standard neural network and a linear filter.

For these experiments, the observed data is a perfect repre-
sentation of the latent variables, X = (U, .S), U is uniformly
distributed on || = 6, and S is uniformly distributed on
|S| = 2. The design parameter for the model is the mutual
information I(U; S), which can take values in the range
[0,{n(2)]. We compare the tradeoff curves for I(U; X | Y)
and I(.S;Y) for two simple classes of stochastic obfuscation
transforms, a linear filter Y = AX + Z, Z ~ N(0,0?); and
a stochastic neural network with less than 300 parameters
total. The posterior inference networks p,, (S | -), py,(U | ),
and py (U | -) are implemented using fully connected neural
networks. Detailed descriptions of the architectures, data
generating process, and design parameters are provided in
Supplementary Material.

Figure 4 summarizes the trade-offs obtained by both fil-
ter classes for three levels of codependence I(U;S) =
[0.2,0.4,0.69]nat (nat is the natural unit of information),
The bounds presented in Section 2.1 are also shown for
reference. The nonlinear filter performs slightly better than
the linear filter. The point ([(U; X |Y) = 0,1(S;Y) =
I(U; S)) is always reachable under this generation model,
and corresponds to communicating U perfectly through Y,
while blocking any other “direct” observation of S; both
linear and nonlinear filters easily achieve this tradeoff point.

We note that the results obtained by both filters, which rely
on data-driven optimization, are reasonable approximations
to the bounding RCS sequence found by directly optimiz-
ing over transition probabilities described in Lemma 2.1.
The performance gap can be understood as a failure of the
filters to explore different data representation modalities,
something we believe to be a related to the problem of
mode collapse, which is commonly observed and studied in
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Figure 4. Tradeoff curves in the [(U; X | Y),I(S;Y") plane for
linear and nonlinear filters, columns represent different levels of
mutual information in the joint distribution of (U, S), I(U;S) =
[0.2,0.4,0.69]nat. The theoretical bounds derived in Section 2.1
are shown for comparison. High tolerance (high 1(.S;Y")) points
are easier to achieve.

GAN:s, see for example (Metz et al., 2016; Salimans et al.,
2016; Wu et al., 2018; Arjovsky et al., 2017; Srivastava
et al., 2017).In supplementary material we show some of
the learned representations Y on the linear and nonlinear
architectures, and the RCS sequence from Lemma 2.1.

5. Results on Facial Images

The following example are based on the framework pre-
sented in Section 3.1, shown in Figure 3. Since the utility es-
timation algorithm (pg(u | -)) is fixed, the learned mapping
qp needs to be domain-preserving and it additionally needs
to perform well when filtered data is fed through p(u | ).
This is an additional constraint that was not specifically mod-
eled in Eq.(3), and is what enables a utility provider to be
compatible with this sensitivity-obfuscating transformation
without modifying existing algorithms. Note, however that
the sensitive attribute estimator p, (s | -) is always trained
adversarially against the learned mapping gg.

First we tackle the problem of learning a mapping that pre-
serves gender detection while hiding emotion (emotion-and-
gender). We then learn a filter over facial images that makes
subject verification possible only for a consenting subset
of users (subject-within-subject). Finally, we show how
we can disable gender recognition while allowing subject
verification (subject-and-gender) a challenging task since
the utility variable U is harder to infer than S, and they are
both tightly coupled. All problems were implemented using
the same network architectures, for the inference networks
pg(u|-) and p,(s | -) we used Xception networks (Chollet,
2017), and for the learned filter go(, 2) we used a U-Net-
based network (Ronneberger et al., 2015). The stochastic
component was added as an extra noise input appended to
the network. Detailed architectures for both networks are
shown in Supplementary Material.

5.1. Obfuscating Emotion While Preserving Gender

We apply the proposed adversarial information obfuscation
framework to facial images X, the utility variable U is the

gender of the imaged subject, while the sensitive attribute
S is their emotion (smiling/non-smiling). In this scenario,
variables U and S are almost independent. We conduct
this experiment over the CelebA dataset (Liu et al., 2015).
Table 1 shows the distribution of the utility and secrecy
estimators over the sanitized data. A comparison against
blacking out the face and blacking out the lower half of the
face are also shown. Figure 5 shows examples of sanitized
images. It is visually possible to identify the gender of the
subject but not their emotion. Most importantly, the existing
gender detection algorithm still performs correctly over the

sanitized images.

118
S pe
:

Figure 5. Learned transformation to obfuscate emotion recognition
and preserve gender recognition. Each column shows the same
individual. Top row shows the original image, middle and bottom
row show the filtered images for sensitive information budgets
0.5nat and 0.4nat respectively. The learned filtering behaviour
is easy to interpret, the mouth area is increasingly blurred out.
This behaviour was learned via the adversarial training regime
described in Algorithm 1, and was not designed by the user.

Table 1. Results across several tolerance parameters k. The con-
fidence of an adversarially trained emotion estimator is shown
alongside an estimator trained only on natural images. Accuracy
is also shown for the fully fixed gender detection network. Results
on images where the lower face and full face are blacked out (LFB,
FFB) are shown as comparison. Guessing values based on prior
distribution are also shown

FIXED ADV FIXED
ToL EMOTION EMOTION GENDER
k CONF Acc CONF Acc CONF AcC

oo 0.88 91.8% 0.88 91.8% 0.92 94.9%
0.5 0.65 68.4% 0.87 91.4% 0.86 89.3%
0.4 0.57 58.6% 0.81 85.8% 0.84 88.0%
0.3 0.55 56.8% 0.75 81.5% 0.83 86.7%
0.2 0.51 51.9% 0.67 74.3% 0.79 83.9%
LFB 0.55 53.9% 0.65 74.0% 0.72 75.5%
FFB 0.52  52.2% 0.62 71.5% 0.63 67.9%
Guess 0.50 51.9% - - 0.52  60.7%

The results show that the adversarial information obfus-
cation algorithm learned a natural action to block emo-
tion recognition, effectively driving the confidence of the
emotion-inferring algorithm towards random guessing, this
is observed on both the original emotion inference algorithm,
as well as the adversarially trained one.
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5.2. Subject within Subject

We now analyze the subject-within-subject problem. Here,
only a small subset of potential users wish to use facial sub-
ject verification, the remaining users opt out of the feature
and wish that their identity is obfuscated from the collected
images. In this setting, the utility and sensitive variables can
be thought of as belonging to mutually disjoint subsets of a
latent variable.

We solve this problem by training a domain-preserving
stochastic mapping ¢y on facial image data X, where the
utility and secret variable U and S are categorical vari-
ables over consenting and non-consenting users respectively.
We test this over the FaceScrub dataset (Kemelmacher-
Shlizerman et al., 2016), again using Xception networks
(Chollet, 2017) as the utility and secrecy inferring algorithm.
The stochastic mapping was implemented using a stochastic
adaptation of U-Net (Ronneberger et al., 2015), architecture
details are provided in Supplementary Material.

Table 2 shows the top-5 categorical accuracy of the utility
network over the sanitized data at various k points in the
sensitivity-utility trade-off. Figure 6 show some represen-
tative images on how images are sanitized. It also shows
that the sanitization function is able to preserve information
about the utility variable while effectively censoring the
secret variable, even for unobserved images.

Table 2. Top-5 accuracy performance of the subject detector af-
ter obfuscating the identity of non-consenting users for various
tolerance levels k. Performance is shown across 3 subsets, con-
senting users are users that decided to be detected by the utility
algorithm, observed private users are those that explicitly decided
to protect their privacy, while unobserved private users are users
that decided to protect their privacy but were not available during
training. Consenting users are still recognized by the system, while
non-consenting users are not.

. ) . OBS. UNOBS.
TOLn]l:ANCL CONS:]I:I;FING PRIVATE  PRIVATE
USER USER
oo 98.7% 98.4% 97.9%
3 98.3% 7.81% 9.38%
1 97.8% 4.69% 6.25%
0.5 97.6% 3.12% 4.69%
GUESS 2.5% 2.5% 2.5%

5.3. Preserving Subject Verification, Obfuscating
Gender

Finally, we tackle the issue of preserving subject verifica-
tion while obfuscating the gender, we do this on 200 sub-
jects from the FaceScrub dataset (Kemelmacher-Shlizerman
et al., 2016). This is a hard task, since the amount of in-
formation required to identify the gender is substantially
smaller than the one necessary to perform subject verifica-
tion. Furthermore, these two variables are strongly code-
pendent (I(U;S) ~ min(H(U),H(S))). Illustrative ex-

Preserved Subject
Id Confidence: 99.83%

Preserved Subject
Id Confidence: 100.00%

Obfuscated Subject
Id Confidence: 96.67%

Obfuscated Subject
Id Confidence: 99.04%

Qbfuscated Subject
Id Confidence: 0.47%

Obfuscated Subject
Id Confidence: 0.32%

Preserved Subject
Id Confidence: 99.91%

Preserved Subject
Id Confidence: 100.00%

Figure 6. Left and right figures show images of consenting and non-
consenting (private) users respectively, along with their sanitized
counterparts. The identity of consenting users is still easily verified,
while the identity of non-consenting users is effectively censored.

amples of filtered images are shown on Figure 7

P(Female) =0.99  P(Female) =0.98  P(Female)=10  P(Male) = 1.0 P(Male) =0.99

Figure 7. First row shows original images, second and third show
the filtered images for sensitive information tolerances (I(S;Y") <
k) 0.5nat and 0.3nat respectively. Gender probabilities where
computed over 5 realizations of the filter. It is hard to differentiate
genders as the tolerance decreases. Subject verification is still
performed correctly, without altering the original algorithm, on all
images shown. The learned filter was trained against an adversarial
gender inference network, while the subject verification algorithm
remained fixed.

The subject-vs-gender task is made harder by the fact that
the subject identification algorithm was trained on natural
images and remains fixed during training, while the gender
inference algorithm is trained adversarially. For this reason,
Table 3 additionally shows the Top-5 categorical accuracy
obtained when the subject identification network is also
allowed to retrain its final dense layer. Note that this still
implies minimal changes to the subject inference network,
since all lower feature extraction layers remain unchanged.
As a baseline comparison, we show the performance of the
Fader Network (Lample et al., 2017) gender mixing model;
here images have their gender attribute rewritten at random.
We note that for similar Top-5 accuracy in subject detection,
our method significantly lowers gender detection accuracy
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(~ 60% vs 88% on fixed gender detection, ~ 90% vs 96%
on adversarial gender detection).

Table 3. Results across several tolerance parameters k. The confi-
dence of an adversarially trained gender estimator is shown along-
side an estimator trained only on natural images. Top-5 accuracy
results are shown for both the fully fixed subject verification net-
work, as well as one where only the final dense layer was retrained.
The performance of randomly resampling the gender attribute us-
ing Fader Network (FaderN) and that of guessing the attribute
based on prior information (Guess) are also shown for comparison.

FIXED ADV FIXED TRAINED
ToL GENDER GENDER SUBJECT SUBJECT
k CONF  AcC CONF  AcC Top-5 Acc  Top-5 Acc
oo 0.98 98.6% 0.98 98.6% 98.8% 98.8%
0.5 0.59 59.5% 0.86 90.2% 93.5% 96.8%
0.4 0.59 60.3% 0.80 85.3% 88.1% 94.9%
0.3 0.54 54.0% 0.72 79.4% 81.4% 92.8%
0.2 0.55 56.1% 0.67 74.6% 81.6% 91.0%
0.1 0.52 51.6% 0.59 67.1% 74.5% 89.6%
FADERN 0.87 87.8% 0.95 95.9% 92.5% 95.2%
GUESS 0.50 54.8% - - 2.5% -

5.4. Performance bounds on Real Experiments

To conclude, Figure 8 compares the trade-offs achieved
on both the subject-vs-gender and gender-vs-emotion (em-
pricial tradeofs are computed by averaging across test-set
images) against the lower bounds derived in Lemma 2.1
computed using the RCS approximations described in Sup-
plementary Material (the joint distribution p(u, ) required
by the RCS is estimated from the label contingency table),
and the upper bound derived in Lemma 2.3.

Subject vs Gender Gender vs Emotion

n2) 5 X Subjvs.cen In(2) X Gen s Emotion (U Fixed)
[N --- RCS . === RCS

---' Achievable Bound ---- Achievable Bound

04} +— 0.4

I(S;Y)
1(S;Y)

1 AN
0.2 Yo% —- 0.2

0 1 2 3 4 In(200) 0 0.2 0.4 In(2)
u; X|) I(U; X]Y)

Figure 8. Trade-offs obtained via Algorithm 1 in the subject-vs-
gender (left) and gender-vs-emotion (right). The results obtained
are compared with the bound derived in Lemma 2.1 and approxi-
mated using the RCS method described in Supplementary Material.
The achievable bound derived in Lemma 2.3 is also shown for ref-
erence.

6. Concluding Remarks

We addressed the problem of learning data representations
that simultaneously obfuscate information about sensitive la-
tent attributes, while preserving information about attributes
we specifically wish to disclose (utility). This was formu-
lated as a distribution matching problem, and we used tools

from information theory to formalize this notion into a con-
crete optimization problem.

We derived easy-to-compute bounds on the optimal achiev-
able performance of these transformations, and showed how
the original constrained optimization problem has an equiv-
alent unconstrained formulation that can be directly opti-
mized as an adversarial game played between DNNs. We
expanded the restrictions imposed on the problem by lim-
iting ourselves to domain-preserving transformations (e.g.,
images to images), that preserve utility inference capabilities
on an existing system, while defending against an adversar-
ial network attempting to infer the sensitive attribute from
the learned representation.

Experimental results show that the learned representations
perform well when compared against the theoretically-
derived bounds; the performance differential can be po-
tentially interpreted as a behaviour akin to mode collapse in
GANSs (Goodfellow et al., 2014).

Results on facial image data show that the framework is
able to handle hard-to-model tasks such as hiding emo-
tion recognition while enabling gender identification; and
preserving subject verification capabilities on a subset of
individuals, while disallowing this on non-consenting in-
dividuals. We also showed excellent performance on the
challenging task of preserving identity while obfuscating
gender. The learned behaviour of the filters trained on these
facial images varied significantly from task to task, but was
altogether interpretable.

It is important to highlight that the filters learned through
this adversarial framework are as good as the estimators for
the utility and secret variables allow them to be, this is espe-
cially true for the mutual information estimators. A future
challenge to address is how to get consistent estimators that
perform well under the type of shifting inputs that the filter
produces, one of the multiple novel challenges presented by
these types of approaches.

An implementation of this framework is available at www .
github.com/MartinBertran/AIOT.
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