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In this supplemental, we first provide proofs for Theorems 1 and 2. We then prove the relation between the rate of an
encoder-decoder pair and the rate-distortion-perception function in (4) for a memoryless stationary source. Next, we derive
the rate-distortion-perception function R(D,P ) of a Bernoulli random variable (see Sec. 3.1), which appears in (6). In the
following section, we specify all training and architecture details for the experiments in Sec. 4. Finally, we include details
on the choice of the perceptual loss in the experiment of Sec. 4.2.

A. Proof of Theorem 1

The proof of this theorem follows closely that of its rate-distortion analogue (Cover & Thomas (2012), 2nd ed., p. 316).

Monotonicity The value R(P,D) is the minimal mutual information I(X, X̂) over a constraint set whose size increases
with D and P . This implies that the function R(D,P ) is non-increasing in D and P .

Convexity Here, we assume that A1 holds. That is, the divergence d(p, q) in (4) is convex in its second argument, so that
for any λ ∈ [0, 1],

d(p, λq1 + (1− λ)q2) ≤ λd(p, q1) + (1− λ)d(p, q2). (S1)

To prove the convexity of R(D,P ), we will show that

λR(D1, P1) + (1− λ)R(D2, P2) ≥ R(λD1 + (1− λ)D2, λP1 + (1− λ)P2), (S2)

for all λ ∈ [0, 1]. First, by definition, the left hand side of (S2) can be written as

λI(X, X̂1) + (1− λ)I(X, X̂2), (S3)

where X̂1 and X̂2 are defined by

pX̂1|X = arg min
pX̂|X

I(X, X̂) s.t. E[∆(X, X̂)] ≤ D1, d(pX , pX̂) ≤ P1, (S4)

pX̂2|X = arg min
pX̂|X

I(X, X̂) s.t. E[∆(X, X̂)] ≤ D2, d(pX , pX̂) ≤ P2. (S5)
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Since I(X, X̂) is convex in pX̂|X for a fixed pX (Cover & Thomas (2012), 2nd ed., p. 33),

λI(X, X̂1) + (1− λ)I(X, X̂2) ≥ I(X, X̂λ), (S6)

where X̂λ is defined by
pX̂λ|X = λpX̂1|X + (1− λ) pX̂2|X . (S7)

Denoting Dλ = E[∆(X, X̂λ)] and Pλ = d(pX , pX̂λ), we have that

I(X, X̂λ) ≥ min
pX̂|X

{
I(X, X̂) : E[∆(X, X̂)] ≤ Dλ, d(pX , pX̂λ) ≤ Pλ

}
= R(Dλ, Pλ), (S8)

because X̂λ is in the constraint set. The divergence d(p, q) is assumed to be convex in the second argument, thus

Pλ = d(pX , pX̂λ)

≤ λd(pX , pX1) + (1− λ)d(pX , pX2)

≤ λP1 + (1− λ)P2. (S9)

Similarly,

Dλ = E
[
∆(X, X̂λ)

]
(a)
= E

[
E
[
∆(X, X̂λ)|X

]]
(b)
= E

[
λE
[
∆(X, X̂1)|X

]
+ (1− λ)E

[
∆(X, X̂2)|X

]]
(c)
= λE[∆(X, X̂1)] + (1− λ)E[∆(X, X̂2)]

≤ λD1 + (1− λ)D2, (S10)

where (a) and (c) are according to the law of total expectation, and (b) is by (S7). Therefore, sinceR(D,P ) is non-increasing
in D and P , we have from (S9) and (S10) that

R(Dλ, Pλ) ≥ R(λD1 + (1− λ)D2, λP1 + (1− λ)P2). (S11)

Combining (S3), (S6), (S8) and (S11) proves (S2), thus proving that R(D,P ) is convex.

Dependence on the perceptual quality Here, we assume that A2 holds. In particular, this implies that the function
k(z) = EX∼pX [∆(X, z)] does not attain its minimum over the entire support of pX . To prove that R(·, 0) 6= R(·,∞), let
us assume to the contrary that R(·, 0) = R(·,∞). This implies that for any distortion level, minimizing the rate without
a constraint on perception (P = ∞), leads to perfect perceptual quality, pX̂ = pX , just like with a perfect perception
constraint P = 0. Let us examine the solution specifically at the distortion level D∗ defined by

D∗ = min
pX̂|X

E(X,X̂)∼pX,X̂
[∆(X, X̂)] s.t. I(X, X̂) = 0. (S12)
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Notice that since I(X, X̂) = 0 in this case, X and X̂ are independent, so that pX̂|X = pX̂ . Therefore

D∗ = min
pX̂

E(X,X̂)∼pXpX̂
[∆(X, X̂)]

= min
pX̂

EX̂∼pX̂ [EX∼pX [∆(X, X̂)]]

= min
pX̂

EX̂∼pX̂ [k(X̂)]. (S13)

Clearly, the pX̂ which minimizes (S13) cannot assign positive probability outside the set where k(z) attains its minimal
value. Namely, the support of pX̂ must be contained in the set S defined by

S = {z ∈ arg min
z̃

k(z̃)}. (S14)

But since our encoder-decoder pair achieves perfect perceptual quality, i.e. pX̂ = pX , this implies that support{pX} ⊂ S,
contradicting Assumption A2.

B. Proof of Theorem 2

Assume the MSE distortion, and consider any (R,D) pair on Shannon’s classic rate-distortion function (corresponding to
R(D,∞) on the rate-distortion-perception function), and the encoder-decoder mapping pX̂|X which achieves this (R,D)

pair. We will prove the theorem by explicitly constructing a modified encoder-decoder, which achieves perfect perceptual
quality and has only twice the distortion. To do this, we concatenate a post-processing mapping pX̃|X̂ to produce a new
decoded output X̃ by drawing from the posterior distribution pX|X̂ . That is,

pX̃|X̂(x̃|x̂) = pX|X̂(x̃|x̂) =
pX̂|X(x̂|x̃)pX(x̃)

pX̂(x̂)
. (S15)

The distribution pX̃ of this new output X̃ is identical to the distribution of the source signal pX , as

pX̃(z) =

∫
pX̃|X̂(z|x̂)pX̂(x̂)dx̂ =

∫
pX|X̂(z|x̂)pX̂(x̂)dx̂ = pX(z). (S16)

Therefore, d(pX , pX̃) = 0, showing that it achieves perfect perceptual quality. The MSE distortion of the modified
encoder-decoder is given by

D̃ = E[‖X − X̃‖2]

= E[‖X‖2]− 2E[XT X̃] + E[‖X̃‖2]

(a)
= E[‖X‖2]− 2E[E[XT X̃|X̂]] + E[E[‖X̃‖2|X̂]]

(b)
= E[‖X‖2]− 2E[‖E[X|X̂]‖2] + E[E[‖X‖2|X̂]]

= E[‖X‖2]− 2E[‖E[X|X̂]‖2]) + E[‖X‖2|]

= 2(E[‖X‖2]− E[‖E[X|X̂]‖2])

= 2E[‖X − E[X|X̂]‖2]

(c)
= 2E[‖X − X̂‖2] = 2D, (S17)
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where in (a) we used the law of total expectation, in (b) we used the fact that X and X̃ are independent given X̂ and both
have distribution pX , and in (c) we used that fact that X̂ = E[X|X̂] as otherwise it would not have lied on the rate-distortion
curve (replacing X̂ by E[X|X̂] would lead to a lower MSE without increasing the rate).

The mutual information between the source X and the modified decoded signal X̃ satisfies

I(X; X̃) ≤ I(X; X̂), (S18)

due to the data processing inequality for the Markov chain X → X̂ → X̃ .

Putting it together, we get

R(D,∞) = min
pX̂|X

{I(X, X̂) : E[∆(X, X̂)] ≤ D}

(f)

≥ I(X, X̃)

(g)

≥ min
pX̂|X

{I(X, X̂) : E[∆(X, X̂)] ≤ D̃, d(pX , pX̂) ≤ 0}

= R(D̃, 0)

(h)

≥ R(2D, 0), (S19)

where (f) is due to (S18), (g) is since pX̃|X is in the constraint set, and (h) is justified by (S17) and the fact that R(D,P ) is
non-increasing in D (see Theorem 1). This proves that R(D, 0) ≤ R( 1

2D,∞).

C. Perception aware lossy compression of a memoryless stationary source

We now prove that when compressing a memoryless stationary source with average distortion D and average perception
index P , the rate is lower bounded by R(D,P ). This proof follows closely that of its rate-distortion analogue (Cover &
Thomas (2012), 2nd ed., p. 316).

Assume a memoryless stationary source. Given a source sequence Xn comprising i.i.d. variables X1, . . . , Xn with
distribution pX , the encoder fn constructs an encoded representation with rate R as fn : Xn → {1, 2, . . . , 2nR}. The
decoder gn outputs an estimate X̂n of Xn as gn : {1, 2, . . . , 2nR} → X̂n. We are interested in the the average distortion of
the reconstructions, 1

n

∑n
i=1 ∆(Xi, X̂i), and in their average perceptual quality, 1

n

∑n
i=1 d(pXi , pX̂i). Assume that

1

n

n∑
i=1

∆(Xi, X̂i) ≤ D,
1

n

n∑
i=1

d(pXi , pX̂i) ≤ P. (S20)

Then

nR
(a)

≥ H(fn(Xn))

(b)

≥ H(fn(Xn))−H(fn(Xn)|Xn)

= I(Xn; fn(Xn))

(c)

≥ I(Xn, X̂n)

= H(Xn)−H(Xn|X̂n)
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(d)
=

n∑
i=1

H(Xi)−H(Xn|X̂n)

(e)
=

n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂n, Xi−1, . . . , X1)

(f)

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i)

=

n∑
i=1

I(Xi, X̂i)

(g)

≥
n∑
i=1

R
(
E[∆(Xi, X̂i)], d(pXi , pX̂i)

)
= n

(
1

n

n∑
i=1

R
(
E[∆(Xi, X̂i)], d(pXi , pX̂i)

))
(h)

≥ nR

(
1

n

n∑
i=1

E[∆(Xi, X̂i)],
1

n

n∑
i=1

d(pXi , pX̂i)

)
(i)

≥ nR(D,P ), (S21)

where (a) is since the size of the range of fn is 2nR, (b) is since H(fn(Xn)|Xn) > 0, (c) is from the data-processing
inequality, (d) is since Xi are independent, (e) is from the chain rule of entropy, (f) is since conditioning reduces entropy, (g)
is from the definition ofR(D,P ) in (4), (h) is from the convexity ofR(D,P ) (see Theorem 1) and Jensen’s inequality, and (i)
is from (S20) and the fact that R(D,P ) is non-increasing in D,P (see Theorem 1). This proves that the rate of any encoder-
decoder pair having average distortion 1

n

∑n
i=1 ∆(Xi, X̂i) = D and average perceptual quality 1

n

∑n
i=1 d(pXi , pX̂i) = P ,

is lower-bounded by R(D,P ), the rate-distortion-perception function evaluated at D,P .

To prove that the rate-distortion-perception function describes the optimal rate at distortion level D and perceptual quality
P , we would also have to prove that R(D,P ) is achievable, which we leave for future work. Yet, the proof that R(D,P )

lower-bounds the rate is sufficient for concluding that a tradeoff between rate, distortion and perception necessarily exists.
Specifically, in Theorem 1 we prove that (subject to assumptions) the rate-distortion curve elevates when constraining for
perceptual quality, i.e. R(·, 0) > R(·,∞). Now, Shannon’s rate-distortion curve R(·,∞) is known to be achievable (Cover
& Thomas (2012), 2nd ed., p. 318) and thus describes the optimal rate RS when not constraining the perceptual quality.
As shown above, R(·, 0) lower-bounds the rate RP when constraining for perfect perceptual quality. Combining these, we
get that RP > RS , indicating that constraining for perceptual quality necessarily leads to an increase in rate (for constant
distortion level), thus illustrating the rate-distortion-perception tradeoff.

D. Derivation of the rate-distortion-perception function R(D,P ) of a Bernoulli source

Assume that X ∼ Bern(p) with p ≤ 1
2 . We seek a conditional distribution pX̂|X , which we parameterize by a, b as

P (X̂ = 0|X = 0) = a, (S22)

P (X̂ = 0|X = 1) = b, (S23)
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that solves the rate-distortion-perception problem

R(D,P ) = min
a,b

I(X, X̂) s.t. E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ P. (S24)

Here we concentrate on the case where ∆(·, ·) is the Hamming distance, and d(·, ·) is the total-variation (TV) divergence.
The mutual information term I(X, X̂) is given by

I(X, X̂) =
∑

x,x̂∈{0,1}

P (X = x, X̂ = x̂) log

(
P (X = x, X̂ = x̂)

P (X = x)P (X̂ = x̂)

)

=− a(1− p) log

(
(1− p) +

b

a
p

)
− (1− a)(1− p) log

(
(1− p) +

1− b
1− a

p

)
− bp log

(a
b

(1− p) + p
)
− (1− b)p log

(
1− a
1− b

(1− p) + p

)
, (S25)

the Hamming distance term is given by

dH(X, X̂) = P (X = 0, X̂ = 1) + P (X = 1, X̂ = 0) = (1− a)(1− p) + bp, (S26)

and the TV divergence term is given by

dTV(pX , pX̂) = 1
2

∑
z∈0,1

|pX(z)− pX̂(z)|

= 1
2 (|P (X = 0)− P (X̂ = 0)|+ |P (X = 1)− P (X̂ = 1)|)

= |(1− a)(1− p)− bp|. (S27)

Solution for P =∞ (Shannon’s rate-distortion problem) The function R(D,∞) for Shannon’s classic rate-distortion
problem is given by (see (Cover & Thomas, 2012), 2nd ed., p. 308)

R(D,∞) =

Hb(p)−Hb(D) 0 ≤ D ≤ p,

0 D > p,
(S28)

where Hb denotes the binary entropy Hb(z) = −z log(z)− (1− z) log(1− z). This optimal solution is obtained by setting
the parameters a, b to

aS(D) =


(1−D)(1−p−D)
(1−p)(1−2D) D ≤ p,

1 D > p,
bS(D) =


D(1−p−D)
p(1−2D) D ≤ p,

1 D > p.
(S29)

Solution for finite P and I(X, X̂) > 0 We now move on to incorporate the additional perception constraint d(pX , pX̂) ≤
P . First, notice that the distortion constraint E[∆(X, X̂)] ≤ D is always active when I(X, X̂) > 0, since I(X, X̂) = 0 is
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achievable for any P when D is not an active constraint1. From (S26), the fact that dH(X, X̂) = D implies that

b =
D − (1− a)(1− p)

p
. (S30)

Substituting (S30) into (S27), we get that

dTV(pX , pX̂) = |2(1− a)(1− p)−D|. (S31)

Therefore, the constraint dTV(pX , pX̂) ≤ P is satisfied when

− P ≤ 2(1− a)(1− p)−D ≤ P ⇒ 1− D + P

2(1− p)
≤ a ≤ 1− D − P

2(1− p)
. (S32)

Below, we show that the lower constraint of (S32) is never active (see J1). The upper constraint is obviously active only
when aS(D) of (S29) does not satisfy the upper bound in (S32), which happens when

1− D − P
2(1− p)

<
(1−D)(1− p−D)

(1− p)(1− 2D)
⇒ D >

P

1 + 2P − 2p
, D1. (S33)

Therefore, when D ≤ D1 the solution is independent of P and is given by (S28). When D > D1, the constraint
dTV(pX , pX̂) ≤ P is active, the upper constraint of (S32) is active, and thus

a = 1− D − P
2(1− p)

, (S34)

and by substituting into (S30) we also get

b =
D + P

2p
. (S35)

Note that in (S33) we assumed D ≤ 1
2 , below we will justify that this is always the case in this region (see J2).

Now, substituting a, b from (S34), (S35) back into (S25) we get

I(X, X̂) =(1− p− D − P
2

) log

(
1− p− D−P

2

(1− p)(1− p+ P )

)
+ (

D − P
2

) log

(
D−P

2

(1− p)(p− P )

)

+ (
D + P

2
) log

(
D+P

2

p(1− p+ P )

)
+ (p− D + P

2
) log

(
p− D+P

2

p(p− P )

)

=(q − α) log

(
q − α

q(q + P )

)
+ α log

(
α

q(p− P )

)
+ β log

(
β

p(q + P )

)
+ (p− β) log

(
p− β

p(p− P )

)
(S36)

where q = 1− p, α = D−P
2 and β = D+P

2 . This can be further simplified to obtain

I(X, X̂) = 2Hb(p) +Hb(p− P )−Ht(α, p)−Ht(β, q), (S37)

1We can always set pX̂|X(X̂ = x̂|X = x) = pX(x̂) (i.e. a random draw from pX disregarding the given input x), which satisfies

dTV(X, X̂) = 0 and leads to I(X, X̂) = 0 since X and X̂ are independent in this case. Only a constraint on the distortion can prevent
this solution from being viable.
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where Ht(p1, p2) is the entropy of a ternary random variable (taking values in a three element alphabet) with probabilities
p1, p2, 1− p1 − p2.

Solution for finite P and I(X, X̂) = 0 The function R(D,P ) is non-increasing in D (see Theorem 1), and will reach
R(D,P ) = 0 for a = b since in this case X̂ and X are independent. From (S34) and (S35), this happens when

1− D − P
2(1− p)

=
D + P

2p
⇒ D = 2p(1− p) + (2p− 1)P = 2pq + (p− q)P , D2, (S38)

where for D = D2 we get
a = b = (1− p) + P. (S39)

From this point onward, the solution is fixed, as mutual information I(X, X̂) is non-negative and we cannot further decrease
the objective of (S24).

Overall solution Putting all the pieces together, the overall solution for P < p is

R(D,P ) =


Hb(p)−Hb(D) D ≤ D1

2Hb(p) +Hb(p− P )−Ht(
D−P

2 , p)−Ht(
D+P

2 , q) D1 < D ≤ D2

0 D2 < D

(S40)

where D1 and D2 are defined in (S33) and (S38), respectively. For P ≥ p, the solution is independent of P and is given by
the solution to Shannon’s classic rate-distortion curve for a Bernoulli source in (S28) (see justification in J3 below).

Additional justifications

J1 The solution aS(D) in (S29) does not satisfy this lower constraint of (S32) when

1− D + P

2(1− p)
>

(1−D)(1− p−D)

(1− p)(1− 2D)
. (S41)

When P < 1−2p
2 this happens for D < P

2p+2P−1 < 0, which never occurs as D ∈ [0, 1]. When P ≥ 1−2p
2 this happens for

D > P
2p+2P−1 . However, since P

2p+2P−1 > D1 = P
1+2P−2p for all p ≤ 1

2 (which is our assumption), the upper constraint
of (S32) will always become active before the lower constraint.

J2 Taking the derivative of D2 = 2p(1− p) + (2p− 1)P with respect to p we obtain

∂D2

∂p
= 2− 4p+ 2P (S42)

which is non-negative since p ≤ 1
2 . Thus, D2 is increasing in p for all P > 0, and its largest value in the range p ∈ [0, 12 ],

which is D2 = 1
2 , is obtained at p = 1

2 . Thus, in the region where D1 < D ≤ D2, it is ensured that D ≤ 1
2 .

J3 Taking the derivative of D1 = P
1+2P−2p with respect to P we obtain

∂D1

∂P
=

1− 2p

(1 + 2P − 2p)2
(S43)
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Table S1. Encoder, decoder, and discriminator architectures. FC is a fully-connected layer, Conv/ConvT is a convolutional/transposed-
convolutional layer with “st” denoting stride, BN is a batch-norm layer, and l-ReLU is a leaky-ReLU activation.

Encoder
Size Layer

28× 28× 1 Input
784 Flatten
512 FC, BN, l-ReLU
256 FC, BN, l-ReLU
128 FC, BN, l-ReLU
128 FC, BN, l-ReLU
dim FC, BN, Tanh
dim Quantize

Decoder
Size Layer
dim Input
128 FC, BN, l-ReLU
512 FC, BN, l-ReLU

4× 4× 32 Unflatten
11× 11× 64 ConvT (st=2), BN, l-ReLU
25× 25× 128 ConvT (st=2), BN, l-ReLU
28× 28× 1 ConvT (st=1), Sigmoid

Discriminator
Size Layer

28× 28× 1 Input
14× 14× 64 Conv (st=2), l-ReLU
7× 7× 128 Conv (st=2), l-ReLU
4× 4× 256 Conv (st=2), l-ReLU

4096 Flatten
1 FC

Table S2. Encoder output dimension dim, quantization levels L, and tradeoff coefficients λ used for training the encoder-decoder pairs in
the experiments of of Sec. 4

dim L λ

2 2 0, 2, 2.5, 3, 3.5, 4, 4.3, 4.6, 5, 5.5, 6, 8, 10, 15, 20
3 2 0, 2, 2.5, 3, 3.5, 4, 4.3, 4.6, 5, 6, 8, 9, 10
4 2 0, 2, 2.5, 3, 3.5, 4, 4.3, 4.6, 4.8, 4.9, 5, 6, 8, 10
4 3 0, 2, 2.5, 3, 3.5, 4, 4.3, 4.6, 5, 6, 8, 10
4 4 0, 2, 2.5, 3, 3.5, 4, 4.3, 4.6, 5, 6, 8, 10
4 6 0, 2, 2.5, 3, 3.5, 4, 5, 10
4 8 0, 2, 2.5, 3, 4, 5, 6, 10
4 11 0, 2, 2.5, 3, 4, 5, 6, 10
4 16 0, 2, 2.5, 3, 4, 5, 6, 10

which is non-negative for p ≤ 1
2 , thus D1 is non-decreasing in P . It is easy to see from (S38) that D2 in non-increasing

in P (for p ≤ 1
2 ). Thus, D1(P ) = D2(P ) for a single P , which is P = p. For any P ≥ p, there are no D satisfying

D1 < D ≤ D2.

E. Architecture and training parameters for the experiments in Sec. 4

The architecture of the encoder, decoder and discriminator nets used for compressing (and decompressing) the MNIST
images in Sec. 4 is detailed in Table S1. The optimization objective is given in (10), where ∆(x, x̂) is the squared-error
distortion in Sec. 4.1, and a combination of the squared-error and the “perceptual loss” of Johnson et al. (2016) in Sec. 4.2.
The encoder output dimension dim, the number of quantization levels L, and values of the tradeoff coefficient λ in (10)
used for training the 98 encoder-decoder pairs appear in Table S2. The distortion term in (10) was also multiplied by a
constant factor of 10−3 for the MSE term (in Sec. 4.1 and Sec. 4.2) and factor of 5 × 10−5 for the perceptual loss (in
Sec. 4.2). For each dim and L, an encodoer-decoder with λ = 0 (only distortion, no adversarial loss) was trained for
25 epochs. The other encoder-decoder pairs with λ > 0 continued training from this point for another 25 epochs. The
ADAM optimizer was used with β1 = 0.5, β2 = 0.9. Batch size was 64. Initial learning rates were 10−2/2× 10−4 for the
encoder-decoder/discriminator updates in Sec. 4.1, and 5× 10−3/2× 10−4 for the encoder-decoder/discriminator updates in
Sec. 4.2. These learning rates decreased by 1

5 after 20 epochs. The convolutional/transposed-convolutional layers filter size
(in the decoder and discriminator) was always 5, except for the last convolutional layer in the decoder where the filter size
was 4. No padding was used in the decoder, and a padding of 2 was used in each convolutional layer of the discriminator.

The quantization layer (last encoder layer) follows Mentzer et al. (2018). Here, the bin centers C = {c1, . . . , cL} are fixed
and evenly spaced in the interval [−1, 1]. Denoting by zi the output of the encoder unit i before quantization (after the Tanh
activation), the encoder output ẑi in the forward pass is given by nearest-neighbor assignment, i.e. ẑi = arg mincj ‖zi − cj‖.
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Table S3. Architecture of the pre-trained MNIST digit classification net used with the perceptual loss of Johnson et al. (2016) in the
experiment in Sec. 4.2. FC is a fully-connected layer, Conv is a convolutional layer with k denoting the kernel size, MP is a max-pooling
layer with w denoting the window size over which the maximum is taken.

Size Layer
28× 28× 1 Input
12× 12× 10 Conv (k=5), MP (w=2), l-ReLU
4× 4× 20 Conv (k=5), Dropout, MP (w=2), l-ReLU

320 Flatten
50 FC, ReLU, Dropout
10 FC, Softmax

To compute the gradients in the backward pass, we use a differential “soft” assignment

z̃i =

L∑
j=1

exp(−σ‖zi − cj‖1)∑L
l=1 exp(−σ‖zi − cl‖1)

cj , (S44)

where we use σ = 2/L. Uniformly distributed noise U(−a2 ,
a
2 ) is added to the encoder output before it is passed on to the

decoder, with a = 2/(L− 1).

F. The perceptual loss in the experiment in Sec. 4.2

In the experiment of Sec. 4.2, the distortion term of the optimization objective (10) is taken as a combination of the
squared-error and the perceptual loss of Johnson et al. (2016). We use this combination since minimizing the perceptual loss
alone does not lead to pleasing results (Fig. S1), and is commonly used in combination with an additional distortion term,
e.g. `2/`1/contextual loss (Ledig et al., 2017; Mechrez et al., 2018a;b; Liu et al., 2018; Wang et al., 2018; Shama et al.,
2018; Shoshan et al., 2018). As shown in (11), this perceptual loss is in essence the squared-error in the deep-feature space

of a pre-trained convolutional net. The standard pre-trained net used with the perceptual loss is the VGG net (Simonyan &
Zisserman, 2014), which is trained on natural images from the ImageNet dataset, and is not appropriate for assessing the
similarity between MNIST digit images. We therefore pre-train a simple net for classifying MNIST digit images, which
achieves over 99% accuracy. The architecture of this pre-trained net is presented in Table S3. The perceptual loss in our
experiment is taken as the MSE on the outputs of the second convolutional layer, as this leads to the best perceptual quality
(see Fig. S2). We trained with stochastic gradient descent for 30 epochs with a batch size of 30. The learning rate was
initialized to 10−2 and decreased by 1

5 after 20 epochs.

(a) (b) (c)

Figure S1. Minimizing the perceptual loss alone (without an additional MSE term). The perceptual loss is evaluated on the outputs
of: (a) the first convolutional layer, (b) the second convolutional layer, and (c) the first fully-connected layer.
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(a) (b) (c) (d)

Figure S2. Visual comparison of assessing the perceptual loss on the outputs of different layers. (a) Minimizing the MSE alone.
(b)-(d) Minimizing a combination of the MSE and percpetual loss, where the perceptual loss is evaluated on the outputs of: (b) the first
convolutional layer, (c) the second convolutional layer, and (d) the first fully-connected layer. The weights of each term (MSE, perceptual)
in the loss were optimized for visual quality.
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