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Abstract
We study the problem of off-policy evaluation
(OPE) in Reinforcement Learning (RL), where the
aim is to estimate the performance of a new policy
given historical data that may have been gener-
ated by a different policy, or policies. In particular,
we introduce a novel doubly-robust estimator for
the OPE problem in RL, based on the Targeted
Maximum Likelihood Estimation principle from
the statistical causal inference literature. We also
introduce several variance reduction techniques
that lead to impressive performance gains in off-
policy evaluation. We show empirically that our
estimator uniformly wins over existing off-policy
evaluation methods across multiple RL environ-
ments and various levels of model misspecifica-
tion. Finally, we further the existing theoretical
analysis of estimators for the RL off-policy esti-
mation problem by showing theirOP (1/

√
n) rate

of convergence and characterizing their asymp-
totic distribution.

1. Introduction
Off-policy evaluation (OPE) is an increasingly important
problem in reinforcement learning. Works on OPE address
the pressing issue of evaluating the performance of a novel
policy in a setting where actual enforcement might be too
costly, infeasible, or even hazardous. This situation arises
in many fields, including medicine, finance, advertising,
and education, to name a few (Murphy et al., 2001; Pe-
tersen et al., 2014; Theocharous et al., 2015; Hoiles & Van
Der Schaar, 2016). The OPE problem can be treated as a
counterfactual quantity estimation problem, as we inquire
about the mean reward we would have accrued, had we,
contrary to fact, implemented the policy πe at the time of
data-collection. Estimating and inferring such counterfac-
tual quantities is a well studied problem in statistical causal
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inference, and has led to many methodological develop-
ments. One of the things we aim to do in this work is to
further earlier efforts (Dudik et al., 2011) in bridging the
gap between the reinforcement learning and causal inference
fields.

There are roughly two predominant classes of approaches
to off-policy value evaluation in RL (Jiang & Li, 2015).
The first is the direct method (DM), analogous to the G-
computation procedure in causal inference (Robins et al.,
1999; 2000). The direct method first fits a model of the
system’s dynamics and then uses the learned fit in order to
estimate the mean reward of the target policy (evaluation
policy). The estimators produced by this approach usually
exhibit low variance, but suffer from high bias when the
model fit is misspecified or the sample size is small rela-
tive to the complexity of the function class of the model
(Mannor et al., 2007). The second major avenue for off-
policy value evaluation is importance sampling methods,
also termed inverse propensity score methods in statistical
causal inference (Rosenbaum & Rubin, 1983). Importance
sampling (IS) attempts to correct the mismatch between the
distributions produced by the behavior and target policies
(Precup et al., 2000; Precup, 2000). IS estimators are un-
biased under mild conditions, but their variance tends to
be large when the evaluation and behavior policies differ
significantly (Farajtabar et al., 2018), and grows exponen-
tially with the horizon, rendering them (Farajtabar et al.,
2018) impractical for many RL settings. A third class of
estimators, Doubly Robust (DR) estimators, obtained by
combining a DM estimator and an IS estimator, are becom-
ing standard in OPE (Farajtabar et al., 2018; Jiang & Li,
2015; Thomas & Brunskill, 2016). These originate from the
statistics literature (Robins et al., 1994; Robins & Rotnitzky,
1995; Bang & Robins, 2005; van der Laan & Rubin, 2006;
van der Laan & Rose, 2011; 2018), and were introduced in
the RL literature by Dudik et al. (2011). Combining a DM
and an IS estimator under the form of a DR estimator leads
to lower bias than DM alone, and lower variance than IS
alone.

Our contribution to OPE in RL is multifold. First we adapt
a doubly robust estimator from statistical causal inference,
the Longitudinal Targeted Maximum Likelihood Estimator
(LTMLE) to the OPE in RL setting. We show that our
adapted estimator converges at rate OP (1/

√
n) to the true
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policy value. Deriving the LTMLE requires us to identify
a mathematical object known in semiparametric statistics
as the efficient influence function (EIF) of the estimand
(policy value). To the best of our knowledge, this article
is the first one to explicitly derive the EIF of the policy
value for the OPE problem in RL. Knowledge of the EIF
allows us to prove that both our estimator (the LTMLE) and
recently proposed DR estimators (Jiang & Li, 2015; Thomas
& Brunskill, 2016) are optimal in the sense that they achieve
the generalized Cramer-Rao lower bound.

Second, we introduce an idea from statistics to make better
use of the data than prior OPE works (Jiang & Li, 2015;
Thomas & Brunskill, 2016). We noticed that most OPE pa-
pers, at least in theory, use sample splitting: the Q-function
is fitted on a split of the data, while the DR estimator is
obtained by evaluating the fitted Q-function on another split.
We propose a cross-validation-based technique that allows
to essentially average the Q-function over the entire sample,
leading to a constant-factor gain in risk.

Finally, and most importantly for practice, we propose sev-
eral regularization techniques for the LTMLE estimators,
out of which some, but not all, apply to other DR estima-
tors. Using the MAGIC ensemble method from Thomas
& Brunskill (2016), we construct an estimator that com-
bines various regularized LTMLEs. We call our estimator
RLTMLE (TMLE for RL). Our experiments demonstrate
that RLTMLE outperforms all considered competing off-
policy methods, uniformly across multiple RL environments
and levels of model misspecification.

2. Statistical Formulation of the Problem
2.1. Markov Decision Process

Consider a Markov Decision Process (MDP) defined as
a tuple (S,A,R, P1, P, γ), where S and A are the state
and action spaces, and γ ∈ (0, 1] is a discount factor. A
trajectory H is a succession of states St, actions At and
rewards Rt, observed from t = 1 to the horizon t = T :
H = (S1, A1, R1, ..., ST , AT , RT ). For all (s, a, r, s′) ∈
S×A×R×S , P (s′, r|s, a) is the probability of collecting
reward r and transitioning to state s′, conditional on starting
in state s and taking action a, and P1(s) is the probability
that the initial is s. A policy π is a sequence of conditional
distributions (π1, π2, ...) that stochastically map a state to
an action: for all t, At|St ∼ πt.

Suppose we are given n i.i.d. T -step trajectories of the
MDP, D = (H1, ...,Hn), collected under the behavior pol-
icy πb = (πb,1, ...., πb,T ). We assume all trajectories have
the same initial state s1, allowing for the data-generating
mechanism to be fully characterized by (P, πb).

2.2. Estimation Target

The goal of OPE is to estimate the average cumulative dis-
counted reward we would have obtained by carrying out the
target policy πe instead of policy πb. That is, we want to
estimate the following counterfactual quantity:

V πe
1 (s1) := EP,πe

[
T∑
t=1

γtRt|S1 = s1

]
. (1)

Consider the following common assumption from the causal
inference literature.
Assumption 1 (Absolute continuity). For all s, a ∈ S ×A,
if πb(a|s) = 0, then πe(a|s) = 0 too.

Under assumption 1 and the Markov assumption of the MDP
model, V πe

1 (s1) can be written as an expectation under the
data-generating mechanism (P, πb):

V πe
1 (s1) = EP,πb

[
T∏
t=1

πe,t(At|St)
πb,t(At|St)

T∑
t=1

γtRt

∣∣∣∣S1 = s1

]
.

(2)

For t = 1, ..., T , define R̄t:T :=
∑T
τ=t γ

τ−tRτ as the total
reward from step t to step T . For all 1 ≤ t1 ≤ t2 ≤ T ,
define ρt1:t2 :=

∏t2
τ=t1

πe,τ (Aτ |Sτ )/πb,τ (Aτ |Sτ ). For all
t = 1, ..., T , we will use the shortcut notation ρt := ρ1:t.
We use the convention that ρ0 = 0. Denote R̄(i)

t:T , ρ(i)t , ρ(i)t1:t2
the corresponding quantities for a sample trajectory Hi.
Consistently with (1) and (2), we define, for any t = 1, ..., T ,
and s ∈ S, the value function (or reward-to-go) from time
point t and state s, as

V πe
t (s) : = EP,πe

[R̄t:T |St = s]

= EP,πb

[
ρt:T R̄t:T |St = s

]
.

For every t = 1, ..., T , s ∈ S, a ∈ A, we further define the
action-value function from time step t as

Qπe
t (s, a) := EP,πe

[
R̄t:T |St = s,At = a

]
= EP,πb

[
ρt:T R̄t:T |St = s,At = a

]
.

3. An existing state-of-the art approach
Our method can be seen as building upon and improving
on Thomas & Brunskill (2016). We believe it helps un-
derstanding our contribution to first briefly describe their
estimators. For a detailed review of OPE methods, we refer
the interested reader to the vast and excellent literature on
the topic (Precup et al., 2000; Thomas, 2015; Jiang & Li,
2015; Farajtabar et al., 2018).

3.1. Weighted Doubly Robust Estimator

Jiang & Li (2015) were the first authors to propose a doubly
robust estimator for off-policy evaluation in the MDP setting.
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Thomas & Brunskill (2016) propose a stabilized version of
the DR estimator of Jiang & Li (2015), termed Weighted
Doubly Robust (WDR) estimator, which they obtain by
replacing the importance sampling weights by stabilized
importance sampling weights. The stabilized importance
sampling weight for observation i at time step t is defined as
w

(i)
t = ρ

(i)
t /

∑n
i=1 ρ

(i)
t . The WDR estimator is thus defined

as

WDR :=

n∑
i=1

{
1

n
V πe
1 (S

(i)
1 )

+

T∑
t=1

γtw
(i)
t

[
R

(i)
t −Q

πe
t (S

(i)
t , A

(i)
t ) + γV πe

t+1(S
(i)
t+1)

]}
.

(3)

3.2. MAGIC

While WDR has low bias and converges at rate OP (1/
√
n)

to the truth, its reliance on importance weights can make
it highly variable. As a result, in some settings, especially
if model misspecification is not too strong, DM estimators
can beat WDR (Thomas & Brunskill, 2016). This motivates
the construction of an estimator that interpolates between
DM and WDR, so as to benefit from the best of both worlds.
Thomas & Brunskill (2016) propose the partial importance
sampling estimators, which correspond to essentially cutting
off the sum in (3) the terms with index t ≥ j for some
0 ≤ j ≤ T . Formally, they define their partial importance
sampling estimator as the average gj :=

∑n
i=1 g

(i)
j of the

so-called off-policy j-step return, that they define, for each
trajectory i, as

g
(j)
i :=

j∑
t=1

γtwitR
(i)
t︸ ︷︷ ︸

a

+ γj+1wijV
πe
j+1(Sij+1)︸ ︷︷ ︸
b

−
j∑
t=1

γt[witQ
πe
t (S

(i)
t , A

(i)
t )− wit−1V

πe
t (S

(i)
t )]︸ ︷︷ ︸

c

,

Note that g0 is equal to the DM estimator. Note that the
last component, (c), represents the combined control variate
for the importance sampling (a) and model based term (b).
Hence, as j increases, we expect bias to decrease, at the
expense of an increase in variance.

Thomas & Brunskill (2016)’s final estimator is a convex
combination of the partial importance sampling estimators
gj . Ideally, we would like this convex combination to min-
imize mean squared error (MSE), that is we would like to

use as estimator (x∗)>g, with g = (g0, ..., gT ), where

x∗ = arg min
0≤x≤1∑T
j=0 xj=1

MSE(x>g, V πe
1 )

= arg min
0≤x≤1∑T
j=0 xj=1

{
Bias2(x>g, V πe

1 )

+ Var(x>g)

}
.

As we do not have access to the true variance and bias,
Thomas & Brunskill (2016) propose to use as estimator
x̂>g, where x̂ is a minimizer, over the convex weights sim-
plex, of an estimate of the MSE. The covariance matrix of g,
which we will denote Ωn, can be estimated as the empirical
covariance matrix Ω̂n of the g(i)’s. Bias estimation is a
more involved. For each j = 1, ..., T , Thomas & Brunskill
(2016) estimate the bias of the partial importance sampling
estimator gj by its distance to a δ-confidence interval for
gT obtained by bootstrapping it, for some δ ∈ (0, 1). They
named the resulting ensemble estimator MAGIC, standing
for model and guided importance sampling combining. For
further details, we refer the reader to the very clear presen-
tation of their algorithm by Thomas & Brunskill (2016).

4. Longitudinal TMLE for MDPs
4.1. High level description

Our proposed estimator extends the longitudinal Targeted
Maximum Likelihood Estimation (TMLE) methodology,
initially developed in the statistics causal inference liter-
ature, to the MDP setting (van der Laan & Rubin, 2006;
van der Laan & Gruber, 2011; van der Laan & Rose, 2011;
2018). In order to build intuition on our estimator, we start
with a high-level description. Targeted Maximum Likeli-
hood Estimation is a general framework that allows to con-
struct efficient nonparametric estimators of low-dimensional
characteristics of the data-generating distribution, given ma-
chine learning based estimators of high-dimensional char-
acteristics. Let us illustrate on an example what these low-
dimensional and high-dimensional characteristics can be.
Suppose we want to estimate an average treatment effect
(ATE), and that we have pre-treatment covariates X , a treat-
ment T and an outcome Y , with (X,T, Y ) ∼ P . In this
situation, the low-dimensional characteristic is the ATE
EP [EP [Y |T = 1, X]− EP [Y |T = 0, X]], while the high-
dimensional characteristics of P are the outcome regression
function x, a 7→ EP [Y |A = a,X = x] and the propensity
score function x 7→ EP [T |X = x].

4.2. Simplified sample-splitting based algorithm

In the following sections we present a simplified version
of the algorithm that constructs our Longitudinal Targeted
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Maximum Likelihood Estimator. The full-blown version of
the algorithm is presented in the appendix, with the corre-
sponding theoretical justifications.

Suppose we are provided with n i.i.d. trajectories,
D = (H1, ...,Hn). Make two splits of the sample: for
some 0 < p < 1, let D(0) = (H1, ...,H(1−p)n) and
D(1) = (H(1−p)n+1, ...,Hn). Use D(0) to fit estimators
Q̂πe

1 , · · · , Q̂πe

T of the action value functions Qπe
1 , · · · , Qπe

T

We will call Q̂πe
1 , · · · , Q̂πe

T the initial estimators. Such esti-
mators can be obtained for instance by fitting a model of the
dynamics of the MDP, or by SARSA, among other methods
(Sutton & Barto, 1998). Estimators fitted in such a way
tend to exhibit low variance but often suffer from misspec-
ification bias. As mentioned in section 3, doubly-robust
estimators take such initial estimators as input, and evalu-
ate on D(1) and then average a certain function of them to
produce an unbiased estimator of V πe

1 (s1). These doubly-
robust estimators rely on the addition of terms weighted
by the importance sampling (IS) ratios ρ(i)i:t , i = 1, · · · , n,
t = 1, · · · , n. The TMLE methodology takes another route:
for each t, it defines, on top of the initial estimator fit, a
parametric model, which we will call a second-stage para-
metric model Q̂πe

t , and achieves bias reduction by fitting this
parametric model by maximum likelihood, on the sample
split D(1).

4.3. Formal presentation of the simplified algorithm

To formally describe our algorithm, it suffices to de-
fine the second-stage parametric models and describe
the loss used for the fit. For all x ∈ R, we define
σ(x) = 1/(1 + e−x) as the logistic function, and we de-
note σ−1 its inverse. Observe that bounding the range
of rewards where ∀t, Rt ∈ [rmin, rmax], implies that
∀t and ∀(s, a) ∈ S × A, Qt(s, a) ∈ [−∆t,∆t] with
∆t :=

∑T
τ=t γ

τ−t max(rmax, |rmin|). We further denote
Q̃πe
t (s, a) := (Q̂πe

t + ∆t)/(2∆t) as the normalized initial
estimator. In addition, ∀δ ∈ (0, 1/2) and ∀(s, a), we define
the following thresholded version of Q̃πe

t :

Q̃πe,δ
t (s, a) :=


1− δ if Q̃πe

t (s, a) > 1− δ,
Q̃πe
t (s, a) if Q̃πe

t (s, a) ∈ [δ, 1− δ],
δ if Q̃πe

t (s, a) < δ.

For all ε ∈ R, we can now define the normalized version of
our second-stage parametric model as:

Q̃πe,δ
t (ε)(s, a) := σ(σ−1(Q̃πe,δ

t (s, a)) + ε).

Finally, we denote Q̂πe,δ
t (ε) = 2∆t(Q̃

πe,δ
t (ε)− 1/2) as the

rescaled version of Q̃πe,δ
t (ε).

The normalization, thresholding and rescaling steps in the
definition of the parametric second-stage model ensure

that (1) Q̃πe,δ
t (ε) ∈ [δ, 1 − δ] ⊂ (0, 1) for all ε, and that

(2) Q̂πe,δ
t (ε) always stays in the allowed range of rewards

[−∆t,∆t]. The definition of Q̃πe,δ
t (ε) as a logistic trans-

form of ε that lies in (0, 1) makes the fitting of ε possible
through maximum likelihood for a logistic likelihood. For
t = T , since Qπe

T (s, a) = EP,πb
[ρ1:TRT |ST = s,AT =

a], it is natural to consider the log likelihood,

Rδn,T (ε) =
1

n

n∑
i=1

ρ
(i)
1:T

(
Ũ

(i)
T log(Q̃πe,δ

T (ε)(S
(i)
T , A

(i)
T ))

+ (1− Ũ (i)
T ) log(1− Q̃πe,δ

T (ε)(S
(i)
T , A

(i)
T ))

)
, (4)

where Ũ (i)
T := (R

(i)
T + ∆T )/(2∆T ) is the normalized re-

ward at time T . Normalization of the reward is necessary
since we are using logistic regression to optimize ε, and to
keep the definition of Ũ (i)

T and Q̃πe,δ
T (s, a) consistent. The

thresholding step that defines Q̃δt (s, a) prevents the log like-
lihood from taking on non-finite values. In order to make the
bias introduced by thresholding vanish as the sample size
grows, we use a vanishing sequence δn ↓ 0 of thresholding
values.

Let εn,T be the minimizer over R of the log likelihood
Rδn,t for step T . We fit the second-stage models for
t = T − 1, ..., 1 by backward recursion, a procedure which
we describe in more detail in this paragraph. Start with ob-
serving that for all t = 1, ..., T , and for all (s, a) ∈ S ×A,
Qπe
t (s, a) = Eπb

[ρ1:t(Rt+γV
πe
t+1(St+1))|St = s,At = a].

This motivates defining, as outcome of the rescaled logistic
regression model for time step t, the normalized reward-to-
go:

Ũ
(i)
t,n := (R

(i)
t + γV̂ πe

t+1(εn,t+1)(S
(i)
t+1) + ∆t)/(2∆t).

Define V̂ πe
t (ε) as the value function corresponding to the

action-value function Q̂πe,δn
t (ε), that is, for all s ∈ S, set

V̂ πe
t (ε)(s) =

∑
a′∈A πe(a

′|s)Q̂πe,δn(ε)(s, a′). We define
the second-stage model log likelihood for each t = T −
1, ..., 1 as

Rδt,n(ε) =
1

n

n∑
i=1

ρ
(i)
1:t

(
Ũ

(i)
t log(Q̃πe,δ

t (ε)(S
(i)
t , A

(i)
t ))

+ (1− Ũ (i)
t ) log(1− Q̃πe,δ

t (ε)(S
(i)
t , A

(i)
t ))

)
.(5)

The fact that the outcome in the second-stage logistic model
at time step t depends on the second-stage model fit at time
step t + 1 is why we have to proceed backwards in time.
This is why we say this procedure is a backward recursion.

Finally, once all of the T second-stage models have been fit-
ted, we define the LTMLE estimator of V πe

1 (s1) as follows:

V̂ πe,LTMLE
1 (s1) := V̂ πe

1 (εn,1)(s1).
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Algorithm 1 Longitudinal TMLE for MDPs

Input: Logged data split D(1), target policy πe, initial
estimators Q̂πe

1 , ..., Q̂πe

T , discount factor γ.
Set ∆T = 0 and V̂ πe

T+1 = 0.
for t = T to 1 do

Set ∆t = maxt,i |Rt|+ γ∆t.
Set Ũt = (Rt + γV̂ πe

t+1 + ∆t)/2∆t.
Set Q̃πe,δn

t = threshold(δn, (Q̂
πe
t + ∆t)/2∆t).

Compute εn,t = arg minεRδnn,t(ε).
Set Q̂πe,δn

t = 2∆t(Q̃
πe,δn
t − 0.5).

Set, for all s ∈ S,

V̂ πe
t (s) =

∑
a′∈A

πe(a
′|s)Q̂πe,δn

t (s, a′).

end for
return V̂ πe

1 (εn,1)(s1).

This idea of backward recursion we just exposed was ini-
tially introduced in (Bang & Robins, 2005). They called it
sequential regression.

We present the pseudo-code of the procedure as Algorithm
1.

4.4. Guarantees and benefits

It might at first appear surprising that fitting the second-
stage models, which amounts to simply fitting the intercept
of a logistic regression model, suffices to fully remove the
bias. We nevertheless prove that it does so in theorem 1
under mild assumptions. Theorem 1 requires assumption 1
stated in section 2 and assumptions 2-4 stated below.

Assumption 2. For all t = 1, ...., T , rt ∈ [rmin, rmax]
almost surely.

Assumption 3. For all t = 1, ..., T , the initial estimator
Q̂πe
t,n converges in probability to some limitQt,∞ : S×A →

R, that is ‖Q̂πe
t,n −Qt,∞‖P,2 = oP (1).

Assumption 4. For all t = 1, ..., T , let Qt,∞ be the limit
as defined in Assumption 3. Assume there exists a (small)
positive constant η ∈ (0, 1/2) such that ∀t and ∀(s, a) ∈
S ×A, Qt,∞(s, a) ∈ [η, 1− η].

Assumption 5. Suppose there exists a finite positive con-
stant M such that ∀t, ρ1:t ≤M almost surely.

We can now state our main theoretical result, for the algo-
rithm presented in section 4.3.

Theorem 1. Suppose assumptions 2, 3, 4, and 5 hold. Then
the LTMLE estimator has bias o(1/

√
n), that is

EP,πb
[V̂ πe,LTMLE

1 (s1)]− V πe
1 (s1) = o(1/

√
n).

In addition, the LTMLE estimator converges in probability

at rate
√
n, that is

V̂ πe,LTMLE
1 (s1)− V πe

1 (s1) = OP (1/
√
n).

With a little extra work, we can also characterize the asymp-
totic distribution and the asymptotic variance of the LTMLE
estimator. In particular, we show in the appendix that, pro-
vided that Q̂πe is consistent, our estimator attains the gener-
alized Cramer-Rao bound and is therefore locally efficient.
We also argue that it is asymptotically equivalent with the
doubly robust estimator (Thomas & Brunskill, 2016; Jiang
& Li, 2015).

5. RLTMLE
In this section, we (1) present regularizations that can be
applied to the LTMLE estimator, and (2) describe our “final
estimator”, which we call RLTMLE (standing for LTMLE
for RL), and which consists of a convex combination of reg-
ularized LTMLE estimators. The weights in the RLTMLE
convex combination are obtained following a variant of the
ensembling procedure of the MAGIC estimator.

5.1. Regularization and base estimators

We present three regularization techniques that allow to
stabilize the variance of the LTMLE estimator. The first
two have a clear WDR analogue, while the third one only
applies to LTMLE.

1. Weights softening. For α ∈ [0, 1], x ∈ Rd, define
soften(x, α) := (xαk/

∑d
l=1 x

α
l : k = 1, ..., d). The

LTMLE algorithm corresponding to softening level α
is obtained by replacing, in the second-stage log likeli-
hoods (4) and (5), the IS ratios (ρ

(i)
1:t : i = 1, ..., n) by

soften((ρ
(i)
1:t : i = 1, ..., n), α). The same operation

can be applied as well to the importance weights of the
WDR estimator.

2. Partial horizon. The LTMLE with partial horizon
τ < T is obtained by setting to zero the coefficients
εn,τ1 , ..., εn,T before fitting the other second-stage co-
efficients. This enforces that the importance sampling
ratios ρ1:t for t ≥ j have no impact on the estimator.
The WDR equivalent is to use the τ -step return gτ .

3. Penalization. The penalized LTMLE is obtained by
adding a penalty λ|εn,t| for some λ ≥ 0 to the the
log-likelihoods (4) and (5) of the second-stage models.

The three regularizations can be applied simultaneously.
A regularized LTMLE estimator can therefore be indexed
by a triple (α, τ, λ), where α, τ and λ denote the level of
softening, the partial horizon, and the level of likelihood
penalization.
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5.2. Ensemble estimator

Our final estimator is an ensemble of a pool of reg-
ularized LTMLE estimators, which we will denote
g1, ..., gK , that correspond to a sequence of triples
(α1, τ1, λ1), ..., (αK , τK , λK) of regularization levels. We
set gK to be the unregularized LTMLE, that is we set
(αK , τK , λK) = (1, T, 0). We ensemble the regularized
LTMLE estimators g1, ..., gK by taking a convex combi-
nation of them that minimizes an estimate of MSE. The
ensembling step closely follows that of the MAGIC proce-
dure. We propose two variants of it, which we call RLTMLE
1 and RLTMLE 2, differing in how we estimate the covari-
ance matrix Ωn (defined in section 3) of base estimators
g1, ..., gK .

RLTMLE 1. In this variant of RLTMLE, covariance es-
timation relies on the following property of the LTMLE
estimator. As we show in the appendix, the difference be-
tween a regularized LTMLE estimator with regularization
parameters (α, τ, λ), and its asymptotic limit is given by
n−1

∑n
i=1 EIF(Q̂, α, τ, λ)(Hi)+oP (n−1/2), where EIF is

the efficient influence function, presented in the appendix,
whose expression is given by

EIF(Q̂πe , α, λ, τ)(h)

=

T∑
t=1

γtρt ×
(
rt + γV̂ πe

t+1(εn,t+1)(st+1)

− Q̂πe
t (εn,t)(st, at)

)
,

where, for all t, εn,t is the maximizer of the regularized
version of the log-likelihood (5), that is expression (5)
where ρt is replaced with soften(ρt, α) and penalized by
λ|ε|. Denote EIFk(h) = EIF(Q̂, αk, λk, τk)(h), the EIF
corresponding to estimator gk. We use as estimate of the
covariance matrix Ωn the empirical covariance matrix Ω̂n

of (EIF1(H), ...,EIFK(H)).

RLTMLE 2. In this variant of RLTMLE, an estimate
of the covariance matrix Ωn of the base estimators g =
(g1, ..., gK) is obtained by computing bootstrapped values
g(1), ..., g(B), of g, for a large enough number of bootstrap
samples B, and computing the empirical covariance Ω̂n

matrix of g(1), ..., g(B).

Bias estimation. We follow closely Thomas & Brunskill
(2016) for bias estimation. For k = 1, ...,K, denote bn,k the
bias of estimator gK , and bn := (bn,1, ..., bn,K). Denote
CI(α) the α-percentile bootstrap confidence interval for the
LTMLE estimator. In both RLTMLE 1 and RLTMLE 2,
for each k = 1, ...,K, estimate the bias bn,k with b̂n,k :=

dist(gk,CI(α)). Denote b̂n := (b̂n,1, ..., b̂n,K).

Because of space limitation, we only give a pseudo-code

Algorithm 2 RLTMLE 2

Input: Logged data split D(1), target policy πe, initial es-
timator Q̂πe := (Q̂πe

1 , ..., Q̂πe

T ), discount factor γ, triples
of regularization levels (α1, τ1, λ1), ..., (αK , τK , λK),
number of bootstrap samples B.
for b = 1 to B do

Sample with replacement from D(1) a bootstrap sam-
ple D∗,(b).
for k = 1 to K do

Compute g(b)k by running algorithm 1 with inputs
D∗,(b), Q̂πe , πe, γ, using regularizations levels
(αk, τk, λk).

end for
end for
for k = 1 to K do

Compute gk by running algorithm 1 with inputs D(1),
Q̂πe , πe, γ, using regularizations levels (αk, τk, λk).
for l = 1 to K do

Ω̂k,l ← n−1
∑B
b=1 g

(b)
k g

(b)
l −(

n−1
∑B
b=1 g

(b)
k

)(
n−1

∑B
b=1 g

(b)
l

)
.

end for
CI(α) ←

[
percentile({g(b)k : b}, α), percentile({g(b)k :

b}, 1− α)
]
.

b̂n,k ← distance(gk,CI(α)).
end for

x̂← arg min
0≤x≤1
x>1=1

1

n
x>Ω̂nx + (x>b̂n)2.

return x̂>g.

description of RLTMLE 2, which is our most performant
algorithm, as we will see in the next section.

6. Experiments
In this section, we demonstrate the effectiveness of
RLTMLE by comparing it with other state-of-the-art meth-
ods used for OPE problem in various RL benchmark envi-
ronments. We used three main domains, with detailed de-
scription of each allocated to the Appendix. We implement
the same behavior and evaluation policies as in previous
work (Thomas & Brunskill, 2016; Farajtabar et al., 2018).

1. ModelFail: a partially observable, deterministic do-
main with T = 3. Here the approximate model is
incorrect, even asymptotically, due to three of the four
states appearing identical to the agent.

2. ModelWin: a stochastic MDP with T = 10, where the
approximate model can perfectly represent the MDP.

3. GridWorld: a 4 × 4 grid used for evaluating OPE
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Figure 1. Empirical results for three different environments and varying level of model misspecification. (a) GridWorld MSE across
varying sample size n = (100, 200, 500, 1000) and bias equivalent to b0 = 0.005 ∗ Normal(0, 1) over 71 trials; (b) ModelFail MSE
across varying sample size n = (100, 200, 500, 1000) and bias equivalent to b0 = 0.005 ∗ Normal(0, 1) over 71 trials; (c) ModelWin
MSE across varying sample size n = (100, 500, 1000, 5000, 10000) and bias equivalent to b0 = 0.005 ∗ Normal(0, 1) over 63 trials; (d)
ModelWin MSE across varying sample size n = (100, 500, 1000, 5000, 10000) and bias equivalent to b0 = 0.05 ∗ Normal(0, 1) over
63 trials.

Figure 2. Comparison of WDR and LTMLE base estimators across various regularization methods in ModelWin at low (b0 = 0.005 ∗
Normal(0, 1)) and high (b0 = 0.05 ∗ Normal(0, 1)) model misspecification. Regularized base estimators include ps LTMLE (partial,
softened LTMLE), ps WDR (partial, softened WDR), psp LTMLE (partial, softened, penalized LTMLE), s LTMLE (softened LTMLE)
and WDR (no regularization). The x-axis indicates the id of the kth estimator, corresponding to (αk, λk, τk). (a) ModelWin MSE for
sample size n = 1000 and low bias over 315 trials; (b) ModelWin MSE for sample size n = 1000 and high bias over 315 trials.
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methods, with an episode ending at T = 100 or when
a final state (s16) is reached.

We omit benefits of RLTMLE over IS, PDIS (per-decision
IS), WIS (weighted IS), CWPDIS (consistent weighted per-
decision IS) and DR (doubly robust) estimators due to the
extensive empirical studies performed by Thomas and Brun-
skill (Thomas & Brunskill, 2016). Instead, we compare
our estimator to WDR and MAGIC, as they demonstrate
improved performance over all simulations in benchmark
RL environments considered (Thomas & Brunskill, 2016).

In evaluating our estimator, we also explore how various
degree of model misspecification and sample size can affect
the performance of considered methods. We start with small
amount of bias, b0 = 0.005 ∗ Normal(0, 1), where most es-
timators should do well. Consequently, we increase model
misspecification to b0 = 0.05 ∗ Normal(0, 1) at the same
sample size, and consider the performance of all estimators.
In addition, we test sensitivity to the number of episodes in
D with n = {100, 200, 500, 1000) for GridWorld and Mod-
elFail, and n = {100, 500, 1000, 5000, 10000) for Model-
Win.

In addition, we consider the benefits of adding few regu-
larization techniques as opposed to all three described in
subsection 5.1. In particular, we concentrate on RLTMLE
with only weight softening and partial LTMLE (RLTMLE 1)
as opposed to using penalized LTMLE as well (RLTMLE 2).
The goal of these experiments was to demonstrate the im-
proved performance of our estimator when fully exploiting
all the variance reduction techniques in a clever way. The
MSE across varying sample size and model misspecification
for GridWorld, ModelFail and ModelWin can be found in
Figure 1. We can see that RLTMLE 2 outperforms all other
estimators for all RL environments and varying levels of
model misspecification.

Finally, we compare WDR and LTMLE base estimators
augmented with various regularization methods before the
ensemble step in Figure 2. In particular, for ModelWin,
we look at the MSE of V̂ πe,j

1 (εn,1)(s1) and gk for each
k, where the kth estimator corresponds to regularization
(αk, λk, τk). Regularized base estimators considered in-
clude ps LTMLE (partial, softened LTMLE), ps WDR (par-
tial, softened WDR), psp LTMLE (partial, softened, penal-
ized LTMLE), s LTMLE (softened LTMLE) and WDR (no
regularization). We note the vast improvement of WDR just
by adding weight softening across all base estimators, evi-
dent for both low and high model misspecification setting.
For the low bias environment of ModelWin, psp LTMLE
(RLTMLE 2) uniformly outperforms all competitors for all
k. High bias setting loses to s LTMLE for low k, but still
outperforms majority of the time, including having the best
ensemble MSE. While uniform win over all k is not neces-
sary, we note that this behavior stems from the fact that for

k < 3, (αk, λk, τk) used had very small τk and αk. As such,
with no strong debiasing effect of LTMLE, minimizing vari-
ance becomes more effective with respect to minimizing
MSE.

7. Conclusion
In this paper, we proposed a new doubly robust estimator
for off-policy value evaluation in reinforcement learning.
In particular, we present a convex combination of regular-
ized LTMLE estimators which aim at minimizing the MSE.
We showed that our estimator is consistent and asymptoti-
cally optimal, achieving the Cramer-Rao lower bound. We
prove the OP (1/

√
n) rate of convergence of our estimator,

and characterize its asymptotic distribution. The LTMLE
is guaranteed to lie in the allowed rewards domain, both
for discrete and continuous state, and is amenable to sev-
eral regularization techniques. Finally, our experiments
demonstrate uniform win of RLTMLE over all considered
off-policy methods across multiple RL environments and
various levels of model misspecification.

The RLTMLE enjoys multiple distinguishing features that
contribute to its finite sample performance. First, its base
estimator is a substitution estimator, therefore it inherently
respects the reward domain for the RL problem. While this
is true for DR if states and actions are discrete, our estimator
by design produces estimates that lie in the allowed reward
domain for both discrete and continuous state space. Our es-
timator also allows for clever usage of importance weights,
instead of explicitly summing over IS terms. This property
strives from using LTMLE as a base estimator, where sta-
bilized IS ratios can be used as weights of the observations
in the log likelihood of the second-stage models. This is
an important feature of RLTMLE, that greatly contributes
to its stability without introducing bias. Finally, LTMLE is
amenable to many regularization methods, with RLTMLE
enjoying a rich family of regularized base estimators. Our
experiments show impressive performance gains from uti-
lizing variance reduction techniques for both RLTMLE and
WDR.

Finally, our method does not refit the entire reward-to-go
model for each new target policy as the More Robust Doubly
Robust estimator, demonstrating some practical advantages.
Since refitting the reward-to-go model can be quite compu-
tationally expensive, our estimator might be beneficial in
situations where one wants to scan through many candidate
target policies.
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