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A. Multiclass Perceptron
MULTICLASS PERCEPTRON is an algorithm for ONLINE MULTICLASS CLASSIFICATION. Both the protocol for the
problem and the algorithm are stated below. The algorithm assumes that the feature vectors come from an inner product
space (V, 〈·, ·〉).

Two results are folklore. The first result is Theorem 10 which states that if examples are linearly separable with margin γ
and examples have norm at mostR then the algorithm makes at most b2(R/γ)2cmistakes. The second result is Theorem 11
which states that under the same assumptions as in Theorem 11 any deterministic algorithm for ONLINE MULTICLASS
CLASSIFICATION must make at least b(R/γ)2c mistakes in the worst case.

Protocol 2 ONLINE MULTICLASS CLASSIFICATION
Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).
for t = 1, 2, . . . , T do

Adversary chooses example (xt, yt) ∈ V × {1, 2, . . . ,K}, where xt is revealed to the learner.
Predict class label ŷt ∈ {1, 2, . . . ,K}.
Observe feedback yt.

Algorithm 3 MULTICLASS PERCEPTRON

Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).
Initialize w(1)

1 = w
(1)
2 = · · · = w

(1)
K = 0

for t = 1, 2, . . . , T do
Observe feature vector xt ∈ V
Predict ŷt = argmaxi∈{1,2,...,K}

〈
w

(i)
t , xt

〉
Observe yt ∈ {1, 2, . . . ,K}
if ŷt 6= yt then

Set w(t+1)
i = w

(t)
i

for all i ∈ {1, 2, . . . ,K} \ {yt, ŷt}
Update w(t+1)

yt = w
(t)
yt + xt

Update w(t+1)
ŷt

= w
(t)
ŷt
− xt

else
Set w(t+1)

i = w
(t)
i for all i ∈ {1, 2, . . . ,K}

Theorem 10 (Mistake upper bound (Crammer & Singer, 2003)). Let (V, 〈·, ·〉) be an inner product space, let K be a
positive integer, let γ be a positive real number and let R be a non-negative real number. If (x1, y1), (x2, y2), . . . , (xT , yT )
is a sequence of labeled examples in V × {1, 2, . . . ,K} that are weakly linearly separable with margin γ and
‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R then MULTICLASS PERCEPTRON algorithm makes at most b2(R/γ)2c mistakes.

Proof. Let M =
∑T
t=1 1 [ŷt 6= yt] be the number of mistakes the algorithm makes. Since the K-tuple

(w
(t)
1 , w

(t)
2 , . . . , w

(t)
K ) changes only if a mistake is made, we can upper bound

∑K
i=1

∥∥∥w(t)
i

∥∥∥2

in terms of number of mis-
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takes. If a mistake happens in round t then

K∑
i=1

∥∥∥w(t+1)
i

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{yt,ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t)

yt + xt

∥∥∥2

+
∥∥∥w(t)

ŷt
− xt

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{yt,ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t)

yt

∥∥∥2

+
∥∥∥w(t)

ŷt

∥∥∥2

+ 2‖xt‖2 + 2
〈
w(t)
yt − w

(t)
ŷt
, xt

〉

=

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+ 2‖xt‖2 + 2
〈
w(t)
yt − w

(t)
ŷt
, xt

〉

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+ 2‖xt‖2

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+ 2R2 .

So each time a mistake happens,
∑K
i=1

∥∥∥w(t)
i

∥∥∥2

increases by at most 2R2. Thus,

K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ 2R2M . (14)

Let w∗1 , w
∗
2 , . . . , w

∗
K ∈ V be vectors satisfying (1) and (2). We lower bound

∑K
i=1

〈
w∗i , w

(t)
i

〉
. This quantity changes only

when a mistakes happens. If mistake happens in round t, we have

K∑
i=1

〈
w∗i , w

(t+1)
i

〉
=

 ∑
i∈{1,2,...,K}\{yt,ŷt}

〈
w∗i , w

(t)
i

〉
+
〈
w∗yt , w

(t)
yt + xt

〉
+
〈
w∗ŷt , w

(t)
ŷt
− xt

〉
=

 K∑
i=1

〈
w∗i , w

(t)
i

〉+
〈
w∗yt − w

∗
ŷt
, xt

〉

≥

 K∑
i=1

〈
w∗i , w

(t)
i

〉+ γ .

Thus, after M mistakes,
K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≥ γM .

We upper bound the left hand side by using Cauchy-Schwartz inequality twice and the condition (1) on w∗1 , w
∗
2 , . . . , w

∗
K .

We have
K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≤

K∑
i=1

‖w∗i ‖ ·
∥∥∥w(T+1)

i

∥∥∥
≤

√√√√ K∑
i=1

∥∥w∗i ∥∥2

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

.
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Combining the above inequality with Equations (14) and (A), we get

(γM)2 ≤
K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ 2R2M .

We conclude that M ≤ 2(R/γ)2. Since M is an integer, M ≤ b2(R/γ)2c.

Theorem 11 (Mistake lower bound). Let K be a positive integer, let γ be a positive real number and let R be a non-
negative real number. For any (possibly randomized) algorithm A for the ONLINE MULTICLASS CLASSIFICATION
problem there exists an inner product space (V, 〈·, ·〉), a non-negative integer T and a sequence of labeled examples
(x1, y1), (x2, y2), . . . , (xT , yT ) examples in V × {1, 2, . . . ,K} that are weakly linearly separable with margin γ, the
norms satisfy‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R and the algorithm makes at least 1

2b(R/γ)2c mistakes.

Proof. Let T = b(R/γ)2c, V = RT , and for all t in {1, . . . , T}, define instance xt = Ret where et is t-th element of
the standard orthonormal basis of RT . Let labels y1, . . . , yT be chosen i.i.d uniformly at random from {1, 2, . . . ,K} and
independently of any randomness used by the algorithm A.

We first show that the set of examples (x1, y1), . . ., (xT , yT ) we have constructed is weakly linearly separable with margin
γ. To prove that, we demonstrate vectors w1, w2, . . . , wK satisfying conditions (1) and (2). We define

wi =
γ

R

∑
t:1≤t≤T
yt=i

et for i = 1, 2, . . . ,K.

Let ai = |{t : 1 ≤ t ≤ T, yt = i}| be the number of occurrences of label i. It is easy to see that

‖wi‖2 =
γ2

R2

∑
t:1≤t≤T
yt=i

‖et‖2 =
aiγ

2

R2
for i = 1, 2, . . . ,K.

Since
∑K
i=1 ai = T ,

∑K
i=1‖wi‖

2
= T · γ

2

R2 ≤ 1, i.e. the condition (1) holds. To verify condition (2) consider any labeled
example (xt, yt). Then, for any i in {1, . . . ,K}, by the definition of wi, we have

〈wi, xt〉 =
γ

R

∑
s:1≤s≤T
ys=i

〈es, Ret〉

= γ ·
∑

s:1≤s≤T
ys=i

1 [s = t]

= γ · 1 [yt = i] .

Therefore, if i = yt, 〈wi, xt〉 = γ; otherwise i 6= yt, in which case 〈wi, xt〉 = 0. Hence, condition (2) holds.

We now give a lower bound on the number of mistakes A makes. As yt is chosen uniformly from {1, 2, . . . ,K}, indepen-
dently from A’s randomization and the first t− 1 examples,

E[1 [ŷt 6= yt]] ≥ 1− 1

K
≥ 1

2
.

Summing over all t in {1, . . . , T}, we conclude that

E

 T∑
t=1

1 [ŷt 6= yt]

 ≥ T

2
=

1

2
b(R/γ)2c,

which completes the proof.
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B. Proofs of Theorems 2 and 3
Proof of Theorem 2. Let M =

∑T
t=1 zt be the number of mistakes Algorithm 1 makes. Let A =

∑T
t=1 1

[
St 6= ∅

]
zt

be the number of mistakes in the rounds when St 6= ∅, i.e. the number of rounds line 18 is executed. In addition, let
B =

∑T
t=1 1

[
St = ∅

]
zt be the number of mistakes in the rounds when St = ∅. It can be easily seen that M = A+B.

Let C =
∑T
t=1 1

[
St = ∅

]
(1 − zt) be the number of rounds line 12 gets executed. Let U =

∑T
t=1(1

[
St 6= ∅

]
zt +

1
[
St = ∅

]
(1 − zt)) be the number of rounds line 12 or 18 gets executed. In other words, U is the number of times the

K-tuple of vectors (w
(t)
1 , w

(t)
2 , . . . , w

(t)
K ) gets updated. It can be easily seen that U = A+ C.

The key observation is that E[B] = (K − 1)E[C]. To see this, note that if St = ∅, there is 1/K probability that the
algorithm guesses the correct label (zt = 0) and with probability (K − 1)/K algorithm’s guess is incorrect (zt = 1).
Therefore,

E[zt|St = ∅] =
K − 1

K
,

E[B] =
K − 1

K
E

 T∑
t=1

1
[
St = ∅

] ,
E[C] =

1

K
E

 T∑
t=1

1
[
St = ∅

] .
Putting all the information together, we get that

E[M ] = E[A] + E[B]

= E[A] + (K − 1)E[C]

≤ (K − 1)E[A+ C]

= (K − 1)E[U ] . (15)

To finish the proof, we need to upper bound the number of updates U . We claim that U ≤ b4(R/γ)2c with probability 1.
The proof of this upper bound is similar to the proof of the mistake bound for MULTICLASS PERCEPTRON algorithm. Let
w∗1 , w

∗
2 , . . . , w

∗
K ∈ V be vectors that satisfy (3), (4) and (5). The K-tuple (w

(t)
1 , w

(t)
2 , . . . , w

(t)
K ) changes only if there is

an update in round t. We investigate how
∑K
i=1

∥∥∥w(t)
i

∥∥∥2

and
∑K
i=1

〈
w∗i , w

(t)
i

〉
change. If there is an update in round t, by

lines 12 and 18, we always have w(t+1)
ŷt

= w
(t)
ŷt

+ (−1)ztxt, and for all i 6= ŷt, w
(t+1)
i = w

(t)
i . Therefore,

K∑
i=1

∥∥∥w(t+1)
i

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t+1)

ŷt

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t)

ŷt
+ (−1)ztxt

∥∥∥2

=

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+‖xt‖2 + (−1)zt2
〈
w

(t)
ŷt
, xt

〉
︸ ︷︷ ︸

≤0

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+‖xt‖2

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+R2 .
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The inequality that (−1)zt2
〈
w

(t)
ŷt
, xt

〉
≤ 0 is from a case analysis: if line 12 is executed, then zt = 0 and

〈
w

(t)
ŷt
, xt

〉
< 0;

otherwise line 18 is executed, in which case zt = 1 and
〈
w

(t)
ŷt
, xt

〉
≥ 0.

Hence, after U updates,
K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ R2U . (16)

Similarly, if there is an update in round t, we have

K∑
i=1

〈
w∗i , w

(t)
i

〉
=

 ∑
i∈{1,2,...,K}\{ŷt}

〈
w∗i , w

(t)
i

〉+
〈
w∗ŷt , w

(t+1)
ŷt

〉

=

 ∑
i∈{1,2,...,K}\{ŷt}

〈
w∗i , w

(t)
i

〉+
〈
w∗ŷt , w

(t)
ŷt

+ (−1)ztxt

〉

=

 K∑
i=1

〈
w∗i , w

(t)
i

〉+ (−1)zt
〈
w∗ŷt , xt

〉

≥

 K∑
i=1

〈
w∗i , w

(t)
i

〉+
γ

2
,

where the last inequality follows from a case analysis on zt and Definition 1: if zt = 0, then ŷt = yt, by Equation (4), we
have that

〈
w∗ŷt , xt

〉
≥ γ

2 ; if zt = 1, then ŷt 6= yt, by Equation (5), we have that
〈
w∗ŷt , xt

〉
≤ −γ2 .

Thus, after U updates,
K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≥ γU

2
. (17)

Applying Cauchy-Schwartz’s inequality twice, and using assumption (3), we get that

K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≤

K∑
i=1

‖w∗i ‖ ·
∥∥∥w(T+1)

i

∥∥∥
≤

√√√√ K∑
i=1

∥∥w∗i ∥∥2

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

.

Combining the above inequality with Equations (16) and (17), we get(
γU

2

)2

≤
K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ R2U .

We conclude that U ≤ 4(R/γ)2. Since U is an integer, U ≤ b4(R/γ)2c.

Applying Equation (15), we get

E[M ] ≤ (K − 1)E[U ] ≤ (K − 1)b4(R/γ)2c .

Proof of Theorem 3. Let M =
⌊

1
4 (R/γ)2

⌋
. Let V = RM+1 equipped with the standard inner product. Let

e1, e2, . . . , eM+1 be the standard orthonormal basis of V . We define vectors v1, v2, . . . , vM ∈ V where vj = R√
2
(ej +
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eM+1) for j = 1, 2, . . . ,M . Let `1, `2, . . . , `M be chosen i.i.d. uniformly at random from {1, 2, . . . ,K} and independently
of any randomness used the by algorithm A. Let T = M(K − 1). We define examples (x1, y1), (x2, y2), . . . , (xT , yT ) as
follows. For any j = 1, 2, . . . ,M and any h = 1, 2, . . . ,K − 1,

(x(j−1)(K−1)+h, y(j−1)(K−1)+h) = (vj , `j)

The norm of each example is exactly R. The examples are strongly linearly separable with margin γ. To see that, consider
w∗1 , w

∗
2 , . . . , w

∗
K ∈ V defined by

w∗i =
√

2
γ

R

 ∑
j : `j=i

ej

− √2

2

γ

R
eM+1

for i = 1, 2, . . . ,K.

For i ∈ {1, 2, . . . ,K} and j ∈ {1, 2, . . . ,M}, consider the inner product of w∗i and vj . If i = `j ,
〈
w∗i , vj

〉
= γ − γ

2 = γ
2 ;

otherwise i 6= `j , in which case
〈
w∗i , vj

〉
= 0− γ

2 = −γ2 . This means that w∗1 , w
∗
2 , . . . , w

∗
K satisfy conditions (4) and (5).

Condition (3) is satisfied since

K∑
i=1

‖w∗i ‖
2

= 2
γ2

R2

M∑
j=1

∥∥ej∥∥2
+

γ2

2R2
K‖eM+1‖2

= 2
γ2

R2
M +

γ2

2R2
K ≤ 1

2
+

1

2
= 1 .

It remains to lower bound the expected number of mistakes of A. For any j ∈ {1, 2, . . . ,M}, consider the expected
number of mistakes the algorithm makes in rounds (K − 1)(j − 1) + 1, (K − 1)(j − 1) + 2, . . . , (K − 1)j.

Define a filtration of σ-algebras
{
Bj
}M
j=0

, where Bj = σ((x1, y1, ŷ1), . . . , (x(K−1)j , y(K−1)j , ŷ(K−1)j)) for every j in
{1, 2, . . . ,M}. By Claim 2 of Daniely & Helbertal (2013), as `j is chosen uniformly from {1, . . . ,K} and independent of
Bj−1 and A’s randomness,

E

 (K−1)j∑
t=(K−1)(j−1)+1

zt

∣∣∣∣∣ Bj−1

 ≥ K − 1

2
.

This implies that

E

 (K−1)j∑
t=(K−1)(j−1)+1

zt

 ≥ K − 1

2
.

Summing over all j in {1, 2, . . . ,M},

E

(K−1)M∑
t=1

zt

 ≥ K − 1

2
·M =

K − 1

2

⌊
1

4
(R/γ)2

⌋
.

Thus there exists a particular sequence of examples for which the algorithm makes at least K−1
2

⌊
1
4 (R/γ)2

⌋
mistakes in

expectation over its internal randomization.

C. Proof of Lemma 9
Proof. Note that the polynomial p can be written as p(x) =

∑
α1,α2,...,αd

c′α1,α2,...,αd
xα1

1 xα2
2 . . . xαdd . We define c ∈ `2

using the multi-index notation as

cα1,α2,...,αd =
c′α1,α2,...,αd

2(α1+α2+···+αd)/2√(
α1+α2+···+αd
α1,α2,...,αd

)
for all tuples (α1, α2, . . . , αd) such that α1 + α2 + · · · + αd ≤ deg(p). Otherwise, we define cα1,α2,...,αd = 0. By the
definition of φ,

〈
c, φ(x)

〉
`2

= p(x).
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Whether α1 + . . .+ αd ≤ deg(p), we always have:

|cα1,α2,...,αd | ≤ 2(α1+α2+···+αd)/2|c′α1,α2,...,αd
| ≤ 2deg(p)/2|c′α1,α2,...,αd

| .

Therefore,

‖c‖`2 ≤ 2deg(p)/2

√ ∑
α1,α2,...,αd

(c′α1,α2,...,αd
)2 = 2deg(p)/2‖p‖ .

D. Proofs of Theorems 7 and 8
In this section, we follow the construction of Klivans & Servedio (2008) (which in turn uses the constructions of Beigel
et al. (1995)) to establish two polynomials of low norm, such that it takes large positive values in

m⋂
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
and takes large negative values in

m⋃
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
.

We improve the norm bound analysis of Klivans & Servedio (2008) in two aspects:

1. Our upper bounds on the norm of the polynomials do not have any dependency on the dimensionality d.

2. We remove the requirement that the fractional part of input x must be above some threshold in Theorem 8.

A lot of the proof details are similar to those of Klivans & Servedio (2008); nevertheless, we provide a self-contained full
proof here.

For the proofs of the theorems we need several auxiliary results.

Lemma 12 (Simple inequality). For any real numbers b1, b2, . . . , bn, n∑
i=1

bi

2

≤ n
n∑
i=1

b2i .

Proof. The lemma follows from Cauchy-Schwartz inequality applied to vectors (b1, b2, . . . , bn) and (1, 1, . . . , 1).

Lemma 13 (Bound on binomial coefficients). For any integers n, k such that n ≥ k ≥ 0,(
n

k

)
≤ (n− k + 1)k .

Proof. If k = 0, the inequality trivially holds. For the rest of the proof we can assume k ≥ 1. We write the binomial
coefficient as (

n

k

)
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1

=
n

k
· n− 1

k − 1
· · · n− k + 1

1
.

We claim that
n

k
≤ n− 1

k − 1
≤ · · · ≤ n− k + 1

1
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from which the lemma follows by upper bounding all the fractions by n − k + 1. It remains to prove that for any j =
0, 1, . . . , k − 1,

n− j + 1

k − j + 1
≤ n− j
k − j

.

Multiplying by the (positive) denominators, we get an equivalent inequality

(n− j + 1)(k − j) ≤ (n− j)(k − j + 1) .

We multiply out the terms and get

nk − kj + k − nj + j2 − j ≤ nk − nj + n− kj + j2 − j .

We cancel common terms and get an equivalent inequality k ≥ n, which holds by the assumption.

Lemma 14 (Properties of the norm of polynomials).

1. Let p1, p2, . . . , pn be multivariate polynomials and let p(x) =
∏n
j=1 pj(x) be their product. Then, ‖p‖2 ≤

n
∑n
j=1 deg(pj)

∏n
j=1

∥∥pj∥∥2
.

2. Let q be a multivariate polynomial of degree at most s and let p(x) = (q(x))n. Then,‖p‖2 ≤ nns‖q‖2n.

3. Let be p1, p2, . . . , pn be multivariate polynomials. Then,
∥∥∥∑n

j=1 pj

∥∥∥ ≤ ∑n
j=1

∥∥pj∥∥. Consequently,
∥∥∥∑n

j=1 pj

∥∥∥2

≤

n
∑n
j=1

∥∥pj∥∥2
.

Proof. Using multi-index notation we can write any multivariate polynomial p as

p(x) =
∑
A

cAx
A

where A = (α1, α2, . . . , αd) is a multi-index (i.e. a d-tuple of non-negative integers), xA = xα1
1 xα2

2 . . . xαdd is a monomial
and cA = cα1,α2,...,αd is the corresponding real coefficient. The sum is over a finite subset of d-tuples of non-negative
integers. Using this notation, the norm of a polynomial p can be written as

‖p‖ =

√∑
A

(cA)2 .

For a multi-index A = (α1, α2, . . . , αd) we define its 1-norm as‖A‖1 = α1 + α2 + · · ·+ αd.

To prove the part 1, we express pj as

pj(x) =
∑
Aj

c
(j)
Aj
xAj .

Since p(x) =
∏n
i=1 pj(x), the coefficients of its expansion p(x) =

∑
A cAx

A are

cA =
∑

(A1,A2,...,An)
A1+A2+···+An=A

c
(1)
A1
c
(2)
A2
· · · c(n)

An
.
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Therefore,

‖p‖2 =
∑
A

(cA)2

=
∑
A

 ∑
(A1,A2,...,An)

A1+A2+···+An=A

c
(1)
A1
c
(2)
A2
· · · c(n)

An


2

=
∑
A

 ∑
(A1,A2,...,An)

A1+A2+···+An=A

n∏
j=1

c
(j)
Aj


2

and

n∏
i=1

‖pi‖2 =

n∏
i=1

∑
Ai

(c
(i)
Ai

)2


=

∑
(A1,A2,...,An)

n∏
j=1

(c
(j)
Aj

)2

=
∑

(A1,A2,...,An)

 n∏
j=1

c
(j)
Aj

2

=
∑
A

∑
(A1,A2,...,An)

A1+A2+···+An=A

 n∏
j=1

c
(j)
Aj

2

where in both cases the outer sum is over multi-indices A such that ‖A‖1 ≤ deg(p). Lemma 12 implies that for any
multi-index A,  ∑

(A1,A2,...,An)
A1+A2+···+An=A

n∏
j=1

c
(j)
Aj


2

≤MA

∑
(A1,A2,...,An)

A1+A2+···+An=A

 n∏
j=1

c
(j)
Aj

2

.

where MA is the number of n-tuples (A1, A2, . . . , An) such that A1 +A2 + · · ·+An = A.

To finish the proof, it is sufficient to prove that MA ≤ ndeg(p) for any A such that‖A‖1 ≤ deg(p). To prove this inequality,
consider a multi-index A = (α1, α2, . . . , αd) and consider its i-th coordinate αi. In order for A1 +A2 + · · ·+An = A to
hold, the i-th coordinates of A1, A2, . . . , An need to sum to αi. There are exactly

(
αi+n−1

αi

)
possibilities for the choice of

i-th coordinates of A1, A2, . . . , An. The total number of choices is thus

MA =

d∏
i=1

(
αi + n− 1

αi

)
.

Using Lemma 13, we upper bound it as

MA ≤
d∏
i=1

nαi = n‖A‖1 ≤ ndeg(p) .

Part 2 follows from the part 1 by setting p1 = p2 = . . . pn = q.



Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case

The first inequality of part 3 follows from triangle inequality in Euclidean spaces, by viewing the polynomials p =∑
A cAx

A as multidimensional vectors (cA), and ‖p‖ = ‖(cA)‖.

For the second inequality, by Lemma 12, we have∥∥∥∥∥∥
n∑
j=1

pj

∥∥∥∥∥∥
2

=


∥∥∥∥∥∥
n∑
j=1

pj

∥∥∥∥∥∥


2

≤

 n∑
j=1

∥∥pj∥∥
2

≤ n
n∑
j=1

∥∥pj∥∥2
.

D.1. Proof of Theorem 7

To construct the polynomial pwe use Chebyshev polynomials of the first kind. Chebyshev polynomials of the fist kind form
an infinite sequence of polynomials T0(z), T1(z), T2(z), . . . of single real variable z. They are defined by the recurrence

T0(z) = 1 ,

T1(z) = z ,

Tn+1(z) = 2zTn(z)− Tn−1(z), for n ≥ 1.

Chebyshev polynomials have a lot of interesting properties. We will need properties listed in Proposition 15 below. Inter-
ested reader can learn more about Chebyshev polynomials from the book by Mason & Handscomb (2002).

Proposition 15 (Properties of Chebyshev polynomials). Chebyshev polynomials satisfy

1. deg(Tn) = n for all n ≥ 0.

2. If n ≥ 1, the leading coefficient of Tn(z) is 2n−1.

3. Tn(cos(θ)) = cos(nθ) for all θ ∈ R and all n ≥ 0.

4. Tn(cosh(θ)) = cosh(nθ) for all θ ∈ R and all n ≥ 0.

5. |Tn(z)| ≤ 1 for all z ∈ [−1, 1] and all n ≥ 0.

6. Tn(z) ≥ 1 + n2(z − 1) for all z ≥ 1 and all n ≥ 0.

7. ‖Tn‖ ≤ (1 +
√

2)n for all n ≥ 0

Proof of Proposition 15. The first two properties can be easily proven by induction on n using the recurrence.

We prove the third property by induction on n. Indeed, by definition

T0(cos(θ)) = 1 = cos(0θ) and T1(cos(θ)) = cos(θ) .

For n ≥ 1, we have

Tn+1(cos(θ)) = 2 cos(θ)Tn(cos(θ))− Tn−1(cos(θ))

= 2 cos(θ) cos(nθ)− cos((n− 1)θ)) ,

where the last step follow by induction hypothesis. It remains to show that the last expression equals cos((n+ 1)θ). This
can be derived from the trigonometric formula

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β) .

By substituting α = nθ and β = θ, we get two equations

cos((n+ 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ) ,

cos((n− 1)θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ) .
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Summing them yields
cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos(nθ) cos(θ)

which finishes the proof.

The fourth property has the similar proof as the third property. It suffices to replace cos and sin with cosh and sinh
respectively.

The fifth property follows from the third property. Indeed, for any z ∈ [−1, 1] there exists θ ∈ R such that cos θ = z.
Thus, |Tn(z)| = |Tn(cos(θ))| = | cos(nθ)| ≤ 1.

The sixth property is equivalent to

Tn(cosh(θ)) ≥ 1 + n2(cosh(θ)− 1) for all θ ≥ 0,

since cosh(θ) = eθ+e−θ

2 is an even continuous function that maps R onto [1,+∞), is strictly decreasing on (−∞, 0], and
is strictly increasing on [0,∞). Using the fourth property the last inequality is equivalent to

cosh(nθ) ≥ 1 + n2(cosh(θ)− 1) for all θ ≥ 0.

For θ = 0, both sides are equal to 1. Thus, it is sufficient to prove that the derivative of the left hand side is greater or equal
to the derivative of the right hand side. Recalling that [cosh(θ)]′ = sinh(θ), this means that we need to show that

sinh(nθ) ≥ n sinh(θ) for all θ ≥ 0.

To prove this inequality we use the summation formula

sinh(α+ β) = sinh(α) cosh(β) + sinh(β) cosh(β) .

If α, β are non-negative then sinh(α), sinh(β) are non-negative and cosh(α), cosh(β) ≥ 1. Hence,

sinh(α+ β) ≥ sinh(α) + sinh(β) for any α, β ≥ 0.

This implies that (using induction on n) that sinh(nθ) ≥ n sinh(θ) for all θ ≥ 0.

We verify the seventh property by induction on n. For n = 0 and n = 1 the inequality trivially holds, since‖T0‖ =‖T1‖ =
1. For n ≥ 1, since Tn+1(z) = 2zTn(z)− Tn−1(z),

‖Tn+1‖ ≤ 2‖Tn‖+‖Tn−1‖

≤ 2(1 +
√

2)n + (1 +
√

2)n−1

= (1 +
√

2)n−1(2(1 +
√

2) + 1)

= (1 +
√

2)n−1(3 + 2
√

2)

= (1 +
√

2)n−1(1 +
√

2)2

= (1 +
√

2)n+1 .

We are now ready to prove Theorem 7. Let r =
⌈
log2(2m)

⌉
and s =

⌈√
1
γ

⌉
. We define the polynomial p : Rd → R as

p(x) = m+
1

2
−

m∑
i=1

(
Ts(1− 〈vi, x〉)

)r
.

It remains to show that p has properties 1–5.

To verify the first property notice that if x ∈ Rd satisfies ‖x‖ ≤ 1 and 〈vi, x〉 ≥ γ then since ‖vi‖ ≤ 1 we have
〈vi, x〉 ∈ [0, 1]. Thus, Ts(1− 〈vi, x〉) and

(
Ts(1− 〈vi, x〉)

)r
lie in the interval [−1, 1]. Therefore,

p(x) ≥ m+
1

2
−m ≥ 1

2
.
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To verify the second property consider any x ∈
⋃m
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
. Clearly, ‖x‖ ≤ 1 and there

exists at least one i ∈ {1, 2, . . . ,m} such that 〈vi, x〉 ≤ −γ. Therefore, 1 − 〈vi, x〉 ≥ 1 + γ and Proposition 15 (part 6)
imply that

Ts(1− 〈vi, x〉) ≥ 1 + s2γ ≥ 2

and thus (
Ts(1− 〈vi, x〉)

)r ≥ 2r ≥ 2m .

On the other hand for any j ∈ {1, 2, . . . ,m}, we have
〈
vj , x

〉
∈ [−1, 1] and thus 1 −

〈
vj , x

〉
lies in the interval [0, 2].

According to Proposition 15 (parts 5 and 6), Ts(1−
〈
vj , x

〉
) ≥ −1. Therefore,

p(x) = m+
1

2
−
(
Ts(1− 〈vi, x〉)

)r − ∑
j : 1≤j≤m

j 6=i

(
Ts(1−

〈
vj , x

〉
)
)r

≤ m+
1

2
− 2m+ (m− 1) ≤ −1

2
.

The third property follows from the observation that the degree of p is the same as the degree of any one of the terms(
Ts(1− 〈vi, x〉)

)r
which is r · s.

To prove the fourth property, we need to upper bound the norm of p. Let fi(x) = 1− 〈vi, x〉, let gi(x) = Ts(1− 〈vi, x〉)
and let hi(x) = (Ts(1− 〈vi, x〉))r. We have

‖fi‖2 = 1 +‖vi‖2 ≤ 1 + 1 = 2 .

Let Ts(z) =
∑s
j=0 cjz

j be the expansion of s-th Chebyshev polynomial. Then,

‖gi‖2 =

∥∥∥∥∥∥
s∑
j=0

cj(fi)
j

∥∥∥∥∥∥
2

≤ (s+ 1)

s∑
j=0

∥∥∥cj(fi)j∥∥∥2

(by part 3 of Lemma 14)

= (s+ 1)

s∑
j=0

(cj)
2
∥∥∥(fi)

j
∥∥∥2

≤ (s+ 1)

s∑
j=0

(cj)
2jj‖fi‖2j (by part 2 of Lemma 14)

≤ (s+ 1)

s∑
j=0

(cj)
2jj22j

≤ (s+ 1)ss22s
s∑
j=0

(cj)
2

= (s+ 1)ss22s‖Ts‖2

= (s+ 1)ss22s(1 +
√

2)2s (by part 7 of Proposition 15)

= (s+ 1)
(

4(1 +
√

2)2s
)s

≤
(

8(1 +
√

2)2s
)s

≤ (47s)
s
.
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where we used that s+ 1 ≤ 2s for any non-negative integer s. Finally,

‖p‖ ≤ m+
1

2
+

m∑
i=1

∥∥(gi)
r
∥∥

= m+
1

2
+

m∑
i=1

√∥∥(gi)r
∥∥2

≤ m+
1

2
+

m∑
i=1

√
rrs‖gi‖2r

≤ m+
1

2
+mrrs/2 (47s)

rs/2

= m+
1

2
+m (47rs)

rs/2
.

We can further upper bound the last expression by using that m ≤ 1
22r. Since r, s ≥ 1,

‖p‖ ≤ m+
1

2
+m (47rs)

rs/2

≤ 1

2
2r +

1

2
+

1

2
2r (47rs)

rs/2

≤ 2r +
1

2
2r (47rs)

rs/2

= 2r
(

1 +
1

2
(47rs)

rs/2

)
= 2r (47rs)

rs/2

≤ 4rs/2 (47rs)
rs/2

≤ (188rs)
rs/2

.

Substituting for r and s finishes the proof.

D.2. Proof of Theorem 8

We define several univariate polynomials

Pn(z) = (z − 1)

n∏
i=1

(z − 2i)2, for n ≥ 0,

An,k(z) = (Pn(z))k − (Pn(−z))k, for n, k ≥ 0,

Bn,k(z) = −(Pn(z))k − (Pn(−z))k, for n, k ≥ 0.

We define the polynomial q : Rd → R as

q(x) =


m∑
i=1

As,r

(
〈vi, x〉
γ

) ∏
j : 1≤j≤m

j 6=i

Bs,r

(〈
vj , x

〉
γ

)−
(
m− 1

2

) m∏
j=1

Bs,r

(〈
vj , x

〉
γ

)
.

Finally, we define p(x) = 2−s(s+1)rm+1q(x). We are going to show that this polynomial p satisfies the required properties.

For convenience we define univariate rational function

Sn,k(z) =
An,k(z)

Bn,k(z)
, for n, k ≥ 0,
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and a multivariate rational function

Q(x) =

 m∑
i=1

Ss,r

(
〈vi, x〉
γ

)− (m− 1

2

)
.

It is easy to verify that

q(x) = Q(x)

m∏
j=1

Bs,r

(〈
vj , x

〉
γ

)
.

Lemma 16 (Properties of Pn).

1. If z ∈ [0, 1] then Pn(−z) ≤ Pn(z) ≤ 0.

2. If z ∈ [1, 2n] then 0 ≤ 4Pn(z) ≤ −Pn(−z).

3. If z ≥ 0 then −Pn(−z) ≥ 2n(n+1).

Proof. To prove the first part, note that Pn(z) and Pn(−z) are non-positive for z ∈ [0, 1]. We can write Pn(z)
Pn(−z) as a

product of n+ 1 non-negative fractions

Pn(z)

Pn(−z)
=

1− z
1 + z

n∏
i=1

(z + 2i)2

(z − 2i)2
.

The first part follows from the observation that each fraction is upper bounded by 1.

To prove the second part, notice that Pn(z) is non-negative and Pn(−z) is non-positive for any z ∈ [1, 2n]. Now, fix
z ∈ [1, 2n] and let j ∈ {1, 2, . . . , n} be such that 2j−1 ≤ z ≤ 2j . This implies that (z + 2j)2 ≥ (2j)2 ≥ 4(z − 2j)2. We
can write Pn(z)

−Pn(−z) as a product of n+ 1 non-negative fractions

Pn(z)

−Pn(−z)
=
z − 1

z + 1
· (z − 2j)2

(z + 2j)2

∏
i : 1≤i≤n

i 6=j

(z − 2i)2

(z + 2i)2
.

The second part follows from the observation that the second fraction is upper bounded by 1/4 and all other fractions are
upper bounded by 1.

The third part follows from

−Pn(−z) = (1 + z)

n∏
i=1

(z + 2i)2 ≥
n∏
i=1

22i = 2n(n+1) .

Lemma 17 (Properties of Sn,r and Bn,r). Let n,m be non-negative integers. Let r = 2
⌈

1
4 log2(4m+ 1)

⌉
+ 1. Then,

1. If z ∈ [1, 2n] then Sn,r(z) ∈ [1, 1 + 1
2m ].

2. If z ∈ [−2n,−1] then Sn,r(z) ∈ [−1− 1
2m ,−1].

3. If z ∈ [−1, 1] then |Sn,r(z)| ≤ 1.

4. If z ∈ [−2n, 2n] then Bn,r(z) ≥
(

1− 1
4m+1

)
2n(n+1)r.

Proof. Note that Bn,r(z) is an even function and An,r(z) is an odd function. Therefore, Sn,r(z) is odd. Also notice that r
is an odd integer.
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1. Observe that Sn,r(z) can be written as

Sn,r(z) =

1 +

(
− Pn(z)

Pn(−z)

)r
1−

(
− Pn(z)

Pn(−z)

)r =
1 + c

1− c

where c =
(
− Pn(z)
Pn(−z)

)r
. Since z ∈ [1, 2n], by part 2 of Lemma 16, c ∈ [0, 1

4r ]. Since r ≥ 1
2 log2(4m + 1), this

means that c ∈ [0, 1
4m+1 ]. Thus, Sn,r(z) = 1+c

1−c ∈ [1, 1 + 1
2m ].

2. Since Sn,r(z) is odd, the statement follows from part 1.

3. Recall that Sn,r(z) can be written as

Sn,r(z) =
1 + c

1− c

where c =
(
− Pn(z)
Pn(−z)

)r
. If z ∈ [0, 1], by part 1 of Lemma 16 and the fact that r is odd, c ∈ [−1, 0], and thus,

Sn,r(z) = 1+c
1−c ∈ [0, 1]. Since Sn,r(z) is odd, for z ∈ [−1, 0], Sn,r(z) ∈ [−1, 0].

4. Since Bn,r(z) is even, we can without loss generality assume that z ≥ 0. We consider two cases.

Case z ∈ [0, 1]. Since r is odd and Pn(z) is non-positive,

Bn,r(z) = −(Pn(z))r +
(
−Pn(−z)

)r
≥
(
−Pn(−z)

)r ≥ 2n(n+1)r

≥ 2n(n+1)r

(
1− 1

4m+ 1

)
.

where the second last inequality follows from part 3 of Lemma 16.

Case z ∈ [1, 2n]. Since r is odd,

Bn,r(z) =
(
−Pn(−z)

)r (
1−

(
− Pn(z)

Pn(−z)

)r)
=
(
−Pn(−z)

)r
(1− c)

where c =
(
− Pn(z)
Pn(−z)

)r
. Since z ∈ [1, 2n], by part 2 of Lemma 16, c ∈ [0, 1

4r ]. By the definition of r that means that

c ∈ [0, 1
4m+1 ]. Thus,

Bn,r(z) ≥
(
−Pn(−z)

)r (
1− 1

4m+ 1

)
≥ 2n(n+1)r

(
1− 1

4m+ 1

)
.

where the last inequality follows from part 3 of Lemma 16.

Lemma 18 (Properties of Q(x)). The rational function Q(x) satisfies

1. Q(x) ≥ 1
2 for all x ∈

m⋂
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
,

2. Q(x) ≤ − 1
2 for all x ∈

m⋃
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
.
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Proof. To prove part 1, consider any x ∈
⋂m
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
. Then, 〈vi,x〉γ ∈ [1, 1

γ ]. By part 1 of

Lemma 17, Ss,r
(
〈vi,x〉
γ

)
∈ [1, 1 + 1

2m ] and in particular Ss,r
(
〈vi,x〉
γ

)
≥ 1. Thus,

Q(x) =

 m∑
i=1

Ss,r

(
〈vi, x〉
γ

)− (m− 1/2)

≥ m− (m− 1/2)

= 1/2 .

To prove part 2, consider any x ∈
⋃m
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
. Observe that 〈vi,x〉γ ∈ [− 1

γ ,
1
γ ]. Consider

Ss,r

(
〈vi,x〉
γ

)
for any i ∈ {1, 2, . . . ,m}. Parts 1,2, and 3 of Lemma 17 and the fact 1/γ ≤ 2s imply that Ss,r

(
〈vi,x〉
γ

)
≤

1 + 1
2m for all i ∈ {1, 2, . . . ,m}. By the choice of x, there exists j ∈ {1, 2, . . . ,m} such that

〈
vj , x

〉
≤ −γ. Part 2 of

Lemma 17 implies that Ss,r

(
〈vj ,x〉
γ

)
∈ [−1− 1

2m ,−1]. Thus,

Q(x) =

 m∑
i=1

Ss,r

(
〈vi, x〉
γ

)− (m− 1

2

)

= Ss,r

(〈
vj , x

〉
γ

)
+

 ∑
i : 1≤i≤m

i 6=j

Ss,r

(
〈vi, x〉
γ

)−
(
m− 1

2

)

≤ −1 + (m− 1)

(
1 +

1

2m

)
−
(
m− 1

2

)
≤ −1/2 .

To prove parts 1 and 2 of Theorem 8 first note that part 4 of Lemma 17 implies that for any x such that ‖x‖ ≤ 1,
Bs,r

(
〈vi,x〉
γ

)
is positive. Thus p(x) and Q(x) have the same sign on the unit ball. Consider any x in either

m⋂
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
or in

m⋃
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
. Lemma 18 states that |Q(x)| ≥ 1/2

and the sign depends on which of the two sets x lies in. Since signs of Q(x) and p(x) are the same, it remains to show that
|p(x)| ≥ 1

4 · 2
s(s+1)rm. Indeed,

|p(x)| = 2−s(s+1)rm+1 · |Q(x)|
m∏
j=1

Bs,r

(〈
vj , x

〉
γ

)

≥ 2−s(s+1)rm+1 · |Q(x)|

(
2s(s+1)r

(
1− 1

4m+ 1

))m
≥ |Q(x)| ≥ 1

2
(Lemma 18) .

where we used that
(

1− 1
4m+1

)m
≥ e− 1

4 ≥ 1/2.

To prove part 3 of Theorem 8 note that deg(Ps) = 2s+1. Thus, deg(As,r) and deg(Bs,r) are at most (2s+1)r. Therefore,
deg(p) ≤ (2s+ 1)rm.

It remains to prove part 4 of Theorem 8. For any i ∈ {0, 1, 2, . . . , s} and any v ∈ Rd such that‖v‖ ≤ 1 define multivariate
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polynomials

fi,v(x) =
〈v, x〉
γ
− 2i ,

qv(x) = Ps

(
〈v, x〉
γ

)
,

av(x) = As,r

(
〈v, x〉
γ

)
,

bv(x) = Bs,r

(
〈v, x〉
γ

)
.

Note that

q(x) =


m∑
i=1

avi(x)
∏

j : 1≤j≤m
j 6=i

bvj (x)

−
(
m− 1

2

) n∏
j=1

bvj (x) .

We bound the norms of these polynomials. We have∥∥fi,v∥∥2
=‖v‖2 /γ2 + 22i ≤ 2 · 22s .

where we used that 1/γ ≤ 2s and‖v‖ ≤ 1. Since qv(x) = fi,v(
〈v,x〉
γ )

∏s
i=1

(
fi,v(

〈v,x〉
γ )

)2

, using part 1 of Lemma 14 we
upper bound the norm of qv as

‖qv‖2 ≤ (2s+ 1)2s+1
∥∥f0,v

∥∥2
s∏
i=1

∥∥fi,v∥∥4

≤ (2s+ 1)2s+1(2 · 22s)2s+1 .

Using parts 3 and 2 of Lemma 14 we upper bound the norm of av as

‖av‖2 ≤ 2
∥∥(qv)

r
∥∥2

+ 2
∥∥(q−v)

r
∥∥2

≤ 2rr(2s+1)(‖qv‖2)r + 2rr(2s+1)(‖q−v‖2)r

≤ 4rr(2s+1)
(

(2s+ 1)2s+1(2 · 2s)2s+1
)r

= 4
(

22sr(4s+ 2)
)(2s+1)r

.

The same upper bound holds for‖bv‖2. Therefore,

‖q‖ ≤


m∑
i=1

∥∥∥∥∥∥∥∥∥avi
∏

j : 1≤j≤m
j 6=i

bvj

∥∥∥∥∥∥∥∥∥

+

(
m− 1

2

)∥∥∥∥∥∥
m∏
j=1

bvj

∥∥∥∥∥∥

≤


m∑
i=1

m(s+1/2)rm‖avi‖
∏

j : 1≤j≤m
j 6=i

∥∥bvj∥∥


+

(
m− 1

2

)
m(s+1/2)rm

m∏
j=1

∥∥bvj∥∥
≤ (2m− 1/2)m(s+1/2)rm

(
4
(

22sr(4s+ 2)
)(2s+1)r

)m/2
= (2m− 1/2)2m ·

(
22srm(4s+ 2)

)(s+1/2)rm

.
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Finally,‖p‖ = 2−s(s+1)rm+1‖q‖ ≤ (4m− 1)2m ·
(
2srm(4s+ 2)

)(s+1/2)rm
. The theorem follows.

E. Proof of Theorem 5
Proof of Theorem 5. Since the examples (x1, y1), (x2, y2), . . . , (xT , yT ) are weakly linearly separable with margin γ,,
there are vectors w1, w2, . . . , wK satisfying (1) and (2).

Fix any i ∈ {1, 2, . . . ,K}. Consider the K − 1 vectors (wi − wj)/2 for j ∈ {1, 2, . . . ,K} \ {i}. Note that the vectors
have norm at most 1. We consider two cases regarding the relationship between γ1 and γ2.

Case 1: γ1 ≥ γ2. In this case, Theorem 7 implies that there exist a multivariate polynomial pi : Rd → R,

deg(pi) = dlog2(2K − 2)e ·

⌈√
2

γ

⌉
,

such that all examples x in R+
i (resp. R−i ) satisfy pi(x) ≥ 1/2 (resp. pi(x) ≤ −1/2). Therefore, for all t = 1, 2, . . . , T , if

yt = i then pi(xt) ≥ 1/2, and if yt 6= i then pi(xt) ≤ −1/2, and

‖pi‖ ≤

188dlog2(2K − 2)e ·

⌈√
2

γ

⌉ 1
2 dlog2(2K−2)e·

⌈√
2
γ

⌉
.

By Lemma 9, there exists ci ∈ `2 such that
〈
ci, φ(x)

〉
= pi(x), and

‖ci‖`2 ≤

376dlog2(2K − 2)e ·

⌈√
2

γ

⌉ 1
2 dlog2(2K−2)e·

⌈√
2
γ

⌉
.

Define vectors ui ∈ `2 as

ui =
1√
K
· ci(

376dlog2(2K − 2)e ·
⌈√

2
γ

⌉) 1
2 dlog2(2K−2)e·

⌈√
2
γ

⌉ .

Then, ‖u1‖2 +‖u2‖2 + · · · +‖uK‖2 ≤ 1. Furthermore, for all t = 1, 2, . . . , T ,
〈
uyt , φ(xt)

〉
≥ γ1 and for all j ∈

{1, 2, . . . ,K} \ {yt},
〈
uj , φ(xt)

〉
≤ −γ1. In other words, (φ(x1), y1), (φ(x2), y2), . . . , (φ(xT ), yT ) are strongly linearly

separable with margin γ1 = max{γ1, γ2}.

Case 2: γ1 < γ2. In this case, Theorem 8 implies that there exist a multivariate polynomial qi : Rd → R,

deg(qi) = (2s+ 1)r(K − 1) ,

such that all examples x in R+
i (resp. R−i ) satisfy qi(x) ≥ 1/2 (resp. qi(x) ≤ −1/2), and

‖qi‖ ≤ (4K − 5)2K−1 ·
(
2sr(K − 1)(4s+ 2)

)(s+1/2)r(K−1)
.

Recall that here,

r = 2

⌈
1

4
log2(4K − 3)

⌉
+ 1 and s =

⌈
log2(1/γ)

⌉
.

Therefore, for all t = 1, 2, . . . , T , if yt = i then qi(xt) ≥ 1/2, and if yt 6= i then qi(xt) ≤ −1/2.

By Lemma 9, there exists c′i ∈ `2 such that
〈
c′i, φ(x)

〉
= pi(x), and∥∥c′i∥∥`2 ≤ (4K − 5)2K−1 ·
(

2s+1r(K − 1)(4s+ 2)
)(s+1/2)r(K−1)

.
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Define vectors u′i ∈ `2 as

u′i =
c′i ·
(
2s+1r(K − 1)(4s+ 2)

)−(s+1/2)r(K−1)

√
K(4K − 5)2K−1

.

Then,
∥∥u′1∥∥2

+
∥∥u′2∥∥2

+ · · · +
∥∥u′K∥∥2 ≤ 1. Furthermore, for all t = 1, 2, . . . , T ,

〈
u′yt , φ(xt)

〉
≥ γ2 and for all j ∈

{1, 2, . . . ,K} \ {yt},
〈
u′j , φ(xt)

〉
≤ −γ2. In other words, (φ(x1), y1), (φ(x2), y2), . . . , (φ(xT ), yT ) are strongly linearly

separable with margin γ2 = max{γ1, γ2}.

In summary, the examples are strongly linearly separable with margin γ′ = max{γ1, γ2}. Finally, observe that for any
t = 1, 2, . . . , T ,

k(xt, xt) =
1

1− 1
2‖xt‖

2 ≤ 2 .

F. Supplementary Materials for Section 6
Figures 6, 7, and 8 show the final decision boundaries learned by each algorithm on the two datasets (Figures 4 and 5),
after T = 5× 106 rounds. We used the version of Banditron with exploration rate of 0.02, which explores the most.

(a) Strongly separable case (b) Weakly separable case

Figure 6. BANDITRON’s final decision boundaries

(a) Strongly separable case (b) Weakly separable case

Figure 7. Algorithm 1’s final decision boundaries
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(a) Strongly separable case (b) Weakly separable case

Figure 8. Algorithm 2 (with rational kernel)’s final decision boundaries

G. Nearest neighbor algorithm

Algorithm 4 NEAREST-NEIGHBOR ALGORITHM

Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).

1 Initialize S ← ∅
2 for t = 1, 2, . . . , T : do
3 if min(x,y)∈S‖xt − x‖ ≤ γ then
4 Find nearest neighbor

(x̃, ỹ) = argmin(x,y)∈S‖xt − x‖
5 Predict ŷt = ỹ

6 else
7 Predict ŷt ∼ Uniform({1, 2, . . . ,K})
8 Receive feedback zt = 1 [ŷt 6= yt]
9 if zt = 0 then

10 S ← S ∪
{

(xt, ŷt)
}

In this section we analyze NEAREST-NEIGHBOR ALGORITHM shown as Algorithm 4. The algorithm is based on the
obvious idea that, under the weak linear separability assumption, two examples that are close to each other must have the
same label. The lemma below formalizes this intuition.
Lemma 19 (Non-separation lemma). Let (V, 〈·, ·〉) be a vector space, K be a positive integer and let γ be a positive
real number. Suppose (x1, y1), (x2, y2), . . . , (xT , yT ) ∈ V × {1, 2, . . . ,K} are labeled examples that are weakly linearly
separable with margin γ. For i, j in {1, 2, . . . , T}, if

∥∥xi − xj∥∥2
≤ γ then yi = yj .

Proof. Suppose for the sake on contradiction that yi 6= yj . By Definition 1, there exists vectors w1, . . . , wK such that
conditions (1) and (2) are satisfied.

Specifically, 〈
wyi − wyj , xi

〉
≥ γ ,〈

wyj − wyi , xj
〉
≥ γ .

This implies that 〈
wyi − wyj , xi − xj

〉
≥ 2γ .

On the other hand, 〈
wyi − wyj , xi − xj

〉
≤
∥∥wyi − wyj∥∥ ·∥∥xi − xj∥∥ ≤ √2γ

where the first inequality is from Cauchy-Schwartz inequality, the second inequality is from that
∥∥wyi − wyj∥∥ ≤√

2(
∥∥wyi∥∥2

+
∥∥wyj∥∥2

) ≤
√

2 and our assumption on xi and xj . Therefore, we reach a contradiction.
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We also need to define several notions. A subset S ⊆ Rd is called a γ-packing if for any x, x′ ∈ S such that x 6= x′ we
have

∥∥x− x′∥∥ > γ. The following lemma is standard. Also recall that B(x,R) = {x′ ∈ Rd :
∥∥x′ − x∥∥ ≤ R} denotes the

closed ball of radius R centered a point x. For set S ⊆ Rd, denote by Vol(S) the volume of S.

Lemma 20 (Size of γ-packing). Let γ and R be positive real numbers. If S ⊆ B(0, R) ⊆ Rd is a γ-packing then

|S| ≤
(

2R

γ
+ 1

)d
.

Proof. If S is a γ-packing then {B(x, γ/2) : x ∈ S} is a collection of disjoint balls of radius γ that fit into B(0, R+γ/2).
Thus,

|S| ·Vol(B(0, γ/2)) ≤ Vol(B(0, R+ γ/2))

Hence,

|S| ≤ Vol(B(0, R+ γ/2))

Vol(B(0, γ/2))
=

(
R+ γ/2

γ/2

)d
=

(
2R

γ
+ 1

)d
.

Theorem 21 (Mistake upper bound for NEAREST-NEIGHBOR ALGORITHM). Let K and d be positive integers and let
γ,R be a positive real numbers. Suppose (x1, y1), . . . , (xT , yT ) ∈ Rd × {1, 2, . . . ,K} are labeled examples that are
weakly linearly separable with margin γ and satisfy‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R. Then, the expected number of mistakes
made by Algorithm 4 is at most

(K − 1)

(
2R

γ
+ 1

)d
.

Proof. Let M be the number of mistakes made by the algorithm. Let bt be the indicator that line 7 is executed at time step
t, i.e. we fall into the “else” case. Note that if bt = 0, then by Lemma 19, the prediction ŷt must equal yt, i.e. zt = 0.
Therefore, M =

∑T
t=1 zt =

∑T
t=1 btzt. Let U =

∑T
t=1 bt(1− zt). Clearly, |S| = U . Since S ⊆ B(0, R) is a γ-packing,

U = |S| ≤ ( 2R
γ + 1)d.

Note that when bt = 1, ŷt is chosen uniformly at random, we have

E[zt | bt = 1] =
K − 1

K
.

Therefore,

E[M ] = E

 T∑
t=1

btzt

 =
K − 1

K
E

 T∑
t=1

bt

 .

On the other hand,

E[U ] = E

 T∑
t=1

bt(1− zt)

 =
1

K
E

 T∑
t=1

bt

 .

Therefore,

E[M ] = (K − 1)E[U ] ≤ (K − 1)

(
2R

γ
+ 1

)d
.
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H. NP-hardness of the weak labeling problem
Any algorithm for the bandit setting collects information in the form of so called strongly labeled and weakly labeled
examples. Strongly-labeled examples are those for which we know the class label. Weakly labeled example is an example
for which we know that class label can be anything except for a particular one class.

A natural strategy for each round is to find vectors w1, w2, . . . , wK that linearly separate the examples seen in the pre-
vious rounds and use the vectors to predict the label in the next round. More precisely, we want to find both the vectors
w1, w2, . . . , wK and label for each example consistent with its weak and/or strong labels such that w1, w2, . . . , wK linearly
separate the labeled examples. We show this problem is NP-hard even for K = 3.

Clearly, the problem is at least as hard as the decision version of the problem where the goal is to determine if such vectors
and labeling exist. We show that this problem is NP-complete.

We use symbols [K] = {1, 2, . . . ,K} for strong labels and [K] = {1, 2, . . . ,K} for weak labels. Formally, the weak
labeling problem can be described as below:

Weak Labeling

Given: Feature-label pairs (x1, y1), (x2, y2), . . . , (xT , yT ) in {0, 1}d × {1, 2, . . . ,K, 1, 2, . . . ,K}.
Question: Do there exist w1, w2, . . . , wK ∈ Rd such that for all t = 1, 2, . . . , T ,

yt ∈ [K] =⇒ ∀i ∈ [K] \ {yt}
〈
wyt , xt

〉
> 〈wi, xt〉 ,

and

yt ∈ [K] =⇒ ∃i ∈ [K] 〈wi, xt〉 >
〈
wyt , xt

〉
?

The hardness proof is based on a reduction from the set splitting problem, which is proven to be NP-complete by Lovász
(Garey & Johnson, 1979), to our weak labeling problem. The reduction is adapted from (Blum & Rivest, 1993).

Set Splitting

Given: A finite set S and a collection C of subsets ci of S.
Question: Do there exist disjoint sets S1 and S2 such that S1 ∪ S2 = S and ∀i, ci 6⊆ S1 and ci 6⊆ S2?

Below we show the reduction. Suppose we are given an instance of the set splitting problem

S = {1, 2, . . . , N} , C = {c1, c2, . . . , cM} .

We create the weak labeling instance as follows. Let d = N + 1 and K = 3. Define 0 as the zero vector (0, . . . , 0) ∈ RN
and ei as the i-th standard vector (0, . . . , 1, . . . , 0) ∈ RN . Then we include all the following feature-label pairs:

• Type 1: (x, y) = ((0, 1), 3),

• Type 2: (x, y) = ((ei, 1), 3) for all i ∈ {1, 2, . . . , N},

• Type 3: (x, y) =

((∑
i∈cj ei, 1

)
, 3

)
for all j ∈ {1, 2, . . . ,M}.

For example, if we have S = {1, 2, 3}, C = {c1, c2}, c1 = {1, 2}, c2 = {2, 3}, then we create the weak labeling sample
set as:

{((0, 0, 0, 1), 3), ((1, 0, 0, 1), 3), ((0, 1, 0, 1), 3), ((0, 0, 1, 1), 3), ((1, 1, 0, 1), 3), ((0, 1, 1, 1), 3)} .
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The following lemma shows that answering this weak labeling problem is equivalent to answering the original set splitting
problem.

Lemma 22. Any instance of the set splitting problem is a YES instance if and only if the corresponding instance of the
weak labeling problem (as described above) is a YES instance.

Proof. (=⇒) Let S1, S2 be the solution of the set splitting problem. Define

w1 =

(
a1, a2, · · · , aN ,−

1

2

)
,

where for all i ∈ {1, 2, . . . , N}, ai = 1 if i ∈ S1 and ai = −N if i /∈ S1. Similarly, define

w2 =

(
b1, b2, · · · , bN ,−

1

2

)
,

where for all i ∈ {1, 2, . . . , N}, bi = 1 if i ∈ S2 and bi = −N if i /∈ S2. Finally, define

w3 = (0, 0, · · · , 0),

the zero vector. To see this is a solution for the weak labeling problem, we verify separately for Type 1-3 samples defined
above. For Type 1 sample, we have

〈w3, x〉 = 0 > −1

2
= 〈w1, x〉 = 〈w2, x〉 .

For a Type 2 sample that corresponds to index i, we have either i ∈ S1 or i ∈ S2 because S1 ∪ S2 = {1, 2, . . . , N} is
guaranteed. Thus, either ai = 1 or bi = 1. If ai = 1 is the case, then

〈w1, x〉 = ai −
1

2
=

1

2
> 0 = 〈w3, x〉 ;

similarly if bi = 1, we have 〈w2, x〉 > 〈w3, x〉.
For a Type 3 sample that corresponds to index j, Since cj 6⊂ S1, there exists some i′ ∈ cj and i′ /∈ S1. Thus we have
xi′ = 1, ai′ = −N , and therefore

〈w1, x〉 = ai′xi′ +
∑

i∈{1,2,...,N}\{i′}

aixi −
1

2

≤ −N + (N − 1)− 1

2
< 0 = 〈w3, x〉 .

Because cj 6⊂ S2 also holds, we also have 〈w2, x〉 < 〈w3, x〉. This direction is therefore proved.

(⇐=) Given the solution w1, w2, w3 of the weak labeling problem, we define

S1 =
{
i ∈ {1, 2, . . . , n} :

〈
w1 − w3, (ei, 1)

〉
> 0
}
,

S2 =
{
i ∈ {1, 2, . . . , n} :

〈
w2 − w3, (ei, 1)

〉
> 0 and i /∈ S1

}
.

It is not hard to see S1 ∩ S2 = ∅ and S1 ∪ S2 = {1, 2, . . . , N}. The former is because S2 only includes elements that are
not in S1. For the latter, note that (ei, 1) is the feature vector for Type 2 samples. Because Type 2 samples all have label
3, for any i ∈ {1, 2, . . . , N}, one of the following must hold:

〈
w1 − w3, (ei, 1)

〉
> 0 or

〈
w2 − w3, (ei, 1)

〉
> 0. This

implies i ∈ S1 or i ∈ S2.

Now we show ∀j, cj 6⊂ S1 and cj 6⊂ S2 by contradiction. Assume there exists some j such that cj ⊂ S1. By our definition
of S1, we have

〈
w1 − w3, (ei, 1)

〉
> 0 for all i ∈ cj . Therefore,

∑
i∈cj

〈
w1 − w3, (ei, 1)

〉
=

〈
w1 − w3,

∑
i∈cj

ei, |cj |

〉 > 0.
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Because Type 1 sample has label 3, we also have 〈
w1 − w3, (0, 1)

〉
< 0.

Combining the above two inequalities, we get〈
w1 − w3,

∑
i∈cj

ei, 1

〉 =

〈
w1 − w3,

∑
i∈cj

ei, |cj |

〉− (|cj | − 1)
〈
w1 − w3, (0, 1)

〉
> 0 .

Note that
(∑

i∈cj ei, 1
)

is a feature vector for Type 3 samples. Thus the above inequality contradicts that Type 3 samples
have label 3. Therefore, cj 6⊂ S1. If we assume there exists some cj ⊂ S2, same arguments apply and also lead to
contradiction.

I. Mistake lower bound for ignorant algorithms
In this section, we prove a mistake lower bound for a family of algorithms called ignorant algorithms. Ignorant algorithms
ignore the examples on which they make mistakes. This assumption seems strong, but as we will explain below, it is actually
natural, and several recently proposed bandit linear classification algorithms that achieve

√
T regret bounds belong to this

family, e.g., SOBA (Beygelzimer et al., 2017), OBAMA (Foster et al., 2018). Also, NEAREST-NEIGHBOR ALGORITHM
(Algorithm 4) presented in Appendix G is an ignorant algorithm.

Under the assumption that the examples lie in in the unit ball of Rd and are weakly linearly separable with margin γ, we

show that any ignorant algorithm must make at least Ω

((
1

160γ

)(d−2)/4
)

mistakes in the worst case. In other words, an

algorithm that achieves a better mistake bound cannot ignore examples on which it makes a mistake and it must make a
meaningful update on such examples.

To formally define ignorant algorithms, we define the conditional distribution from which an algorithm draws its predic-
tions. Formally, given an algorithm A and an adversarial strategy, we define

pt(y|x) = Pr[yt = y | (x1, y1), (x2, y2) . . . , (xt−1, yt−1), xt = x] .

In other words, in any round t, conditioned on the past t−1 rounds, the algorithmA chooses yt from probability distribution
pt(·|xt). Formally, pt is a function p : {1, 2, . . . ,K} × Rd → [0, 1] such that

∑K
y=1 pt(y|x) = 1 for any x ∈ Rd.

Definition 23 (Ignorant algorithm). An algorithmA for ONLINE MULTICLASS LINEAR CLASSIFICATION WITH BANDIT
FEEDBACK is called ignorant if for every t = 1, 2, . . . , T , pt is determined solely by the sequence (xa1 , ya1),(xa2 , ya2),
. . . , (xan , yan) of labeled examples from the rounds 1 ≤ a1 < a2 < · · · < an < t in which the algorithm makes a correct
prediction.

An equivalent definition of an ignorant algorithm is that the memory state of the algorithm does not change after it makes
a mistake. Equivalently, the memory state of an ignorant algorithm is completely determined by the sequence of labeled
examples on which it made correct prediction.

To explain the definition, consider an ignorant algorithm A. Suppose that on a sequence of examples (x1, y1), (x2, y2),
. . . , (xt−1, yt−1) generated by some adversary the algorithm A makes correct predictions in rounds a1, a2, . . . , an where
1 ≤ a1 < a2 < · · · < an < t and errors on rounds {1, 2, . . . , t− 1} \ {a1, a2, . . . , an}. Suppose that on another sequence
of examples (x′1, y

′
1), (x′2, y

′
2), . . . , (x′s−1, y

′
s−1) generated by another adversary the algorithmAmakes correct predictions

in rounds b1, b2, . . . , bn where 1 ≤ b1 < b2 < · · · < bn < s and errors on rounds {1, 2, . . . , s − 1} \ {b1, b2, . . . , bn}.
Futhermore, suppose

(xa1 , ya1) = (x′b1 , y
′
b1) ,

(xa2 , ya2) = (x′b2 , y
′
b2) ,

...
(xan , yan) = (x′b2 , y

′
bn) .
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Then, as A is ignorant,

Pr[yt = y | (x1, y1), (x2, y2) . . . , (xt−1, yt−1), xt = x] = Pr[y′t = y | (x′1, y′1), (x′2, y
′
2) . . . , (x′t−1, y

′
t−1), x′t = x].

Note that the sequences (x1, y1), (x2, y2), . . . , (xt−1, yt−1) and (x′1, y
′
1), (x′2, y

′
2), . . . , (x′s−1, y

′
s−1) might have different

lengths and and A might error in different sets of rounds. As a special case, if an ignorant algorithm makes a mistake in
round t then pt+1 = pt.

Our main result is the following lower bound on the expected number of mistakes for ignorant algorithms.

Theorem 24 (Mistake lower bound for ignorant algorithms). Let γ ∈ (0, 1) and let d be a positive integer. Suppose A
is an ignorant algorithm for ONLINE MULTICLASS LINEAR CLASSIFICATION WITH BANDIT FEEDBACK. There exists
T and an adversary that sequentially chooses labeled examples (x1, y1), (x2, y2), . . . , (xT , yT ) ∈ Rd × {1, 2} such that
the examples are strongly linearly separable with magin γ and ‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ 1, and the expected number of
mistakes made by A is at least

1

10

(
1

160γ

) d−2
4

.

Before proving the theorem, we need the following lemma.

Lemma 25. Let γ ∈ (0, 1
160 ), let d be a positive integer and let N = ( 1

2
√

40γ
)d−2. There exist vectors u1, u2, . . . , uN ,

v1, v2, . . . , vN in Rd such that for all i, j ∈ {1, 2, . . . , N},

‖ui‖ ≤ 1 ,∥∥vj∥∥ ≤ 1 ,〈
ui, vj

〉
≥ γ, if i = j,〈

ui, vj
〉
≤ −γ, if i 6= j.

Proof. By Lemma 6 of Long (1995), there exists vectors z1, z2, . . . , zN ∈ Rd−1 such that‖z1‖ =‖z2‖ = · · · =‖zN‖ = 1
and the angle between the vectors is ](zi, zj) ≥

√
40γ for i 6= j, i, j ∈ {1, 2, . . . , N}. Since cos θ ≤ 1 − θ2/5 for any

θ ∈ [−π, π], this implies that 〈
zi, zj

〉
= 1, if i = j,〈

zi, zj
〉
≤ 1− 8γ, if i 6= j.

Define vi = ( 1
2zi,

1
2 ), and ui = ( 1

2zi,−
1
2 (1−4γ)) for all i ∈ {1, 2, . . . , N}. It can be easily checked that for all i,‖vi‖ ≤ 1

and‖ui‖ ≤ 1. Additionally, 〈
ui, vj

〉
=

1

4

〈
zi, zj

〉
− 1− 4γ

4
.

Thus, 〈
ui, vj

〉
≥ γ, if i = j,〈

ui, vj
〉
≤ −γ, if i 6= j.

Proof of Theorem 24. We consider the strategy for the adversary described in Algorithm 5.

Let τ be the time step t in which the adversary sets PHASE ← 2. If the adversary never sets PHASE ← 2, we define
τ = T + 1. Then,

E

 T∑
t=1

1 [ŷt 6= yt]

 ≥ E

τ−1∑
t=1

1 [ŷt 6= yt]

+ E

 T∑
t=τ

1 [ŷt 6= yt]

 .

We upper bound each of last two terms separately.
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Algorithm 5 ADVERSARY’S STRATEGY

Define T = N and v1, v2, . . . , vN as in Lemma 25.
Define q0 = 1√

T
.

Initialize PHASE = 1.
for t = 1, 2, . . . , T do

if PHASE = 1 then
if pt(1|vt) < 1− q0 then

(xt, yt)← (vt, 1)
else

(xt, yt)← (vt, 2)
PHASE ← 2

else
(xt, yt)← (xt−1, yt−1)

In rounds 1, 2, . . . , τ − 1, the algorithm predicts the incorrect class 2 with probability at least q0. Thus,

E

τ−1∑
t=1

1 [ŷt 6= yt]

 = q0 E[(τ − 1)] . (18)

In rounds τ, τ + 1, . . . , T , all the examples are the same and are equal to (vτ , 2). Let s be the first time step t such that
t ≥ τ and the algorithm makes a correct prediction. If the algorithm makes mistakes in all rounds τ, τ + 1, . . . , T , we
define s = T + 1. By definition the algorithm makes mistakes in rounds τ, τ + 1, . . . , s− 1. Therefore,

E

 T∑
t=τ

1 [ŷt 6= yt]

 ≥ E[s− τ ]. (19)

Since the algorithm is ignorant, conditioned on τ and q , pτ (2|vτ ), s− τ follows a truncated geometric distribution with
parameter q (i.e., s−τ is 0 with probability q, 1 with probability (1−q)q, 2 with probability (1−q)2q, . . .). Its conditional
expectation can be calculated as follows:

E[s− τ | τ, q] =

T+1−τ∑
i=1

i× Pr[s− τ = i| τ, q]

=

T+1−τ∑
j=1

Pr[s− τ ≥ j| τ, q]

=

T+1−τ∑
j=1

(1− q)j ≥
T+1−τ∑
j=1

(1− q0)j

=
1− q0

q0

(
1− (1− q0)T−τ+1

)
.

Therefore, by the tower property of conditional expectation,

E[s− τ | τ ] = E
[
E [s− τ | τ, q]

∣∣ τ] ≥ 1− q0

q0

(
1− (1− q0)T−τ+1

)
.

Combining this fact with Equations (18) and (19), we have that

E

 T∑
t=1

1 [ŷt 6= yt]

 ≥ q0 E[τ − 1] + E

[
1− q0

q0

(
1− (1− q0)T−τ+1

)]

= E

[
q0(τ − 1) +

1− q0

q0

(
1− (1− q0)T−τ+1

)]
.
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We lower bound the last expression by considering two cases for τ . If τ ≥ 1
2T + 1, then the last expression is lower

bounded by 1
2q0T = 1

2

√
T . If τ < 1

2T + 1, it is lower bounded by

1− q0

q0

(
1− (1− q0)

1
2T
)

=
1− q0

q0

(
1− (1− q0)

1

2q20

)
≥

1− 1√
2

q0

(
1− 1√

e

)
≥ 1

10

√
T .

Observe that in phase 1, the labels are equal to 1 and in phase 2 the labels are equal to 2. Note that (xτ , yτ ) =
(xτ+1, yτ+1) = · · · = (xT , yT ) = (vτ , 2). Consider the vectors u1, u2, . . . , uN as defined in Lemma 25. We claim
that w1 = −uτ/2 and w2 = uτ/2 satisfy the conditions of strong linear separability.

Clearly‖w1‖2 +‖w2‖2 ≤ (‖w1‖+‖w2‖)2 ≤ ( 1
2 + 1

2 )2 ≤ 1. By Lemma 25, we have
〈
w2/2, xt

〉
=
〈
uτ/2, vτ

〉
≥ γ/2,∀t ≥

τ and
〈
w2/2, xt

〉
=
〈
uτ/2, vt

〉
≤ −γ/2 for all t < τ . Similarly,

〈
w1/2, xt

〉
≤ −γ/2 for all t ≥ τ and

〈
w1/2, xt

〉
≥ γ/2

for all t < τ . Thus, the examples are strongly linearly separable with margin γ.


