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Abstract
Mean field inference in probabilistic models is
generally a highly nonconvex problem. Existing
optimization methods, e.g., coordinate ascent al-
gorithms, typically only find local optima.

In this work we propose provable mean field
methods for probabilistic log-submodular mod-
els and its posterior agreement (PA) with strong
approximation guarantees. The main algo-
rithmic technique is a new Double Greedy
scheme, termed DR-DoubleGreedy, for con-
tinuous DR-submodular maximization with box-
constraints. This one-pass algorithm achieves the
optimal 1/2 approximation ratio, which may be of
independent interest. We validate the superior per-
formance of our algorithms with baseline results
on both synthetic and real-world datasets.

1. Introduction
Consider the following scenario: You want to build a rec-
ommender system for n products to sell. Let V contain
all the products. The system is expected to recommend a
subset of products S ⊆ V to the user. This recommendation
should reflect relevance and diversity of the user’s choice,
such that it will raise the readiness to buy. The two most
important components in building such a system are (1)
learning a utility function F (S), which measures the utility
of any subset of products, and (2) inference, i.e., finding the
subset Ω∗ with the highest utility given the learnt function
F (S). The above task can be achieved using a class of prob-
abilistic graphical models that devise a distribution on all
subsets of V . Such a distribution is known as a point process.
Specifically, it defines p(S) ∝ exp(F (S)), which renders
subsets of products S with high utility to be very likely sug-

†Also known as An Bian. ORCID: orcid.org/0000-0002-
2368-4084. 1Department of Computer Science, ETH Zurich,
Zurich, Switzerland. Correspondence to: Yatao A. Bian
<ybian@inf.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

gested. In general, inference in point processes is #P-hard.
One resorts to approximate inference methods via either
variational techniques such as mean field approximations
(Wainwright et al., 2008) or sampling.

In this paper we develop mean field methods with prov-
able guarantees. Both of the two components in the recom-
mender system example above can be achieved via provable
mean field methods since (i) the latter provide approximate
inference given a utility function and, (ii) by using proper
differentiation techniques, the iterative process of mean field
approximation can be unrolled to serve as a differentiable
layer (Zheng et al., 2015), thus enabling the backpropaga-
tion of the training error to parameters of F (S). Thereby,
learning F (S) in an end-to-end fashion can utilize modern
deep learning and stochastic optimization techniques.

The most important property which we require on F (S) is
submodularity, which naturally models relevance and di-
versity. Djolonga & Krause (2014) have used submodular
functions F (S) to define two classes of point processes:
p(S) ∝ exp(F (S)) is termed probabilistic log-submodular
models, while p(S) ∝ exp(−F (S)) is called probabilistic
log-supermodular models. They are strict generalizations
of classical point processes, such as DPPs (Kulesza et al.,
2012). The variational techniques from Djolonga & Krause
(2014) and Djolonga et al. (2016) focus on giving tractable
upper bounds of the log-partition functions. Our work pro-
vides provable lower bounds through mean field approx-
imation, which also completes the picture of variational
inference for probabilistic submodular models (PSMs).

The most frequently used algorithm for mean field ap-
proximation is the CoordinateAscent algorithm1. It
maximizes the ELBO objective in a coordinate-wise man-
ner. CoordinateAscent has been shown to reach
stationary points/local optima. However, local optima
may be arbitrarily poor, as we demonstrate in § A, and
CoordinateAscent can get stuck in these poor local
optima without extra techniques, which motivates our pur-
suit to develop provable methods.

We first investigate the properties of mean field approxi-

1It is known under various names in the literature, e.g., iterated
conditional modes (ICM), naive mean field algorithm, etc.
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mation for probabilistic log-submodular models, and show
that it falls into a general class of nonconvex problems,
called continuous DR-submodular maximization with box-
constraints. Continuous submodular optimization is a class
of well-behaved nonconvex programs, which has attracted
considerable attention recently. Then we propose a new one-
epoch algorithm for this general class of nonconvex problem,
called DR-DoubleGreedy. It achieves the optimal 1/2
approximation ratio in linear time. Lastly, we extend one-
epoch algorithms to multiple epochs, resulting in provable
mean field algorithms, termed DG-MeanField.

Typical Application Domains. Recommender systems are
just one illustrating example. There are numerous scenarios
that can benefit from the mean field method in this work.
These settings include, but not limited to, existing appli-
cations of submodular models, such as diversity models
(Tschiatschek et al., 2016; Djolonga et al., 2016), exper-
imental design using approximate submodular objectives
(Bian et al., 2017b), variable selection (Krause & Guestrin,
2005), data summarization (Lin & Bilmes, 2011a), dictio-
nary learning (Krause & Cevher, 2010) etc. Another cate-
gory of applications is conducting model validation using
information-theoretic criteria. In order to infer the hyper-
paramters in the model F (S), practitioners do validation
by splitting the training data into multiple folds, and then
train models on them. Posterior-Agreement (PA, Buhmann
(2010); Bian et al. (2016)) provides an information-theoretic
criterion for the models trained on these folds, to measure
the fitness of one specific hyperparameter configuration. We
show in §2.2 that PA can be efficiently approximated by the
techniques developed in this work.

Contributions. We contribute in the following respects:
i) We propose an optimal algorithm for the general prob-
lem of continuous DR-submodular maximization with box-
constraints, which runs in linear time. ii) Based on the opti-
mal algorithm, we propose provable mean field approaches
for probabilistic log-submodular models and its PA. iii) We
also present efficient polynomial methods to evaluate the
multilinear extensions for a large category of practical ob-
jectives, which are used for optimizing the mean field objec-
tives. iv) Extensive experimental evaluations on real-world
and synthetic data support our theory.

1.1. Problem Statement and Related Work

Notation. Boldface letters, e.g. x, represent vectors. Bold-
face capital letters, e.g. A, denote matrices. xi is the ith

entry of x, Aij the (ij)th entry of A. We use ei to de-
note the standard ith basis vector. f(·) is used to specify a
continuous function, and F (·) to represent a set function.
[n] := {1, ..., n}. Given two vectors x,y, x ≤ y means
∀i, xi ≤ yi. x ∨ y and x ∧ y is defined as coordinate-
wise maximum and coordinate-wise minimum, respectively.

Finally, x|i(k) is the operation of setting the ith entry
of x to k, while keeping all the others unchanged, i.e.,
x|i(k) = x− xiei + kei.

All of the mean field approximation problems investigated
in this work fall into the following nonconvex maximization
problem:

maximize
x∈[a, b]

f(x), (P)

where f : X → R is continuous DR-submodular, X =∏n
i=1 Xi, each Xi is an interval (Bach, 2015; Bian et al.,

2017c). Continuous DR-submodular functions define a sub-
class of continuous submodular functions with the addi-
tional diminishing returns (DR) property: ∀a ≤ b ∈ X ,
∀i ∈ [n],∀k ∈ R+ it holds f(kei + a) − f(a) ≥
f(kei+b)−f(b). If f is differentiable, DR-submodularity
is equivalent to∇f being an antitone mapping from Rn to
Rn. If f is twice-differentiable, DR-submodularity is equiv-
alent to all of the entries of∇2f(x) being non-positive. A
function f is DR-supermodular iff −f is DR-submodular.

Background & Related Work. Submodularity is one of
the most important properties in combinatorial optimiza-
tion and has many applications for machine learning, with
strong implications for both guaranteed minimization and
approximate maximization in polynomial time (Krause &
Golovin, 2012). Continuous extensions of submodular set
functions play an important role in submodular optimiza-
tion. Representative instances include the Lovász exten-
sion (Lovász, 1983), multilinear extension (Calinescu et al.,
2007; Vondrák, 2008; Chekuri et al., 2014; 2015) and the
softmax extension for DPPs (Gillenwater et al., 2012). Re-
sults on guaranteed optimizations have been extended to
continuous domains recently, for both minimization (Bach,
2015; Staib & Jegelka, 2017) and maximization (Bian et al.,
2017c;a; Wilder, 2017; Chen et al., 2018; Mokhtari et al.,
2018). Specifically, Bach (2015) studies continuous sub-
modular minimization without constraints. He also dis-
cusses the possibility of using the technique for mean field
inference of probabilistic log-supermodular models. Bian
et al. (2017c;a) characterize continuous submodularity us-
ing the DR property and propose provable algorithms for
maximization.

Most related to this work is the classical problem of un-
constrained submodular maximization (USMs), which has
been studied in binary (Buchbinder et al., 2012), integer
(Soma & Yoshida, 2017) and continuous domains (Bian
et al., 2017c). For the general problem (P), at first glance
one may consider discretization-based methods: Discretiz-
ing the continous domain and transform (P) to be an integer
optimization problem, then solve it using the reduction (Ene
& Nguyen, 2016) or the integer Double Greedy algorithm
(Soma & Yoshida, 2017). However, discretization-based
methods are not appropriate for (P): Firstly, discretization
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will inevitably introduce errors for the original continuous
problem (P); Secondly, the computational cost is often high2.
Thus we turn to continuous methods.

The shrunken Frank-Wolfe algorithm (Bian et al., 2017a)
provides a 1/e approximation guarantee and sublinear rate
of convergence for (P), but it is still computationally too
expensive: In each iteration it calculates the full gradient,
which costs n times as much as computing a partial deriva-
tive.

Based on the above analysis, the most promising algorithm
to consider would be the Double Greedy algorithm (Bian
et al., 2017c), which needs to solve O(n) 1-D subproblems,
and achieves a 1/3 guarantee for continuous submodular
maximization. Since it only needs f(x) to be continuous
submodular, we call it Submodular-DoubleGreedy
in the sequel. In this work we propose a new Double
Greedy scheme, achieving the optimal 1/2 approximation
ratio (Bian et al., 2017c, Proposition 5) of (P).

Posterior-Agreement (PA) is developed as an information-
theoretic criterion for model selection (Gorbach et al., 2017)
and algorithmic validation (Gronskiy & Buhmann, 2014;
Bian et al., 2016). It originates from the approximation set
coding framework of Buhmann (2010). Recently, Buhmann
et al. (2018) prove rigorous asymptotics of PA on two typical
combinatorial problems: Sparse minimum bisection and
Lawler’s quadratic assignment problem. Djolonga & Krause
(2014; 2015) study variational inference for PSMs. They
propose L-Field to give upper bounds for log-supermodular
models through optimizing the subdifferentials.

Contemporary with the development of this work3, Ni-
azadeh et al. (2018) proposed an optimal algorithm for DR-
submodular maximization, which is based on a zero-sum
game analysis. Their algorithm (Algorithm 4 of Niazadeh
et al. (2018), termed BSCB: Binary-Search Continuous Bi-
greedy) needs to estimate the partial derivative of the ob-
jective, which is not needed in our algorithm. Furthermore,
our algorithm is arguably easier to interpret and implement
than BSCB. For further comparison of these two algorithms,
we provide a simple example in §C. We did extensive ex-
periments (see §5 for details on experimental statistics) to
compare them, the results show that both algorithms gener-
ate promising solutions, however, our algorithm produces
better solutions than BSCB in most of the experiments.

2e.g., the method from Soma & Yoshida (2017) reaches 1
2+ε

-

approximation in O( |V|
ε

) log( ∆
δ

) log(B)(θ + log(B)) time, B:
#grids of discretization, ∆: the maximal positive marginal gain,
δ: minimum positive marginal gain. We conducted a study of
discretizaiton-based method and defer the results to §G.2

3This work is extended from Bian et al. (2018).

2. Applications to Mean Field Approximation
2.1. Classical Mean Field Inference

Mean field inference aims to approximate the intractable dis-
tribution p(S) ∝ exp(F (S)) by a fully factorized surrogate
distribution q(S|x) :=

∏
i∈S xi

∏
j /∈S(1− xj),x ∈ [0, 1]n.

This can be achieved by maximizing the (ELBO) objective,
which provides a lower bound for the log-partition function,
(ELBO) ≤ log Z = log

∑
S⊆V exp(F (S)). Specifically,

the optimization problem is,

max
x∈[0,1]

f(x) :=

multilinear extension of F (S):fmt(x)︷ ︸︸ ︷
Eq(S|x)[F (S)]

−
∑n

i=1
[xi log xi + (1− xi) log(1− xi)]

= fmt(x) +
∑

i∈V
H(xi), (ELBO) (1)

where H(xi) := −[xi log xi + (1 − xi) log(1 − xi)] is
the binary entropy function and by default 0 log 0 = 0.
fmt(x) := Eq(S|x)[F (S)] is the multilinear extension of
F (S). The above (ELBO) is continuous DR-submodular
w.r.t. x, thus falling into the general problem class (P). At
first glance, fmt(x) seems to require an exponential number
of operations for evaluation; we show in §4 that fmt(x) and
its gradients can be computed precisely in polynomial time
for many classes of practical objectives, such as facility
location, FLID (Tschiatschek et al., 2016), set cover (Lin
& Bilmes, 2011b) and graph cuts. Maximizing (ELBO)
to optimality provides the tightest lower bound of log Z in
terms of the KL divergence KL(q‖p). We put details in §D.

2.2. Mean Field Inference of Posterior-Agreement (PA)

In addition to the traditional mean field objective (ELBO)
in (1), here we further formulate a second class of mean
field objectives. They come from Posterior-Agreement
(PA) for probabilistic log-submodular models, which is an
information-theoretic criterion to conduct model and algo-
rithmic validation (Buhmann, 2010; Buhmann et al., 2018;
Bian et al., 2016).

Let us again consider the recommender system example:
usually there are some hyperparameters in the model/utility
function F (S) that require adaptation to the input data. One
natural way to do so is through model validation: Split the
training data into multiple folds, train a model on each fold
D and infer a “noisy” posterior distribution p(S|D). PA
measures the agreement between these “noisy” posterior
distributions.

Assume w.l.o.g. that there are two folds of data D′,D′′ in
the sequel. In the PA framework, we have two consecutive
targets: 1) Direct inference based on the two posterior dis-
tributions p(S|D′) and p(S|D′′). This task amounts to find
the MAP solution of the PA distribution (which is discussed



Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference

in the next paragraph), it can be approximated by standard
mean field inference. 2) Use the PA objective (3) as a cri-
terion for model validation/selection. Since in general the
PA objective (3) is intractable, we will still use mean field
lower bounds and some upper bounds of Djolonga & Krause
(2014) to obtain estimates for it.

Mean Field Approximation of the Posterior-Agreement
Distribution. A probabilistic log-submodular model is a
special case of a Gibbs random field with unit temperature
and −F (S) as the energy function. In PA framework, we
explicitly keep β as the inverse temperature, pβ(S|D) :=

exp(βF (S|D))∑
S̃⊆V exp(βF (S̃|D))

,∀S ⊆ V , where D is the dataset used to

train the model F (S|D). The PA distribution is defined as,

pPA(S) ∝ pβ(S|D′)pβ(S|D′′) ∝ exp[β(F (S|D′)+F (S|D′′))].

Note that its log partition function is still intractable.
In order to approximate pPA(S), we use mean field ap-
proximation with a surrogate distribution q(S|x) :=∏
i∈S xi

∏
j /∈S(1− xj),

log ZPA = log
∑

S⊆V
exp[β(F (S|D′) + F (S|D′′))]

≥ β Eq(S|x)[F (S|D′)] + β Eq(S|x)[F (S|D′′)] (2)

+
∑

i∈V
H(xi). (PA-ELBO)

Maximizing (PA-ELBO) in (2) still falls into the gen-
eral problem class (P) (see §D for details). Maximizing
(PA-ELBO) also serves as a building block for the second
target below.

Lower Bounds for the Posterior-Agreement Objective.
The PA objective is used to measure the agreement between
two posterior distributions motivated by an information-
theoretic analogy (Buhmann et al., 2018; Bian et al., 2016).
By introducing the same surrogate distribution q(S|x), one
can easily derive that,

log
∑

S⊆V
pβ(S|D′)pβ(S|D′′) (PA objective) (3)

≥ H(q)+β EqF (S|D′)+β EqF (S|D′′)︸ ︷︷ ︸
(PA-ELBO) in (2)

− log Z(β; D′)− log Z(β; D′′)

where H(q) is the entropy of q, Z(β; D′) and Z(β; D′′) are
the partition functions of the two noisy distributions, re-
spectively. In order to find the best lower bound for PA
objective, one need to maximize w.r.t. q(S|x) the (PA-
ELBO) objective, at the same time, find the upper bounds
for log Z(β; D′) + log Z(β; D′′). The latter can be achieved
using techniques from Djolonga & Krause (2014). We sum-
marize the details in §E to make it self-contained.

3. An Optimal Algorithm for Continuous
DR-Submodular Maximization

Unfortunately, problem (P) is generally hard: The 1/2 hard-
ness result (Bian et al., 2017c, Proposition 5) can be easily
translated to (P) with details deferred to §B.1. The follow-
ing question arises naturally: Is it possible to achieve the
optimal 1/2 approximation ratio (unless RP=NP) by prop-
erly utilizing the extra DR propety in (P)? To affirmatively
answer this question, we propose a new Double Greedy algo-
rithm for continuous DR-submodular maximization called
DR-DoubleGreedy and prove a 1/2 approximation ratio.

3.1. A Deterministic 1/2-Approximation for
Continuous DR-Submodular Maximization

Algorithm 1: DR-DoubleGreedy(f,a,b)

Input: maxx∈[a,b] f(x), f(x) is DR-submodular,
[a,b] ⊆ X ; # coordinates n; additive error level
δ ≥ 0.

1 x0 ← a, y0 ← b;
2 for k = 1→ n do
3 let vk be the coordinate being operated;
4 find ua such that

f(xk−1|vk(ua)) ≥ maxu′ f(xk−1|vk(u′))− δ
n ,

5 δa ← f(xk−1|vk(ua))− f(xk−1) ;
6 find ub such that

f(yk−1|vk(ub)) ≥ maxu′ f(yk−1|vk(u′))− δ
n ,

7 δb ← f(yk−1|vk(ub))− f(yk−1) ;
8 xk ← xk−1|vk( δa

δa+δb
ua + δb

δa+δb
ub); // update vth

k

coordinate to be a convex combination of ua & ub

9 yk ← yk−1|vk( δa
δa+δb

ua + δb
δa+δb

ub);

Output: xn or yn (xn = yn)

The pseudocode of DR-DoubleGreedy as summarized in
Alg. 1 describes a one-epoch algorithm, sweeping over the
n coordinates in one pass. Like the previous Double Greedy
algorithms, the procedure maintains two solutions x,y, that
are initialized as the lower bound a and the upper bound
b, respectively. In iteration k, it operates on coordinate vk,
and solves the two 1-D subproblems maxu′ f(xk−1|vk(u′))
and maxu′ f(yk−1|vk(u′)), based on xk−1 and yk−1, re-
spectively. It also allows solving 1-D subproblems approx-
imately with additive error δ ≥ 0 (δ = 0 recovers the
error-free case). Let ua and ub be the solutions of these 1-D
subproblems.

Unlike previous Double Greedy algorithms, we change co-
ordinate vk of xk−1 and yk−1 to be a convex combination of
ua and ub, weighted by respective gains δa, δb. This convex
combination is the key step that utilizes the DR property of
f , and it also plays a crucial role in the proof.

Note that the 1-D subproblem has a closed-form solu-



Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference

tion for ELBO (1) (and similarly for PA-ELBO (2)).
For coordinate i, the partial derivative of the multilin-
ear extension is ∇ifmt(x), and for the entropy term, it
is ∇H(xi) = log 1−xi

xi
. Then xi should be updated as

xi ← σ(∇ifmt(x)) =
(
1 + exp(−∇ifmt(x)

)−1
, where σ

is the logistic sigmoid function.

Theorem 1. Assume the optimal solution of
maxx∈[a,b] f(x) is x∗, then for Alg. 1 it holds,

f(xn) ≥ 1

2
f(x∗) +

1

4
[f(a) + f(b)]− 5δ

4
. (4)

Proof Sketch. The high level proof strategy is to bound the
change of an intermediate variable ok := (x∗ ∨ xk) ∧ yk

through the course of Alg. 1, which is the common frame-
work in the analysis of existing Double Greedy variants
(Buchbinder et al., 2012; Gottschalk & Peis, 2015; Bian
et al., 2017c; Soma & Yoshida, 2017)The novelty of our
method results from the update of x, y, which plays a key
role in achieving the optimal 1/2 approximation ratio. Fur-
thermore, in the analysis we find a way to utilize the DR
property directly, resulting in a succinct proof. We doc-
ument the details in §B.2, and summarize a sketch here.
Firstly, using DR-submodularity, we prove that in each it-
eration, if we were to flip the 1-D subproblem solutions of
x and y, it still does not decrease the function value (in the
error-free case δ = 0).

Lemma 1. For all k = 1, ..., n, it holds that,

f(xk−1|vk(ub))− f(xk−1) ≥ −δ/n, (5)

f(yk−1|vk(ua))− f(yk−1) ≥ −δ/n.

Then using the new update rule and the DR property, we
show that the loss on intermediate variables f(ok−1) −
f(ok) can be upper bounded by the increase of the objective
value in x and y times 1/2.

Lemma 2. For all k = 1, ..., n, it holds that,

f(ok−1)− f(ok) (6)

≤1

2

[
f(xk)− f(xk−1) + f(yk)− f(yk−1)

]
+

2.5δ

n
.

Given Lemma 2, let us sum for k = 1, ..., n. After rear-
rangement we reach the final conclusion.

3.2. Multi-epoch Extensions

Though DR-DoubleGreedy reaches the optimal 1/2
guarantee with one epoch, in practice it usually helps to
use its output as an initializer, and continue coordinate-wise
optimization for additional epochs. Since each step of co-
ordinate update will never decrease the function value, the
approximation guarantees will hold. We call this class of al-
gorithms DoubleGreedy-MeanField, abbreviated as

DG-MeanField, and summarize the pseudocode in Alg. 2.

Algorithm 2: DG-MeanField-1/2 &
DG-MeanField-1/3

Input: maxx∈[a,b] f(x), e.g., from the ELBO (1) or
PA-ELBO (2) objective; # epochs T

1 Option I: DG-MeanField-1/3: run
Submodular-DoubleGreedy (Bian et al.,
2017c) to get a 1/3 initializer x̂;

2 Option II: DG-MeanField-1/2: run
DR-DoubleGreedy to get a 1/2 initializer x̂ ;

3 beginning with x̂, optimize f(x) coordinate by
coordinate for T epochs ;

4. Efficient Methods for Calculating
Multilinear Extension & its Gradients

In this section we present guaranteed methods to effi-
ciently calculate the multilinear extension fmt(x) and its
gradients in polynomial time4. Remember that the mul-
tilinear extension is the expected value of F (S) under
the surrogate distribution: fmt(x) := Eq(S|x)[F (S)] =∑
S⊆V F (S)

∏
i∈S xi

∏
j /∈S(1 − xj). One can verify that

the partial derivative of fmt(x) is,

∇ifmt(x) = Eq(S|x,xi=1)[F (S)]− Eq(S|x,xi=0)[F (S)]

= fmt(x|i(1))− fmt(x|i(0))

=
∑

S⊆V,S3i

F (S)
∏

j∈S\{i}

xj
∏
j′ /∈S

(1− xj′)

−
∑

S⊆V\{i}

F (S)
∏
j∈S

xj
∏

j′ /∈S,j′ 6=i

(1− xj′).

4.1. Gibbs Random Fields with Finite Order of
Interactions

Let us use v ∈ {0, 1}V to equivalently denote the n bi-
nary random variables. F (v) corresponds to the negative
energy function in Gibbs random fields. If the energy func-
tion is parameterized with a finite order of interactions,
i.e., F (v) =

∑
s∈V θsvs +

∑
(s,t)∈V×V θs,tvsvt + ... +∑

(s1,s2,...,sd) θs1,s2,...,sdvs1 · · · vsd , d < ∞, then one can
verify that its multilinear extension has the following closed
form,

fmt(x) =
∑
s∈V

θsxs +
∑

(s,t)∈V×V

θs,txsxt + ... (7)

+
∑

(s1,s2,...,sd)

θs1,s2,...,sdxs1 · · ·xsd .

4Iyer & Bilmes (2015) give closed-form expressions for the par-
tition functions of submodular point processes for several classes
of objectives, which can be treated as the multilinear extensions
evaluated at 0.5 ∗ 1 with proper scaling.
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The gradient of this expression can also be easily derived.
Given this observation, one can quickly derive the multi-
linear extensions of a large category of energy functions of
Gibbs random fields, e.g., graph cut, hypergraph cut, Ising
models, etc. Details are in §F.

4.2. Facility Location & FLID (Facility Location
Diversity)

FLID is a diversity model (Tschiatschek et al., 2016) that
has been designed as a computationally efficient alternative
to DPPs. It is in a more general form than facility location.
Let W ∈ R|V|×D+ be the weights, each row correponds to
the latent representation of an item, with D as the dimen-
sionality. Then

F (S) :=
∑

i∈S
ui +

∑D

d=1
(max
i∈S

Wi,d −
∑

i∈S
Wi,d)

=
∑

i∈S
u′i +

∑D

d=1
max
i∈S

Wi,d, (8)

which models both coverage and diversity, and u′i = ui −∑D
d=1Wi,d. If u′i = 0, one recovers the facility location

objective. The computational complexity of evaluating its
partition function is O

(
|V|D+1

)
(Tschiatschek et al., 2016),

which is exponential in terms of D.

We now show the technique such that fmt(x) and ∇ifmt(x)
can be evaluated in O

(
Dn2

)
time. Firstly, for one d ∈ [D],

let us sort Wi,d such that Wid(1),d ≤ Wid(2),d ≤ · · · ≤
Wid(n),d. After this sorting, there are D permutations to
record: id(l), l = 1, ..., n, ∀d ∈ [D]. Now, one can verify
that,

fmt(x)

=
∑
i∈[n]

u′ixi +
∑
d

∑
S⊆V

max
i∈S

Wi,d

∏
m∈S

xm
∏
m′ /∈S

(1− xm′)

=
∑
i∈[n]

u′ixi +
∑
d

n∑
l=1

Wid(l),dxid(l)

n∏
m=l+1

[1− xid(m)].

Sorting costs O(Dn log n), and from the above expression,
one can see that the cost of evaluating fmt(x) is O

(
Dn2

)
.

By the relation that ∇ifmt(x) = fmt(x|i(1))− fmt(x|i(0)),
the cost is also O

(
Dn2

)
. For ∇ifmt(x), there exists a re-

fined way to calculate this derivative, which we explain in
§F.

4.3. Set Cover Functions

Suppose there are |C| = {c1, ..., c|C|} concepts, and n
items in V . Give a set S ⊆ V , Γ(S) denotes the set of
concepts covered by S. Given a modular function m :
2C 7→ R+, the set cover function is defined as F (S) =
m(Γ(S)). This function models coverage in maximization,
and also the notion of complexity in minimization problems

(Lin & Bilmes, 2011b). Let us define an inverse map Γ−1,
such that for each concept c, Γ−1(c) denotes the set of items
v such that Γ−1(c) 3 v. So the multilinear extension is,

fmt(x) =
∑

i∈V
m(Γ(S))

∏
m∈S

xm
∏

m′ /∈S
(1− xm′)

=
∑

c∈C
mc

[
1−

∏
i∈Γ−1(c)

(1− xi)
]
. (9)

The last equality is achieved by considering the situations
where a concept c is covered. One can observe that both
fmt(x) and ∇ifmt(x) can be evaluated in O(n|C|) time.

4.4. General Case: Approximation by Sampling

In the most general case, one may only have access to the
function values of F (S). In this scenario, one can use
a polynomial number of sample steps to estimate fmt(x)
and its gradients. Specifically: 1) Sample k times S ∼
q(S|x) and evaluate function values for them, resulting in
F (S1), ..., F (Sk). 2) Return the average 1

k

∑k
i=1 F (Si).

According to the Hoeffding bound (Hoeffding, 1963), one
can easily derive that 1

k

∑k
i=1 F (Si) is arbitrarily close to

fmt(x) with increasingly more samples: With probability
at least 1 − exp(−kε2/2), it holds that | 1k

∑k
i=1 F (Si) −

fmt(x)| ≤ εmaxS |F (S)|, for all ε > 0.

5. Experiments
The objectives under investigation are ELBO (1) and PA-
ELBO (2). We set β = 1 in PA-ELBO. We tested on
the representative FLID model the following algorithms
and baselines: The first category is one-epoch algorithms,
including 1© Submodular-DoubleGreedy (Bian et al.,
2017c) with 1/3 approximation guarantee, 2© BSCB (Alg.
4 of Niazadeh et al. (2018), where we chose ε = 10−3) with
1/2 guarantee and 3© DR-DoubleGreedy (Alg. 1) with
1/2 guarantee.

The second category contain multiple-epoch algorithms: 4©
CoordinateAscent-0: initialized as 0 and coordinate-
wisely improving the solution; CoordinateAscent-1:
initialized as 1; CoordinateAscent-Random:
initialized as a uniform vector U(0,1). 5©
DG-MeanField-1/3. 6© DG-MeanField-1/2
from Alg. 2. 7© BSCB-Multiepoch, which is the
multi-epoch extension of BSCB: After the first epoch, it
continues to improve the solution coordinate-wisely.

For all algorithms, we use the same random order to process
the coordinates within each epoch. We are trying to under-
stand: 1) In terms of DR-submodular maximization, how
good are the solutions returned by one-epoch algorithms?
2) For multi-epoch algorithms, how good are the realized
lower bounds? For small scale problems we can calculate
the true log-partitions exhaustively, which servers as a
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Table 1: Summary of results on ELBO objective (1) and PA-ELBO objective (2). Sub-DG stands for
Submodular-DoubleGreedy, DR-DG stands for DR-DoubleGreedy. Boldface numbers indicate the best mean of
function values returned. For ELBO, the mean and standard deviation were calculated for 10 FLID models trained on 10
folds of the data. For PA-ELBO, the mean and standard deviation were calculated for models trained over 45 pairs of folds.
More details are in the experimental section.

ELBO objective (1) PA-ELBO objective (2)
Category D Sub-DG BSCB DR-DG Sub-DG BSCB DR-DG

furniture 2 2.078±0.091 2.771±0.123 3.035±0.059 0.918±0.768 2.287±0.399 2.402±0.159
3 1.835±0.156 2.842±0.128 3.026±0.099 1.296±1.176 2.536±0.439 2.693±0.181

n=32 10 1.375±0.194 2.951±0.161 2.917±0.103 1.504±1.110 2.764±0.405 2.882±0.248

carseats 2 2.089±0.166 2.863±0.090 3.045±0.069 1.218±1.189 2.106±0.308 2.383±0.173
3 1.890±0.146 3.003±0.110 3.138±0.082 1.598±1.422 2.413±0.397 2.718±0.194

n=34 10 1.390±0.232 3.100±0.140 3.003±0.157 1.975±1.587 2.670±0.332 2.957±0.244

safety 2 1.934±0.402 2.727±0.212 2.896±0.098 1.263±1.187 2.088±0.290 2.335±0.121
3 1.867±0.453 2.830±0.191 2.970±0.110 1.477±1.150 2.359±0.354 2.636±0.158

n=36 10 1.546±0.606 2.916±0.191 2.920±0.149 1.716±1.209 2.507±0.287 2.723±0.138

strollers 2 2.042±0.181 2.829±0.144 2.928±0.060 0.587±0.673 1.883±0.238 2.171±0.171
3 1.814±0.264 2.958±0.146 2.978±0.077 0.837±0.835 2.119±0.243 2.496±0.165

n=40 10 1.328±0.544 3.065±0.162 2.910±0.140 1.225±1.023 2.412±0.230 2.706±0.252

media 2 3.221±0.066 3.309±0.055 3.493±0.051 0.372±0.286 1.477±0.128 1.336±0.101
3 3.276±0.082 3.492±0.083 3.712±0.079 0.418±0.366 1.736±0.177 1.762±0.095

n=58 10 2.840±0.183 3.894±0.122 3.924±0.114 0.653±0.727 2.309±0.244 2.524±0.130

health 2 3.197±0.067 3.174±0.074 3.516±0.043 0.528±0.264 1.679±0.112 1.654±0.066
3 3.231±0.055 3.306±0.108 3.707±0.064 0.621±0.405 1.918±0.144 2.023±0.085

n=62 10 2.633±0.115 3.508±0.120 3.675±0.110 0.808±0.755 2.256±0.175 2.384±0.110

toys 2 3.543±0.047 3.454±0.091 3.856±0.044 0.491±0.138 1.789±0.187 1.735±0.058
3 3.362±0.055 3.412±0.070 3.736±0.051 0.456±0.149 1.794±0.197 1.763±0.065

n=62 10 3.037±0.138 3.706±0.108 3.859±0.119 0.547±0.301 2.218±0.269 2.287±0.105

diaper 2 3.500±0.058 3.517±0.058 3.636±0.043 0.295±0.158 1.119±0.063 0.665±0.116
3 3.739±0.080 3.753±0.065 3.974±0.065 0.337±0.240 1.429±0.111 1.141±0.120

n=100 10 3.423±0.110 4.150±0.120 4.203±0.086 0.386±0.504 1.969±0.201 2.009±0.199

feeding 2 3.942±0.041 3.808±0.024 3.970±0.036 0.393±0.034 0.894±0.022 0.501±0.029
3 4.333±0.031 4.095±0.032 4.390±0.031 0.503±0.072 1.232±0.041 0.893±0.046

n=100 10 4.611±0.053 4.553±0.079 4.860±0.056 0.608±0.239 1.808±0.087 1.820±0.078

gear 2 3.311±0.046 3.150±0.037 3.430±0.040 0.232±0.068 1.019±0.048 0.590±0.043
3 3.538±0.048 3.347±0.045 3.721±0.050 0.303±0.132 1.257±0.085 1.020±0.064

n=100 10 3.065±0.083 3.550±0.050 3.670±0.067 0.312±0.232 1.566±0.130 1.514±0.072

bedding 2 3.406±0.080 3.374±0.088 3.620±0.062 0.525±0.121 1.932±0.194 2.001±0.080
3 3.648±0.106 3.564±0.083 3.876±0.081 2.499±0.972 2.250±0.269 2.624±0.066

n=100 10 3.355±0.161 3.799±0.144 3.912±0.082 3.919±0.045 2.578±0.358 3.157±0.091

apparel 2 3.560±0.094 3.527±0.046 3.784±0.059 0.332±0.519 1.557±0.140 1.492±0.189
3 3.878±0.092 3.755±0.062 4.140±0.063 0.445±0.675 1.922±0.235 2.231±0.202

n=100 10 3.751±0.087 4.084±0.075 4.425±0.066 0.505±1.005 2.368±0.333 2.953±0.238

bath 2 2.957±0.087 3.024±0.032 3.198±0.056 0.266±0.306 1.091±0.071 0.827±0.184
3 3.062±0.085 3.195±0.058 3.448±0.058 0.347±0.436 1.358±0.117 1.307±0.177

n=100 10 2.497±0.135 3.426±0.076 3.438±0.089 0.502±0.644 1.715±0.163 1.777±0.214
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natural upper bound of ELBO. All algorithms are imple-
mented in Python3, and source code will be public on the
author’s homepage.

D=10

Iterations

Iterations

D=3

D=3

Iterations

safety, n=36

PA
-E

LB
O

apparel, n=100

Iterations

D=10

PA
-E

LB
O

Figure 1: PA-ELBO on Amazon data. The figures trace
trajectories of multi-epoch algorithms. Cyan vertical line
shows the one-epoch point.

Real-world Dataset. We tested the mean field methods
on the trained FLID models from Tschiatschek et al. (2016)
on Amazon Baby Registries dataset. After preprocessing,
this dataset has 13 categories, e.g., “feeding” & “furniture”.
One category contains a certain number of registries over
the ground set of this category, e.g., “strollers” has 5,175
registries with n = 40. One can refer to Table 1 for specific
dimensionalities on each of the category5. For each category,
three classes of models were trained, with latent dimensions
D = 2, 3, 10, repectively, on 10 folds of the data.

5.1. Results on One-epoch Algorithms

Table 1 summarizes the outputs of one-epoch algorithms for
both ELBO and PA-ELBO objectives. For each category, the
results of FLID models with three dimensionalities (D =
2, 3, 10) are reported.

ELBO Objective. The results are summarized in columns
3 to 5 in Table 1. The mean and standard de-
viation are calculated for 10 FLID models trained
on 10 folds of the data. One can observe that
both DR-DoubleGreedy and BSCB improve over the
baseline Submodular-DoubleGreedy, which has
only a 1/3 approximation guarantee. Furthermore,
DR-DoubleGreedy generates better solutions than

5More details on this dataset can be found in Gillenwater et al.
(2014).

BSCB for almost all of the cases, though they have the
same approximation guarantees.

PA-ELBO objective. The results are summarized in
columns 6 to 8 in Table 1. For each category, out of the
10 folds of data, we have

(
10
2

)
= 45 pairs of folds. For

each pair of folds, one PA-ELBO objective is defined. The
mean and standard deviation are computed for these 45 pairs
for each category and each latent dimensonality D. One
can still observe that DR-DoubleGreedy and BSCB sig-
nificantly improve over Submodular-DoubleGreedy.
Moreover, DR-DoubleGreedy usually produces better
solutions than BSCB.

5.2. Results on Multi-epoch Algorithms

PA-ELBO Objective. Figure 1 shows representative re-
sults on PA-ELBO objectives. One can see that after one
epoch, DG-MeanField-1/2 usually returns the best solu-
tion. However, CoordinateAscent is quite sensitive to
initializations. After sufficiently many iterations, most multi-
epoch algorithms converge to similar function values. This
is consistent with the intuition since after one epoch, all algo-
rithms are using the same strategy: conducting coordinate-
wise maximization. However, for CoordinateAscent
with unlucky initializations, e.g., for category “safety” (row
1), it may get stuck in poor local optima.

More Experiments. Due to space limit, the results on
ELBO objectives along with the true log-partition values are
put into §G.1, the experimental study of the discretization-
based algorithm (Soma & Yoshida, 2017) are put in to §G.2,
and synthetic results are deferred to §G.4.

6. Conclusions
Probabilistic structured models play an important role in
machine learning today, especially models with submodular
costs. We have proposed a novel Double Greedy scheme
with optimal 1/2 approximation ratio for the general prob-
lem of box-constrained continuous DR-submodular maxi-
mization. Based on the optimal scheme, we present prov-
able mean field algorithms for probabilistic log-submodular
models and their posterior agreement score.
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Appendix

A. There Exist Poor Local Optima
If one only assume the objective function f(x) to be continuous DR-submodular, and considering that the multilinear
extension of a submodular set function is continuous DR-submodular, we can take the examples from literatures on
combinatorial optimization, e.g., Feige et al. (2011), to show that bad local optima exist.

Here we provide a stronger example, where we assume that the objective function f(x) has the same structure as the ELBO
objective (1). And still there exist bad local optima. These local optima have arbitrarily small objective value compared to
the global optimum. And CoordinateAscent will get stuck in this local optimum without extra techniques.

Suppose that we have a directed graph G = (V, A) with four vertices, V = {1, 2, 3, 4} and four arcs, A =
{(1, 2), (2, 3), (3, 2), (3, 4)}. The weights of the arcs are (let b, c be large positive numbers): w1,2 = c, w2,3 = c,
w3,4 = c, w3,2 = bc. Let F (S) denote the sum of weights of arcs leaving S. Consider its ELBO (using techniques from
§4.1),

f(x) = fmt(x) +
∑
i∈V

H(xi) (10)

=
∑

(i,j)∈A

wijxi(1− xj) +
∑
i∈V

H(xi) (11)

= cx1(1− x2) + cx2(1− x3) + cx3(1− x4) + bcx3(1− x2) +
∑
i∈V

H(xi). (12)

Consider the point y = [0.5, 1, 0, 0.5]>, it has function value f(y) = c+ 2 log 2. Consider a second point x̄ = [1, 0, 1, 0]>,
while the global optimum f(x?) must be greater than f(x̄) = (2 + b)c. When b becomes large, the ratio f(y)

f(x?) ≤
c+2 log 2
(2+b)c

can be arbitrarily small.

CoordinateAscent may get stuck on the point y = [0.5, 1, 0, 0.5]>. This can be illustrated by considering the course of
CoordinateAscent. Suppose wlog. that CoordinateAscent processes coordinates in the order of 1→ 4 (actually
it is the same with any orders).

For coordinate 1, ∇1fmt(x) = c(1− x2), so ∇1fmt(y) = 0, after applying σ(∇1fmt(y)), y1 remains to be 0.5.

For coordinate 2,∇2fmt(x) = c(1− x3)− bcx3, so∇2fmt(y) = c. When c is sufficiently large (approaching infinity), after
applying σ(∇2fmt(y)), y2 will still be 1.

For coordinate 3, ∇3fmt(x) = −cx2 + c(1 − x4) + bc(1 − x2), so ∇3fmt(y) = −0.5c. When c is sufficiently large
(approaching infinity), after applying σ(∇3fmt(y)), y3 will still be 0.

For coordinate 4, ∇4fmt(x) = −cx3, so∇4fmt(y) = 0, after applying σ(∇4fmt(y)), y4 remains to be 0.5.

B. Proofs for DR-DoubleGreedy
B.1. Hardness of Problem (P)

Observation 1. The problem of maximizing a generally non-monotone DR-submodular continuous function subject to
box-constraints is NP-hard. Furthermore, there is no (1/2 + ε)-approximation for any ε > 0, unless RP = NP.

The proof is very similar to the that of Bian et al. (2017c, Proposition 5), so we just briefly explain here. One observation
is that the multilinear extension of a submodular set function is also continuous DR-submodular, so we can use the same
reduction as in Bian et al. (2017c, Proposition 5) to prove the hardness results as above.

B.2. Detailed Proof of Theorem 1

Theorem 1. Assume the optimal solution of maxx∈[a,b] f(x) is x∗, then for Alg. 1 it holds,

f(xn) ≥ 1

2
f(x∗) +

1

4
[f(a) + f(b)]− 5δ

4
. (4)
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Proof of Theorem 1. Define ok := (x∗ ∨ xk) ∧ yk. It is clear that o0 = x∗ and on = xn = yn. One can notice that as
Alg. 1 progresses, ok moves from x∗ to xn (or yn).

Let ra = δa
δa+δb

, rb = 1− ra, u = raua + (1− ra)ub.

Lemma 1. For all k = 1, ..., n, it holds that,

f(xk−1|vk(ub))− f(xk−1) ≥ −δ/n, (5)

f(yk−1|vk(ua))− f(yk−1) ≥ −δ/n.

Proof of Lemma 1. One can observe that xk−1 ≤ yk−1, so from DR-submodularity: f(xk−1|vk(ub)) − f(xk−1) ≥
f(yk−1|vk(ub))− f(yk−1|vk(avk)) ≥ − δ

n .

Similarly, because of xk−1 ≤ yk−1 and ua ≤ bvk , from DR-submodularity: f(yk−1|vk(ua)) − f(yk−1) ≥
f(xk−1|vk(ua))− f(xk−1|vk(bvk)) ≥ − δ

n .

Lemma 2. For all k = 1, ..., n, it holds that,

f(ok−1)− f(ok) (6)

≤1

2

[
f(xk)− f(xk−1) + f(yk)− f(yk−1)

]
+

2.5δ

n
.

Proof of Lemma 2. Step I:

Let us try to lower bound the RHS of Lemma 2.

f(xk)− f(xk−1) = f(xk−1|vk(raua + rbub))− f(xk−1)

1©
≥ raf(xk−1|vk(ua)) + rbf(xk−1|vk(ub))− f(xk−1)

= ra[f(xk−1|vk(ua))− f(xk−1)] + rb[f(xk−1|vk(ub))− f(xk−1)]

2©
≥ raδa − rb

δ

n
,

where 1© is because of that f is concave along one coordinate, 2© is from Lemma 1.

Similarly,

f(yk)− f(yk−1) = f(yk−1|vk(raua + rbub))− f(yk−1)

≥ raf(yk−1|vk(ua)) + rbf(yk−1|vk(ub))− f(yk−1)

= ra[f(yk−1|vk(ua))− f(yk−1)] + rb[f(yk−1|vk(ub))− f(yk−1)]

≥ −ra
δ

n
+ rbδb.

So it holds that

f(xk)− f(xk−1) + f(yk)− f(yk−1) ≥ raδa + rbδb −
δ

n
=
δ2
a + δ2

b

δa + δb
− δ

n
. (13)

Step II:

Now let us upper bound the LHS of Lemma 2.

Notice that ok−1 := (x∗ ∨ xk−1) ∧ yk−1. For ok−1, its vk-th coordinate is x?vk . From ok−1 to ok, its vk-th coordinate
changes to be u. So,
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f(ok−1)− f(ok) = f(ok−1|vk(x?vk))− f(ok−1|vk(u)) (14)

Let us consider the following two situations:

1. x?vk ≤ u.

In this case:

f(ok−1)− f(ok)

= f(ok−1|vk(x?vk))− f(ok−1|vk(u))

3©
≤ f(yk−1|vk(x?vk))− f(yk−1|vk(u))

= f(yk−1|vk(x?vk))− f(yk−1|vk(raua + rbub))

4©
≤ ra[f(yk−1|vk(x?vk))− f(yk−1|vk(ua))] + rb[f(yk−1|vk(x?vk))− f(yk−1|vk(ub))]

≤ ra[f(yk−1|vk(x?vk))− f(yk−1|vk(ua))] + rb
δ

n
(selection rule of Alg. 1)

5©
≤ ra[f(yk−1|vk(ub)) +

δ

n
− (f(yk−1)− δ

n
)] + rb

δ

n

≤ raδb + (2ra + rb)
δ

n
,

where 3© is because ok−1 ≤ yk−1 and DR-submodularity of f , 4© is from concavity of f along one coordinate, 5© is
because of the selection rule of Alg. 1 and Lemma 1.

2. x?vk > u:

In this case:

f(ok−1)− f(ok)

= f(ok−1|vk(x?vk))− f(ok−1|vk(u))

≤ f(xk−1|vk(x?vk))− f(xk−1|vk(u)) (ok−1 ≥ xk−1 & DR-submodularity)

= f(xk−1|vk(x?vk))− f(xk−1|vk(raua + rbub))

≤ ra[f(xk−1|vk(x?vk))− f(xk−1|vk(ua))] + rb[f(xk−1|vk(x?vk))− f(xk−1|vk(ub))]

≤ ra
δ

n
+ rb[f(xk−1|vk(x?vk))− f(xk−1|vk(ub))]

≤ ra
δ

n
+ rb[(f(xk−1|vk(ua)) +

δ

n
)− (f(xk−1)− δ

n
)]

= rbδa + (2rb + ra)
δ

n

We can conclude that in both the above cases, it holds that

f(ok−1)− f(ok) ≤ δaδb
δa + δb

+
2δ

n
(15)

Combining Equation (13) and Equation (15) we can get,

1

2
[f(xk)− f(xk−1) + f(yk)− f(yk−1)] ≥ f(ok−1)− f(ok)− 2.5δ

n
(16)

Thus we reach Lemma 2.



Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference

Now we can finalize the proof. For Lemma 2, let us sum for k = 1, ..., n, we can get,

f(x∗)− f(xn) ≤ 1

2
[f(xn)− f(a) + f(yn)− f(b)] + 2.5δ (17)

After rearrangement, one can show that f(xn) ≥ 1
2f(x∗) + 1

4 [f(a) + f(b)]− 5δ
4 .

C. Difference of DR-DoubleGreedy and BSCB
In this section, we show that DR-DoubleGreedy behaves fundamentally different from BSCB by a simple example. It is
worth noting that DR-DoubleGreedy does not require f to be differentiable, while BSCB explicitly needs the partial
derivative of f. Extensive experimental statistics (Table 1) documents that DR-DoubleGreedy performs better than BSCB
in most cases.

In terms of time cost , BSCB and DR-DoubleGreedy have the similar running time asymptotically. To see this: 1) both
algorithms run n iterations for the n coordinates; 2) in iteration i, the main cost of both algorithms lie in calculating the
partial derivative of the multilinear extension at x and y. Empirically, our algorithm can be further optimized: it just needs
to evaluate δa and δb, which can be obtained without extra cost (using the previously calculated partial derivative plus the
multilinear nature of the multilinear extensions). While BSCB needs to use binary search with precision ε to find the proper
value u, which needs to be run for multiple iterations.

To prove the difference, we provide a counter example: consider the 2-D DR-submodular quadratic program:

f(x) = 0.5x>Hx + h>x,H = [−1,−1;−1,−2],h = [0.5; 1]. (18)

Define g([x1;x2]) := ∂f(x)
∂x1

= −x1 − x2 + 0.5

Consider the box-constrained DR-submodular max problem:

max f(x), 0 ≤ x ≤ 1 (19)

Starting with coordinate 1,

- For BSCB: g([z; 0]) = −z+0.5, g([z; 1]) = −z−0.5. In order to find the equilibrium, we set g([z; 0])∗(1−z)+g([z; 1])∗z
to be 0, which amounts to −2z + 0.5 = 0, so z = 1/4.

- For DR-DoubleGreedy:

Solving 1-D subproblem ua = arg maxx1
f([x1; 0]) one gets ua = 0.5, and δa = f([0.5; 0])− f([0; 0]) = 1/8.

Solving 1-D subproblem ub = arg maxx1
f([x1; 1]) one gets ub = 0, and δb = f([0; 1])− f([1; 1]) = 1.

So u = (1/9) ∗ ua + (8/9) ∗ ub = 1/18.

Q.E.D. (Every step is in closed form)

D. Mean Field Lower Bounds for PSMs
Log-submodular models (Djolonga & Krause, 2014) are a class of probabilistic point processes over subsets of a ground set
V = [n], where the log-densities are submodular set functions F (S): p(S) = 1

Z exp(F (S)), where Z =
∑
S⊆V exp(F (S))

is the partition function.

Mean-field inference aims to approximate p(S) by a fully factorized product distribution q(S|x) :=
∏
i∈S xi

∏
j /∈S(1−

xj),x ∈ [0, 1]n, by minimizing the distance measured w.r.t. the Kullback-Leibler divergence between q and p, i.e.,
KL(q‖p) =

∑
S⊆V q(S|x) log q(S|x)

p(S) . KL(q‖p) is non-negative, so

0 ≤ KL(q‖p) =
∑
S⊆V

q(S|x) log
q(S|x)

p(S)
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= −Eq(S|x)[log p(S)]−H(q(S|x)) (20)

= −
∑
S⊆V

F (S)
∏
i∈S

xi
∏
j /∈S

(1− xj) +
∑n

i=1
[xi log xi + (1− xi) log(1− xi)] + log Z. (21)

where H(·) is the entropy. So one can get log Z ≥
∑
S⊆V F (S)

∏
i∈S xi

∏
j /∈S(1−xj)−

∑n
i=1[xi log xi+(1−xi) log(1−

xi)] = (ELBO).

Multilinear extension fmt(x) of a submodular set function is continuous DR-submodular (Bach, 2015), and
−
∑n
i=1[xi log xi + (1− xi) log(1− xi)] is seperable and concave on each coordinate, so (ELBO) is DR-submodular w.r.t.

x. Maximizing (ELBO) amounts to minimizing the Kullback-Leibler divergence.

For (PA-ELBO) (2) , it is the sum of two multilinear extensions (weighted by β > 0) and the binary entropy term, since
the non-negative sum of two DR-submodular functions is still DR-submodular, so (PA-ELBO) in (2) is also continuous
DR-submodular. Thus it fits into the general optimization problem (P).

E. Full Lower Bounds of PA Objective
By giving upper bounds for log Z(β; D′) + log Z(β; D′′), we can get the full lower bounds of the PA objective.

Let us take one log Z(β; D′) for example. This can be achieved using techniques of Djolonga & Krause (2014), which is
done by optimizing supergradients of F (S|D′). A representative supergradient is the bar supergradient, which is defined as:
if i ∈ A, s̄A = FV−{i}({i}|D′), if i /∈ A, s̄A = F ({i}|D′), where FB(A|D′) is the marginal gain of A based on B. Then,

log Z(β; D′) ≤ min
A

log Z+(s̄A, F (A|D′)− s̄A(A)) = min
A
F (A|D′) + m(A|D′), (22)

where m({i}|D′) = log(1 + e−FV−{i}({i}|D
′))− log(1 + eF ({i}|D′)).

So the full lower bound of PA objective in (3) is,

log
∑

S⊆V
pβ(S|D′)pβ(S|D′′) (Posterior-Agreement objective) (23)

=−
[∑

S⊆V
q(S|x)

]
log

∑
S⊆V q(S|x)∑

S⊆V pβ(S|D′)pβ(S|D′′)
log-sum inequality

≥ −
∑

S⊆V
q(S|x) log

q(S|x)

pβ(S|D′)pβ(S|D′′)
= H(q) + Eqlog pβ(S|D′) + Eq log pβ(S|D′′)

= H(q) + β EqF (S|D′) + β EqF (S|D′′)︸ ︷︷ ︸
(PA-ELBO) in (2)

− log Z(β; D′)−log Z(β; D′′)

≥ max
q

H(q) + β EqF (S|D′) + β EqF (S|D′′)︸ ︷︷ ︸
(PA-ELBO) in (2)

−min
A

[
F (A|D′) + m(A|D′)

]
−min

A

[
F (A|D′′) + m(A|D′′)

]
(24)

F. Detailed Multilinear Extension in Closed Form
F.1. More on Sampling

Lemma 3 (Hoeffding Bound, Theorem 2 in Hoeffding (1963)). Let X1, ..., Xm be independent random variables such that
for each i, a ≤ Xi ≤ b, with a, b ∈ R. Let X̄ = 1

m

∑m
i=1Xi. Then

Pr[|X̄ − E(X)| > t] ≤ e−
2t2m

(b−a)2 . (25)

According to the Hoeffding bound (Hoeffding, 1963), one can easily derive that 1
k

∑k
i=1 F (Si) is arbitrarily close to

fmt(x) with increasingly more samples: With probability at least 1 − e−kε2/2, it holds that | 1k
∑k
i=1 F (Si) − fmt(x)| ≤

εmaxS |F (S)|, for all ε > 0.
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F.2. Some Gibbs Random Fields

Undirected MAXCUT. For MAXCUT, its objective is F (v) = 1
2

∑
(i,j)∈E wij(vi + vj − 2vivj),v ∈ {0, 1}V . Its

multilinear extension is fmt(x) = 1
2

∑
(i,j)∈E wij(xi + xj − 2xixj),x ∈ [0, 1]V .

Directed MAXCUT. Its objective is F (v) =
∑

(i,j)∈E wijvi(1− vj),v ∈ {0, 1}V . Its multilinear extension is fmt(x) =
1
2

∑
(i,j)∈E wijxi(1− xj),x ∈ [0, 1]V .

Ising models. For Ising models with non-positive pairwise interactions, F (v) =
∑
s∈V θsvs +

∑
(s,t)∈E θstvsvt, v ∈

{0, 1}V , this objective can be easily verified to be submodular. Its multilinear extension is:

fmt(x) =
∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt (26)

Lower bound of its log-partition function is fmt(x) +
∑
s∈V Hs(xs),x ∈ [0, 1]V . When updating xs and fix all other

coordinates, it is easy to see that

xs ← σ(θs +
∑

t∈N(s)

θstxt), (27)

where N(s) are the neighbors of s.

F.3. More on FLID-style Objectives

The more refined way to compute partial directives can be expressed by considering the following derivation,

∇i

fmt(x)−
∑
i∈[n]

u′ixi


=

∑
S⊆V,S3i

F (S)
∏

j∈S\{i}

xj
∏
j′ /∈S

(1− xj′)−
∑

S⊆V\{i}

F (S)
∏
j∈S

xj
∏

j′ /∈S,j′ 6=i

(1− xj′)

=

D∑
d=1

 ∑
S⊆V,S3i

max
i∈S

Wi,d

∏
j∈S\{i}

xj
∏
j′ /∈S

(1− xj′)−
∑

S⊆V\{i}

max
i∈S

Wi,d

∏
j∈S

xj
∏

j′ /∈S,j′ 6=i

(1− xj′)


=

D∑
d=1

[Wid(li),d

n∏
m=li+1

(1− xm) +

n∑
l=li+1

Wid(l),dxid(l)

n∏
m=l+1

(1− xm)

−
l(i)∑
l=1

Wid(l),dxid(l)

n∏
m=l+1,m6=l(i)

(1− xm)−
n∑

l=l(i)+1

Wid(l),dxid(l)

n∏
m=l+1

(1− xm)]

F.4. Approximation for Concave Over Modular Functions

A general form is,

F (S) =

M∑
j=1

wjψ(mj(S))

=

M∑
j=1

wj [m
j(S)]a.

ψ() is a concave function, a common choice is ψ(y) = ya, a ∈ (0, 1]. A simple approximation is F̂ (S) =∑M
j=1 wj

∑
i∈S(mj

i )
a, which approximates F (S) up to a factor of O

(
|S|1−a

)
(Iyer & Bilmes, 2015). Since F̂ (S) is

modular, one can directly get its multilinear extension.
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G. More Experimental Results
We put more results in this section. It includes experiments on both synthetic datasets and real-world datasets.

G.1. ELBO Objective

D=10

Iteration
s

Iterations

D=3

D=3

Iterations

gear, n=100

EL
BO

bath, n=100

Iterations

D=10

EL
BO

Figure 2: Typical trajectories of multi-epoch algorithms on ELBO objective for Amazon data. 1st row: “gear”; 2nd row:
“bath”. Cyan vertical line shows the one-epoch point. Yellow line shows the true log-partition.

Figure 2 records typical trajectories of multi-epoch algorithms for ELBO objectives. Note that the cyan vertical lines indicate
the one-epoch point. It shows that after one epoch, DG-MeanField-1/2 almost always returns the best solution, and it
is also the fastest one to converge. However, CoordinateAscent is quite sensitive to initializations. After sufficiently
many iterations, all multi-epoch algorithms converge to similar ELBO value. This is consistent with the intuition since after
one epoch, all algorithms are using the same strategy: conducting coordinate-wise maximization. One can also observe that
the obtained ELBO is close to the true log partition functions (yellow lines).

G.2. Study of the Discretization-based Algorithm

We conducted comparisons with the exact version of the algorithm (Algorithm 1 of Soma & Yoshida (2017), termed
SY-Alg1). For number of bins in the discretization, we tested with 10, 50, 100 and 500. Figure 3 shows the trajectories of
SY-Alg1 in comparison with other one-epoch algorithms, where we set number of discretization bins to be 500.

From the experiments we observe that SY-Alg1 is much slower than DR-DoubleGreedy, which is apparent since
SY-Alg1 needs lots of function value evaluations due to discretization. By looking at the trajectories, one can see that
SY-Alg1 behaves similarly as BSCB when using sufficiently many discretization bins (greater than 50).
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carseats, n=34

EL
BO

bath, n=100

EL
BO

EL
BO bedding, n=100

Figure 3: Typical trajectories of one-epoch algorithms on ELBO objective for Amazon data. 1st row: “carseats”; 2nd row:
“bath”; 3rd row: “bedding”. Number of bins is set as 500 for SY-Alg1.

G.3. Experiments on Shrunken Frank-Wolfe

Though shrunken FW method is not only computationally too expensive, but also have worse approximation guarantee,
we still would like to see whether it would produces good solution with more computational resources. In order to verify
this, we run all multi-epoch algorithms for 6 epochs, while run shrunken FW for 60 epochs, results are shown in the
figure bellow: even with 10 times more computations, shrunken FW still performs worse than the proposed algorithm
DG-MeanField-1/2. Sometimes shrunken FW has comparable performance with coordinate descent variant.

G.4. Synthetic Results

We generate FLID models in the following manner: We firstly generate the latent representation matrix W ∈ Rn×D such
that each entry of Wi,d ∼ U(0, 1). It is clear that for FLID, F (∅) = 0. We then set u to be proportional to D in a random
way u = 0.1D ∗ 1 ∗ U(0, 1) so the objective is non-monotone. Figure 4 records the results: one row corresponds to the
results for a specific n. First column is the function value returned by the algorithms, which are the average of 10 repeated
experiments. The other columns are trajectories of multi-epoch algorithms, since behavior is similar for different repeated
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experiments, we plot the first one here. Yellow lines are the true log-partition returned by exhaustive search, cyan vertical
lines shows the one-epoch point. One can see that for one-epoch algorithms, DR-DoubleGreedy returns the highest
value. For multi-epoch algorithms, DG-MeanField-1/2 is the fasted one to converge. After sufficiently many epoches,
the three multi-epoch algorithms converge to solutions with similar function value.

G.5. More Results on ELBO Objective

See Figure 5 for more results on the ELBO objective from Amazon data.

G.6. More Results on PA-ELBO Objective

Figure 6 illustrates more results on the PA-ELBO objective from Amazon data.
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Figure 4: FLID synthetic results. First column shows the function values returned by different algorithms. The other columns
show trajectories of multi-epoch algorithms. Cyan vertical line shows one-epoch. Yellow line indicates the true log-partition
value generated by exhaustive search. SingleGreedy is the one-epoch version of CoordinateAscent-0.
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(a) Legend for subfigs (b,d,g)
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(f) D = 10
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(g) “bath”, n = 100
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(h) D = 3
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(i) D = 10

Figure 5: ELBO objective on Amazon data. 1st row: “strollers”; 2nd row: “health”. 3rd row: “bath”; Subfigs (b,d,g)
shows the ELBO returned by all algorithms, other columns traces trajectories of multi-epoch algorithms. Cyan vertical line
show the one-epoch point. Yellow line shows the true log-partition value. SingleGreedy is the one-epoch version of
CoordinateAscent-0.
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(a) Legend for subfigs (b,d,g)
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(b) “furniture”, n = 40, folds (6,10)
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(c) D = 10
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(d) “toys”, n = 62, folds (6,8)
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(e) D = 3
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(f) D = 10
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(g) “bedding”, n = 100, folds (7,9)
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(h) D = 3
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Figure 6: PA-ELBO objective on Amazon data. First row: “furniture”; second row: “toys”; third row: “bedding”. Subfigs
(b,d,g) show the PA-ELBO returned by all algorithms, other columns traces trajectories of multi-epoch algorithms. Cyan
vertical line shows the one-epoch point. SingleGreedy is the one-epoch version of CoordinateAscent-0.
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