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Abstract
Federated learning distributes model training
among a multitude of agents, who, guided by pri-
vacy concerns, perform training using their lo-
cal data but share only model parameter updates,
for iterative aggregation at the server to train an
overall global model. In this work, we explore
how the federated learning setting gives rise to
a new threat, namely model poisoning, differ-
ent from traditional data poisoning. Model poi-
soning is carried out by an adversary controlling
a small number of malicious agents (usually 1)
with the aim of causing the global model to mis-
classify a set of chosen inputs with high confi-
dence. We explore a number of attack strate-
gies for deep neural networks, starting with tar-
geted model poisoning using boosting of the ma-
licious agent’s update to overcome the effects of
other agents. We also propose two critical no-
tions of stealth to detect malicious updates. We
bypass these by including them in the adversar-
ial objective to carry out stealthy model poison-
ing. We improve attack stealth with the use of
an alternating minimization strategy which alter-
nately optimizes for stealth and the adversarial
objective. We also empirically demonstrate that
Byzantine-resilient aggregation strategies are not
robust to our attacks. Our results show that ef-
fective and stealthy model poisoning attacks are
possible, highlighting vulnerabilities in the fed-
erated learning setting.

1. Introduction
Federated learning (McMahan et al., 2017) has recently
emerged as a popular implementation of distributed
stochastic optimization for large-scale deep neural network
training. It is formulated as a multi-round strategy in which
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the training of a neural network model is distributed be-
tween multiple agents. In each round, a random subset
of agents, with local data and computational resources, is
selected for training. The selected agents perform model
training and share only the parameter updates with a cen-
tralized parameter server, that facilitates aggregation of the
updates. Motivated by privacy concerns, the server is de-
signed to have no visibility into an agents’ local data and
training process.

In this work, we exploit this lack of transparency in the
agent updates, and explore the possibility of an adversary
controlling a small number of malicious agents (usually
just 1) performing a model poisoning attack. The adver-
sary’s objective is to cause the jointly trained global model
to misclassify a set of chosen inputs with high confidence,
i.e., it seeks to poison the global model in a targeted man-
ner. Since the attack is targeted, the adversary also attempts
to ensure that the global model converges to a point with
good performance on the test or validation data We note
that these inputs are not modified to induce misclassifica-
tion as in the phenomenon of adversarial examples (Car-
lini & Wagner, 2017; Szegedy et al., 2013). Rather, their
misclassification is a product of the adversarial manipu-
lations of the training process. We focus on an adversary
which directly performs model poisoning instead of data
poisoning (Biggio et al., 2012; Rubinstein et al., 2009; Mei
& Zhu, 2015; Xiao et al., 2015; Mei & Zhu, 2015; Koh
& Liang, 2017; Chen et al., 2017a; Jagielski et al., 2018)
as the agents’ data is never shared with the server. In fact,
model poisoning subsumes dirty-label data poisoning in the
federated learning setting (see Section 5.1 for a detailed
quantitative comparison).

Model poisoning also has a connection to a line of work
on defending against Byzantine adversaries which con-
sider a threat model where the malicious agents can send
arbitrary gradient updates (Blanchard et al., 2017; Chen
et al., 2017b; Mhamdi et al., 2018; Chen et al., 2018; Yin
et al., 2018) to the server. However, the adversarial goal in
these cases is to ensure a distributed implementation of the
Stochastic Gradient Descent (SGD) algorithm converges to
‘sub-optimal to utterly ineffective models’(Mhamdi et al.,
2018) while the aim of the defenses is to ensure conver-
gence. On the other hand, we consider adversaries aim-
ing to only cause targeted poisoning. In fact, we show
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that targeted model poisoning is effective even with the use
of Byzantine resilient aggregation mechanisms in Section
4. Concurrent and independent work (Bagdasaryan et al.,
2018) considers both single and multiple agents perform-
ing poisoning via model replacement at convergence time.
In contrast, our goal is to induce targeted misclassification
in the global model even when it is far from convergence
while maintaining its accuracy for most tasks.

1.1. Contributions

We design attacks on federated learning that ensure tar-
geted poisoning of the global model while ensuring conver-
gence. Our threat model considers adversaries controlling
a small number of malicious agents (usually 1) and with
no visibility into the updates that will be provided by the
other agents. All of our experiments are on DNNs trained
on the Fashion-MNIST (Xiao et al., 2017) and Adult
Census1 datasets. Our code (https://github.com/
inspire-group/ModelPoisoning) and a technical
report (Bhagoji et al., 2018) are available.

Targeted model poisoning: In each round, the malicious
agent generates its update by optimizing for a malicious ob-
jective designed to cause targeted misclassification. How-
ever, the presence of a multitude of other agents which are
simultaneously providing updates makes this challenging.
We thus use explicit boosting of the malicious agent’s up-
date which is designed to negate the combined effect of
the benign agents. Our evaluation demonstrates that this
attack enables an adversary controlling a single malicious
agent to achieve targeted misclassification at the global
model with 100% confidence while ensuring convergence
of the global model for deep neural networks trained on
both datasets.

Stealthy model poisoning: We introduce notions of stealth
for the adversary based on accuracy checking on the
test/validation data and weight update statistics and em-
pirically show that targeted model poisoning with explicit
boosting can be detected in all rounds with the use of
these stealth metrics. Accordingly, we modify the ma-
licious objective to account for these stealth metrics to
carry out stealthy model poisoning which allows the mali-
cious weight update to avoid detection for a majority of the
rounds. Finally, we propose an alternating minimization
formulation that accounts for both model poisoning and
stealth, and enables the malicious weight update to avoid
detection in almost all rounds.

Attacking Byzantine-resilient aggregation: We investi-
gate the possibility of model poisoning when the server
uses Byzantine-resilient aggregation mechanisms such as

1https://archive.ics.uci.edu/ml/datasets/
adult

Krum (Blanchard et al., 2017) and coordinate-wise median
(Yin et al., 2018) instead of weighted averaging. We show
that targeted model poisoning of deep neural networks with
high confidence is effective even with the use of these ag-
gregation mechanisms.

Connections to data poisoning and interpretability: We
show that standard dirty-label data poisoning attacks (Chen
et al., 2017a) are not effective in the federated learning set-
ting, even when the number of incorrectly labeled examples
is on the order of the local training data held by each agent.
Finally, we use a suite of interpretability techniques to gen-
erate visual explanations of the decisions made by a global
model with and without a targeted backdoor. Interestingly,
we observe that the explanations are nearly visually indis-
tinguishable, exposing the fragility of these techniques.

2. Federated Learning and Model Poisoning
In this section, we formulate both the learning paradigm
and the threat model that we consider throughout the paper.
Operating in the federated learning paradigm, where model
weights are shared instead of data, gives rise to the model
poisoning attacks that we investigate.

2.1. Federated Learning

The federated learning setup consists of K agents, each
with access to data Di, where |Di| = li. The total number
of samples is

∑
i li = l. Each agent keeps its share of the

data (referred to as a shard) private, i.e. Di = {xi1 · · ·xili}
is not shared with the server S. The server is attempting to
train a classifier f with global parameter vector wG ∈ Rn,
where n is the dimensionality of the parameter space. This
parameter vector is obtained by distributed training and ag-
gregation over the K agents with the aim of generalizing
well over Dtest, the test data. Federated learning can handle
both i.i.d. and non-i.i.d partitioning of training data.

At each time step t, a random subset of k agents is cho-
sen for synchronous aggregation (McMahan et al., 2017).
Every agent i ∈ [k], minimizes 2 the empirical loss over
its own data shard Di, by starting from the global weight
vector wt

G and running an algorithm such as SGD for E
epochs with a batch size of B. At the end of its run, each
agent obtains a local weight vector wt+1

i and computes its
local update δt+1

i = wt+1
i − wt

G, which is sent back to
the server. To obtain the global weight vector wt+1

G for the
next iteration, any aggregation mechanism can be used. In
Section 3, we use weighted averaging based aggregation
for our experiments: wt+1

G = wt
G +

∑
i∈[k] αiδ

t+1
i , where

li
l = αi and

∑
i αi = 1. In Section 4, we study the effect of

2approximately for non-convex loss functions since global
minima cannot be guaranteed

https://github.com/inspire-group/ModelPoisoning
https://github.com/inspire-group/ModelPoisoning
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
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our attacks on the Byzantine-resilient aggregation mecha-
nisms ‘Krum’ (Blanchard et al., 2017) and coordinate-wise
median (Yin et al., 2018).

2.2. Threat Model: Model Poisoning

Traditional poisoning attacks deal with a malicious agent
who poisons some fraction of the data in order to ensure
that the learned model satisfies some adversarial goal. We
consider instead an agent who poisons the model updates it
sends back to the server.

Attack Model: We make the following assumptions re-
garding the adversary: (i) they control exactly one non-
colluding, malicious agent with index m (limited effect of
malicious updates on the global model); (ii) the data is dis-
tributed among the agents in an i.i.d fashion (making it eas-
ier to discriminate between benign and possible malicious
updates and harder to achieve attack stealth); (iii) the mali-
cious agent has access to a subset of the training data Dm
as well as to auxiliary data Daux drawn from the same dis-
tribution as the training and test data that are part of its
adversarial objective. Our aim is to explore the possibility
of a successful model poisoning attack even for a highly
constrained adversary.

Adversarial Goals: The adversary’s goal is to ensure the
targeted misclassification of the auxiliary data by the clas-
sifier learned at the server. The auxiliary data consists of
samples {xi}ri=1 with true labels {yi}ri=1 that have to be
classified as desired target classes {τi}ri=1, implying that
the adversarial objective is

A(Dm ∪ Daux,w
t
G) = max

wt
G

r∑
i=1

1[f(xi;w
t
G) = τi]. (1)

We note that in contrast to previous threat models consid-
ered for Byzantine-resilient learning, the adversary’s aim is
not to prevent convergence of the global model (Yin et al.,
2018) or to cause it to converge to a bad minimum (Mhamdi
et al., 2018). Thus, any attack strategy used by the adver-
sary must ensure that the global model converges to a point
with good performance on the test set. Going beyond the
standard federated learning setting, it is plausible that the
server may implement measures to detect aberrant models.
To bypass such measures, the adversary must also conform
to notions of stealth that we define and justify next.

2.3. Stealth metrics

Given an update from an agent, there are two critical prop-
erties that the server can check. First, the server can verify
whether the update, in isolation, would improve or worsen
the global model’s performance on a validation set. Sec-
ond, the server can check if that update is very different
statistically from other updates. We note that neither of

these properties is checked as a part of standard federated
learning but we use these to raise the bar for a successful
attack.

Accuracy checking: The server checks the validation ac-
curacy of wt

i = wt−1
G + δti , the model obtained by adding

the update from agent i to the current state of the global
model. If the resulting model has a validation accuracy
much lower than that of the model obtained by aggregating
all the other updates, wt

G\i = wt−1
G +

∑
j 6=i δ

t
j , the server

can flag the update as being anomalous. For the malicious
agent, this implies that it must satisfy the following in order
to be chosen at time step t:

∑
{xj ,yj}∈Dtest

1[f(xj ;w
t
m) =

yj ] − 1[f(xj ;w
t
G\m) = yj ] < γt, where γt is a threshold

the server defines to reject updates. This threshold deter-
mines how much performance variation the server can tol-
erate and can be varied over time. A large threshold will
be less effective at identifying anomalous updates but an
overly small one could identify benign updates as anoma-
lous, due to natural variation in the data and training pro-
cess.

Weight update statistics: The range of pairwise distances
between a particular update and the rest provides an indi-
cation of how different that update is from the rest when
using an appropriate distance metric d(·, ·). In previous
work, pairwise distances were used to define ‘Krum’ (Blan-
chard et al., 2017) but as we show in Section 4, its reliance
on absolute, instead of relative distance values, makes
it vulnerable to our attacks. Thus, we rely on the full
range of pairwise distances which can be computed for all
agent updates and for an agent to be flagged as anoma-
lous, their range of distances must differ from the others
by a server defined, time-dependent threshold κt. In par-
ticular, for the malicious agent, we compute the range as
Rm = [mini∈[k]\m d(δtm, δ

t
i),maxi∈[k]\m d(δtm, δ

t
i)]. Let

Rlmin,[k]\m and Rumax,[k]\m be the minimum lower bound
and maximum upper bound of the range for all other
agents. Then, for the malicious agent to not be flagged as
anomalous, we need that max{|Rum − Rlmin,[k]\m|, |R

l
m −

Rumax,[k]\m|} < κt. This condition ensures that the range of
distances for the malicious agent and any other agent is not
too different from that for any other two agents, and also
controls the length of Rm. We find that it is also instructive
to compare the histogram of weight updates for benign and
malicious agents, as these can be very different depending
on the attack strategy used. These provide a useful qual-
itative notion of stealth, which can be used to understand
attack behavior.

2.4. Experimental setup

We evaluate our attack strategies using two qualitatively
different datasets. The first is an image dataset, Fashion-
MNIST (Xiao et al., 2017) for which we use a 3-layer



Analyzing Federated Learning through an Adversarial Lens

Convolutional Neural Network (CNN) with dropout as the
model architecture. With centralized training, this model
achieves 91.7% accuracy on the test set. The second dataset
is the UCI Adult Census dataset3 for which we use a fully
connected neural network achieving 84.8% accuracy on the
test set (Fernández-Delgado et al., 2014) for the model ar-
chitecture. Further details about datasets and models are in
Section 1 of the Supplementary.

For both datasets, we study the case with the number of
agents K set to 10 and 100. When K = 10, all the agents
are chosen at every iteration, while with K = 100, a tenth
of the agents are chosen at random every iteration. We run
federated learning till a pre-specified test accuracy (91%
for Fashion MNIST and 84% for the Adult Census data) is
reached or the maximum number of time steps have elapsed
(40 for K = 10 and 50 for K = 100). In Section 3, for
illustrative purposes, we mostly consider the case where
the malicious agent aims to mis-classify a single example
in a desired target class (r = 1). For the Fashion-MNIST
dataset, the example belongs to class ‘5’ (sandal) with the
aim of misclassifying it in class ‘7’ (sneaker) and for the
Adult dataset it belongs to class ‘0’ with the aim of mis-
classifying it in class ‘1’. We also consider the case with
r = 10 but defer these results to the Supplementary mate-
rial owing to space constraints.

3. Strategies for Model Poisoning Attacks
In this section, we use the adversarial goals laid out in the
previous section to formulate the adversarial optimization
problem. We then show how explicit boosting can achieve
targeted model poisoning. We further explore attack strate-
gies that add stealth and improve convergence.

3.1. Adversarial optimization setup

From Eq. 1, two challenges for the adversary are immedi-
ately clear. First, the objective represents a difficult combi-
natorial optimization problem so we relax Eq. 1 in terms of
the cross-entropy loss for which automatic differentiation
can be used. Second, the adversary does not have access
to the global parameter vector wt

G for the current iteration
and can only influence it though the weight update δtm it
provides to the server S. So, it performs the optimization
over ŵt

G, which is an estimate of the value of wt
G based on

all the information Itm available to the adversary. The ob-
jective function for the adversary to achieve targeted model
poisoning on the tth iteration is

argmin
δt
m

L({xi, τi}ri=1, ŵ
t
G),

s.t. ŵt
G = g(Itm),

(2)

3https://archive.ics.uci.edu/ml/datasets/
adult
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Figure 1. Targeted model poisoning for CNN on Fashion MNIST
data. The global model’s confidence on malicious objective (poi-
soning) and the accuracy on validation data (targeted) are shown.

where g(·) is an estimator. For the rest of this section, we
use the estimate ŵt

G = wt−1
G + αmδtm, implying that the

malicious agent ignores the updates from the other agents
but accounts for scaling at aggregation. This assumption is
enough to ensure the attack works in practice.

3.2. Targeted model poisoning for standard federated
learning

The adversary can directly optimize the adversarial objec-
tive L({xi, τi}ri=1, ŵ

t
G) with ŵt

G = wt−1
G +αmδtm. How-

ever, this setup implies that the optimizer has to account
for the scaling factor αm implicitly. In practice, we find
that when using a gradient-based optimizer such as SGD,
explicit boosting is much more effective. The rest of the
section focuses on explicit boosting and an analysis of im-
plicit boosting is deferred to Section 2 of the Supplemen-
tary.

Explicit Boosting: Mimicking a benign agent, the mali-
cious agent can run Em steps of a gradient-based optimizer
(such as Adam (Kingma & Ba, 2015)) starting from wt−1

G

to obtain w̃t
m which minimizes the loss over {xi, τi}ri=1.

The malicious agent then obtains an initial update δ̃tm =
w̃t
m − wt−1

G . However, since the malicious agent’s up-
date tries to ensure that the model learns labels different
from the true labels for the data of its choice (Daux), it has
to overcome the effect of scaling, which would otherwise
mostly nullify the desired classification outcomes. This
happens because the learning objective for all the other
agents is very different from that of the malicious agent,
especially in the i.i.d. case. The final weight update sent
back by the malicious agent is then δtm = λδ̃tm, where λ
is the factor by which the malicious agent boosts the initial
update. Note that with ŵt

G = wt−1
G +αmδtm and λ = 1

αm
,

then ŵt
G = wt

m, implying that if the estimation was exact,
the global weight vector should now satisfy the malicious
agent’s objective.

Results: In the attack with explicit boosting, the malicious
agent uses Em = 5 to obtain δ̃tm, and then boosts it by

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
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Figure 2. Comparison of weight update distributions for benign
and malicious agents for targeted model poisoning attack for CNN
on Fashion MNIST data.
1
αm

= K. The results for the case with K = 10 for the
Fashion MNIST data are shown in Figure 1. The attack
is clearly successful at causing the global model to clas-
sify the chosen example in the target class. In fact, after
t = 3, the global model is highly confident in its (incor-
rect) prediction. Further, the global model converges with
good performance on the validation set in spite of the tar-
geted poisoning for one example. Results for the Adult
Census dataset (Section 3 of Supplementary) demonstrate
targeted model poisoning is possible across datasets and
models. Thus, the explicit boosting attack is able to achieve
targeted poisoning in the federated learning setting.

Performance on stealth metrics: While the explicit boost-
ing attack does not take stealth metrics into account, it is
instructive to study properties of the model update it gener-
ates. Compared to the weight update from a benign agent,
the update from the malicious agent is much sparser and
has a smaller range (Figure 2). In Figure 3, the spread of
L2 distances between all benign updates and between the
malicious update and the benign updates is plotted. For the
baseline attack, both the minimum and maximum distance
away from any of the benign updates keeps decreasing over
time steps, while it remains relatively constant for the other
agents. In Figure 4a the accuracy of the malicious model on
the validation data (Acc. Mal (Targeted)) is shown, which
is much lower than the global model’s accuracy.

3.3. Stealthy model poisoning

As discussed in Section 2.3, there are two properties which
the server can use to detect anomalous updates: accuracy
on validation data and weight update statistics. In order to
maintain stealth with respect to both of these properties, the
adversary can add loss terms corresponding to both of those
metrics to the model poisoning objective function from Eq.
2 and improve targeted model poisoning. First, in order to
improve the accuracy on validation data, the adversary adds
the training loss over the malicious agent’s local data shard
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Figure 3. Range of `2 distances between all benign agents and be-
tween the malicious agent and the benign agents.

Dm (L(Dm,wt
G)) to the objective. Since the training data

is i.i.d. with the validation data, this will ensure that the
malicious agent’s update is similar to that of a benign agent
in terms of validation loss and will make it challenging for
the server to flag the malicious update as anomalous.

Second, the adversary needs to ensure that its update is as
close as possible to the benign agents’ updates in the ap-
propriate distance metric. For our experiments, we use the
`p norm with p = 2. Since the adversary does not have
access to the updates for the current time step t that are
generated by the other agents, it constrains δtm with respect
to δ̄t−1ben =

∑
i∈[k]\m αiδ

t−1
i , which is the average update

from all the other agents for the previous iteration, which
the malicious agent has access to. Thus, the adversary adds
ρ‖δtm − δ̄t−1ben ‖2 to its objective as well. We note that the
addition of the training loss term is not sufficient to ensure
that the malicious weight update is close to that of the be-
nign agents since there could be multiple local minima with
similar loss values. Overall, the adversarial objective then
becomes:

argmin
δt
m

λL({xi, τi}ri=1, ŵ
t
G) + L(Dm,wt

m)

+ ρ‖δtm − δ̄t−1ben ‖2
(3)

Note that for the training loss, the optimization is just per-
formed with respect to wt

m = wt−1
G +δtm, as a benign agent

would do. Using explicit boosting, ŵt
G is replaced by wt

m

as well so that only the portion of the loss corresponding to
the malicious objective gets boosted by a factor λ.

Results and effect on stealth: From Figure 4a, it is clear
that the stealthy model poisoning attack is able to cause tar-
geted poisoning of the global model. We set the accuracy
threshold γt to be 10% which implies that the malicious
model is chosen for 10 iterations out of 15. This is in con-
trast to the targeted model poisoning attack which never has
validation accuracy within 10% of the global model. Fur-
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(a) Confidence on malicious objective and accuracy on vali-
dation data for wt

G. Stealth with respect to accuracy checking
is also shown for both the stealthy and targeted model poison-
ing attacks. We use λ = 10 and ρ = 1e−4.
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(b) Comparison of weight update distributions for
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Figure 4. Stealthy model poisoning for CNN on Fashion MNIST

ther, the weight update distribution for the stealthy poison-
ing attack (Figure 4b) is similar to that of a benign agent,
owing to the additional terms in the loss function. Finally,
in Figure 3, we see that the range of `2 distances for the
malicious agent Rm is close to that between benign agents
(see Section 2.3).

Concurrent work on model poisoning boosts the entire up-
date (instead of just the malicious loss component) when
the global model is close to convergence to attempt model
replacement (Bagdasaryan et al., 2018) but this strategy is
ineffective when the model has not converged.

3.4. Alternating minimization for improved model
poisoning

While the stealthy model poisoning attack ensures targeted
poisoning of the global model while maintaining stealth ac-
cording to the two conditions required, it does not ensure
that the malicious agent’s update is chosen in every itera-
tion. To achieve this, we propose an alternating minimiza-
tion attack strategy which decouples the targeted objective
from the stealth objectives, providing finer control over the
relative effect of the two objectives. It works as follows
for iteration t. For each epoch i, the adversarial objective
is first minimized starting from wi−1,t

m , giving an update
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Figure 5. Alternating minimization attack with distance con-
straints for CNN on Fashion MNIST data. Stealth with respect
to accuracy checking is also shown.

vector δ̃i,tm . This is then boosted by a factor λ and added
to wi−1,t

m . Finally, the stealth objective for that epoch is
minimized starting from w̃i,t

m = wi−1,t
m + λδ̃i,tm , providing

the malicious weight vector wi,t
m for the next epoch. The

malicious agent can run this alternating minimization until
both the adversarial and stealth objectives have sufficiently
low values. Further, the independent minimization allows
for each objective to be optimized for a different number of
steps, depending on which is more difficult in achieve. In
particular, we find that optimizing the stealth objective for
a larger number of steps each epoch compared to the ma-
licious objective leads to better stealth performance while
maintaining targeted poisoning.

Results and effect on stealth: The adversarial objective is
achieved at the global model with high confidence starting
from time step t = 2 and the global model converges to
a point with good performance on the validation set. This
attack can bypass the accuracy checking method as the ac-
curacy on validation data of the malicious model is close
to that of the global model.In Figure 3, we can see that
the distance spread for this attack closely follows and even
overlaps that of benign updates throughout, thus achieving
complete stealth with respect to both properties.

4. Attacking Byzantine-resilient aggregation
There has been considerable recent work that has proposed
gradient aggregation mechanisms for distributed learning
that ensure convergence of the global model (Blanchard
et al., 2017; Chen et al., 2017b; Mhamdi et al., 2018; Chen
et al., 2018; Yin et al., 2018). However, the aim of the
Byzantine adversaries considered in this line of work is to
ensure convergence to ineffective models, i.e. models with
poor classification performance. The goal of the adver-
sary we consider is targeted model poisoning, which im-
plies convergence to an effective model on the test data.
This difference in objectives leads to the lack of robust-
ness of these Byzantine-resilient aggregation mechanisms
to our attacks. We consider the efficient aggregation mech-
anisms Krum (Blanchard et al., 2017) and coordinate-wise
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median (Yin et al., 2018) for our evaluation, both of which
are provably Byzantine-resilient and converge under appro-
priate conditions 4 on the loss function.

Krum: Given n agents of which f are Byzantine, Krum
requires that n ≥ 2f + 3. At any time step t, updates
(δt1, . . . , δ

t
n) are received at the server. For each δti , the

n − f − 2 closest (in terms of Lp norm) other updates are
chosen to form a set Ci and their distances added up to give
a score S(δti) =

∑
δ∈Ci

‖δti − δ‖. Krum then chooses
δkrum = δti with the lowest score to add to wt

i to give
wt+1
i = wt

i + δkrum. In Figure 6, we see the effect of
the alternating minimization attack on Krum with a boost-
ing factor of λ = 2 for a federated learning setup with 10
agents. Since there is no need to overcome the constant
scaling factor αm, the attack can use a much smaller boost-
ing factor λ than the number of agents to ensure model poi-
soning. The malicious agent’s update is chosen by Krum
for 26 of 40 time steps which leads to the malicious ob-
jective being met. Further, the global model converges to
a point with good performance as the malicious agent has
added the training loss to its stealth objective. With the use
of targeted model poisoning, we can cause Krum to con-
verge to a model with poor performance as well.

Coordinate-wise median: Given the set of updates
{δti}ki=1 at time step t, the aggregate update is δ̄t :=
coomed{{δti}ki=1}, which is a vector with its jth co-
ordinate δ̄t(j) = med{δti(j)}, where med is the 1-
dimensional median. Using targeted model poisoning with
a boosting factor of λ = 1, i.e. no boosting, the malicious
objective is met with confidence close to 0.9 for 11 of 14
time steps (Figure 6). We note that in this case, unlike with
Krum, there is convergence to an effective global model.
We believe this occurs due to the fact that coordinate-wise
median does not simply pick one of the updates to apply to
the global model and does indeed use information from all
the agents while computing the new update. Thus, model
poisoning attacks are effective against two completely dif-
ferent Byzantine-resilient aggregation mechanisms.

5. Discussion
5.1. Model poisoning vs. data poisoning

In this section, we elucidate the differences between model
poisoning and data poisoning both qualitatively and quan-
titatively. Data poisoning attacks largely fall in two cate-
gories: clean-label (Muñoz-González et al., 2017; Koh &
Liang, 2017) and dirty-label (Chen et al., 2017a; Gu et al.,
2017; Liu et al., 2017). Clean-label attacks assume that the
adversary cannot change the label of any training data as
there is a process by which data is certified as belonging

4These conditions do not hold for neural networks so the guar-
antees are only empirical.
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Figure 6. Model poisoning attacks with Byzantine resilient ag-
gregation mechanisms. We use targeted model poisoning for
coomed and alternating minimization for Krum.

to the correct class and the poisoning of data samples has
to be imperceptible. On the other hand, to carry out dirty-
label poisoning, the adversary just has to introduce a num-
ber of copies of the data sample it wishes to mis-classify
with the desired target label into the training set since there
is no requirement that a data sample belong to the correct
class. Dirty-label data poisoning has been shown to achieve
high-confidence targeted misclassification for deep neural
networks with the addition of around 50 poisoned samples
to the training data (Chen et al., 2017a).

Dirty-label data poisoning in federated learning: In our
comparison with data poisoning, we use the dirty-label
data poisoning framework for two reasons. First, federated
learning operates under the assumption that data is never
shared, only learned models. Thus, the adversary is not
concerned with notions of imperceptibility for data certifi-
cation. Second, clean-label data poisoning assumes access
at train time to the global parameter vector, which is absent
in the federated learning setting. Using the same experi-
mental setup as before (CNN on Fashion MNIST data, 10
agents chosen every time step), we add copies of the sam-
ple that is to be misclassified to the training set of the ma-
licious agent with the appropriate target label. We experi-
ment with two settings. In the first, we add multiple copies
of the same sample to the training set. In the second, we
add a small amount of random uniform noise to each pixel
(Chen et al., 2017a) when generating copies. We observe
that even when we add 1000 copies of the sample to the
training set, the data poisoning attack is completely inef-
fective at causing targeted poisoning in the global model.
This occurs due to the fact that malicious agent’s update is
scaled, which again underlies the importance of boosting
while performing model poisoning. We note also that if the
update generated using data poisoning is boosted, it affects
the performance of the global model as the entire update is
boosted, not just the malicious part. Thus, model poisoning
attacks are much more effective than data poisoning in the
federated learning setting.
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Figure 7. Interpretation of benign (5 → 5) and malicious (5 → 7)
model decisions via visualization of feature relevance and repre-
sentations for a randomly chosen auxiliary data sample.

5.2. Interpreting poisoned models

Neural networks are often treated as black boxes with lit-
tle transparency into their internal representation or under-
standing of the underlying basis for their decisions. Inter-
pretability techniques are designed to alleviate these prob-
lems by analyzing various aspects of the network. These
include (i) identifying the relevant features in the input
pixel space for a particular decision via Layerwise Rel-
evance Propagation (LRP) techniques ((Montavon et al.,
2015)); (ii) visualizing the association between neuron ac-
tivations and image features (Guided Backprop ((Springen-
berg et al., 2014)), DeConvNet ((Zeiler & Fergus, 2014)));
(iii) using gradients for attributing prediction scores to
input features (e.g., Integrated Gradients ((Sundararajan
et al., 2017)), or generating sensitivity and saliency maps
(SmoothGrad ((Smilkov et al., 2017)), Gradient Saliency
Maps ((Simonyan et al., 2013))). The semantic relevance
of the generated visualization, relative to the input, is then
used to explain the model decision.

We used a suite of these techniques to try and discrimi-
nate between the behavior of a benign global model and
one that has been trained to satisfy the adversarial objec-
tive of misclassifying a single example. Figure 7 compares
the output of the various techniques for both the benign and
malicious models on a random auxiliary data sample. Tar-
geted perturbation of the model parameters coupled with
tightly bounded noise ensures that the internal represen-
tations, and relevant input features used by the two mod-
els, for the same input, are almost visually imperceptible.
This further exposes the fragility of interpretability meth-
ods (Adebayo et al., 2018).

5.3. Improving attack performance through estimation

In this section, we look at how the malicious agent can
choose a better estimate for the effect of the other agents’
updates at each time step that it is chosen. The adversary’s
goal is to choose an appropriate estimate for δt[k]\m =∑
i∈[k]\m αiδ

t
i . The following information is available

to them from the previous time steps they were chosen:
i) Global parameter vectors wt0

G . . . ,w
t−1
G ; ii) Malicious

weight updates δt0m . . . , δtm; and iii) Local training data

Attack
Targeted

Model Poisoning
Alternating

Minimization
Estimation None Previous step None Previous step
t = 2 0.63 0.82 0.17 0.47
t = 3 0.93 0.98 0.34 0.89
t = 4 0.99 1.0 0.88 1.0

Table 1. Comparison of confidence of targeted misclassification
with and without the use of previous step estimation for the tar-
geted model poisoning and alternating minimization attacks.

shard Dm, where t0 is the first time step at which the mali-
cious agent is chosen.

Previous step estimate: The malicious agent’s estimate
δ̂t[k]\m assumes that the other agents’ cumulative updates
were the same at each step since t′ (the last time step at
which at the malicious agent was chosen), i.e. δ̂t[k]\m =

wt
G−w

t′
G−δ

t′
m

t−t′ . In the case when the malicious agent is cho-
sen at every time step, this reduces to δ̂t[k]\m = δt−1[k]\m.

Pre-optimization correction: Having computed an esti-
mate of the cumulative updates from the other agents, the
malicious agent plugs it into its estimate of the global pa-
rameter vector, i.e. ŵt

G = wt−1
G + δ̂t[k]\m + αmδT+1

m . In
other words, the malicious agent optimizes for δtm assum-
ing it has an accurate estimate of the other agents’ updates.
For attacks which use explicit boosting, this involves start-
ing from wt−1

G + δ̂t[k]\m instead of just wt−1
G .

Results: Attacks using previous step estimation with the
pre-optimization correction are more effective at achieving
the adversarial objective for both the targeted model poi-
soning and alternating minimization attacks. In Table 1,
we can see that the global model misclassifies the desired
sample with a higher confidence when using previous step
estimation in the first few iterations.

6. Conclusion
In this paper, we have started an exploration of the vulnera-
bility of federated learning to model poisoning adversaries,
that can take advantage of the very privacy these models
are designed to provide. In future work, we plan to ex-
plore more sophisticated detection strategies at the server,
which can provide guarantees against the type of attacker
we have considered here. In particular, notions of distances
between weight distributions may be promising defensive
tools. Our attacks in this paper demonstrate that federated
learning in its basic form is very vulnerable to model poi-
soning adversaries, as are recently proposed Byzantine re-
silient aggregation mechanisms. While notions of stealth
can make these attacks more challenging, they can be over-
come, demonstrating that robustness to attackers of the type
considered here is yet to be achieved.
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