Correlated bandits or: How to minimize mean-squared error online

Vinay Praneeth Boda! Prashanth L.A.?

Abstract

While the objective in traditional multi-armed
bandit problems is to find the arm with the high-
est mean, in many settings, finding an arm that
best captures information about other arms is of
interest. This objective, however, requires learn-
ing the underlying correlation structure and not
just the means of the arms. Sensors placement for
industrial surveillance and cellular network mon-
itoring are a few applications, where the underly-
ing correlation structure plays an important role.
Motivated by such applications, we formulate the
correlated bandit problem, where the objective is
to find the arm with the lowest mean-squared er-
ror (MSE) in estimating all the arms. To this end,
we derive first an MSE estimator, based on sam-
ple variances and covariances, and show that our
estimator exponentially concentrates around the
true MSE. Under a best-arm identification frame-
work, we propose a successive rejects type algo-
rithm and provide bounds on the probability of
error in identifying the best arm. Using minmax
theory, we also derive fundamental performance
limits for the correlated bandit problem.

1. Introduction

The traditional multi-armed bandit problem aims to find the
arm with the highest payoff. This is often motivated by
practical applications such as to identify an ad with high-
est payoff in showing to users, or identifying a strategy
with maximum payoff. In this work, we consider a setting
with the objective being the identification of an arm/node
which best captures the entire information of a system,
i.e., the identification of arm which can best estimate all
the other arms. In contrast to the traditional multi-armed
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bandit problem, this objective involves an estimation of the
correlation structure among the various arms. This is mo-
tivated by several practical applications. For instance, in
internet-of-things, sensors are used to take measurements
from multiple locations with the objective of estimating the
underlying parameter, e.g., temperature, over a region. Re-
source constraints mean that it might not possible to place
sensors at the desired level of granularity. However, an es-
timate of the underlying distribution enables one to form
an estimate of the parameter at points not measured. This
estimate of the statistics of the underlying randomness is
often formed using limited measurements from multiple
points, before choosing the final location of the sensors.
Another application of interest is in identifying members
who can best approximate the social network. Instances in-
clude sensors used for measuring temperature in a region
(Guestrin et al., 2005), thermal sensors on microproces-
sors (Long et al., 2008), optimizing queries over a sensor-
net (Deshpande et al., 2004) and placing sensors to detect
contaminants in a water distribution network (Krause et al.,
2008). Problems of similar interest have also been studied
in the realm of information theory in (Boda, 2019; Boda &
Narayan, 2018). In all these applications, the underlying
correlation structure plays an important role.

In this paper, we formulate a variant of the stochastic K-
armed bandit problem, where the objective is to identify
the arm that best estimates all the other correlated arms.
We measure how good anarm ¢ € {1, ..., K} can estimate
other arms using the mean-squared error (MSE) criterion:

g 2 iE [(Xj —E[Xj|Xi])2}. (1)

We assume that the arms X7, ..., X are correlated sub-
Gaussian random variables (r.v.s). (Paul et al., 2014) con-
sider a celluar network application, where the goal is to
monitor large communication networks with huge traffic.
Since observing every node is computationally intensive,
companies such as AT&T use measurements from various
nodes to identify a subset which best captures the aver-
age behavior of the network. The requirement is for an
algorithm that reduces the data acquisition cost by identi-
fying the most-correlated subset of nodes, while using a
minimum number of sample measurements. The authors
in (Paul et al., 2014) show that a model approximating the
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underlying nodes as Gaussian r.v.s is useful and reliable.

Closely related problems in other application contexts in-
clude (i) selecting a few blogs that capture the informa-
tion cascade (Leskovec et al., 2007); (ii) finding a subset of
people who best represent the average behavior of a com-
munity; To put it differently, the notions of centrality in the
context of document/news summarization (Erkan & Radev,
2004) and prestige in social networks (Heidemann et al.,
2010) are closely related to the MSE objective in (1). In
each of these applications, there is a cost associated with
acquiring data and the challenge is to find the most cor-
related subset of blogs/people/etc using minimal observa-
tions about the community.

We study the basic problem of identifying the arm which
has the best MSE in estimating the remaining arms in
a multi-armed bandit framework. We consider the best
arm identification setting (Audibert et al., 2010; Kaufmann
et al., 2015), where a bandit algorithm is given a fixed sam-
pling budget, and is evaluated based on the probability of
incorrect identification. Challenges encountered for such a
setup include:

(1) Any estimate for the MSE requires estimation of the un-
derlying correlations, without assuming knowledge of the
variances.

(i1) Estimate of the MSE of an arm ¢ involves estimating the
correlation of arm 7 with the remaining arms. This requires
samples from all pairs of arms associated with 7. In par-
ticular, sampling arm ¢ alone would be insufficient towards
estimating arm ¢’s MSE; and hence

(iii) A bandit algorithm needs to optimize sampling across
all pairs of arms and not just among arms. This requires in-
tricate decisions over a larger set, in contrast to the classical
mean-value optimizing algorithms in a best arm identifica-
tion framework.

‘We summarize our contributions below.

First, we introduce a new formulation to study the identifi-
cation of arm which best estimates all arms. We design an
estimate and develop the concentration bound for the es-
timate of mean-squared error formed from available sam-
ples. Our estimator builds on the difference estimator in-
troduced in (Liu & Bubeck, 2014), but estimation is tech-
nically more challenging in our setting as the underlying
variances are not known and unlike (Liu & Bubeck, 2014),
not necessarily assumed to be one.

Second, we analyze a nonadaptive uniform sampling strat-
egy (i.e., a strategy that pulls each pair of arms an equal
number of times) and propose an algorithm inspired by
popular successive rejects (SR) (Audibert et al., 2010) for
best-arm identification, but more intricate due to the non-
linearity of the objective function, the MSE objective func-
tion (1). A naive SR strategy that operates over phases, dis-

carding all arm pairs associated with the arm having lowest
empirical MSE is suboptimal. Instead, our SR algorithm
maintains active sets for arms as well as pairs and discards
a pair only if both constituent arms are out of the active
arms set. We provide an upper bound on the probability of
error in identifying the best arm for our SR algorithm and
the bound involves a hardness measure that factors in the
gaps in MSEs as well as the correlations, which are specific
to the correlated bandit problem. As in the classic bandit
setup, the upper bound shows that SR algorithm requires
fewer samples to find the best arm in comparison to a uni-
form sampling strategy, especially, when K is large and the
underlying gaps (difference between MSE of optimal and
suboptimal arms) are uneven.

Third, we prove a lower bound over all bandit problems
with a certain hardness measure and to the best of our
knowledge, this is the first lower bound for the correlated
bandit problem that involves adaptive sampling strategies.
The lower bound involves constructing problem transfor-
mations, where the optimal arm is “swapped” with one of
the sub-optimal ones, resulting in X — 1 problem instances.
Unlike in the classic setup, any local change in the distri-
bution of an arm impacts the MSE of all the other arms.
Moreover, pulling pairs of arms instead of individual arms
makes the lower bound technically more challenging.

In (Liu & Bubeck, 2014), which is the closest related work,
the authors consider a bandit problem, where the objective
is to identify a subset of arms most correlated among them-
selves, i.e., to identify the local correlation structure within
a subset of arms themselves. On the other hand, our prob-
lem is about forming global inference from samples of sub-
sets of arms to identify the arm that is most correlated to
the remaining arms. In (Liu & Bubeck, 2014), the authors
consider a setting with positively correlated arms with unit
variance, making the estimation task and hence, the overall
best arm identification slightly easier. As we show later in
Section 3, their estimation scheme does not extend to the
more general non-unit variance setup that we consider. Fi-
nally, we also prove fundamental limits on the performance
of any correlated bandit algorithm, through information-
theoretic lower bounds, and to the best of our knowledge,
no lower bounds exist for a correlated bandit problem.

The rest of the paper is organized as follows: In Section 2,
we formalize the correlated bandit problem. In Section 3,
we present the MSE estimation scheme and derive a con-
centration bound for our estimator. In Section 4, we ex-
amine uniform sampling strategy, while in Section 5, we
present a successive-rejects type algorithm. In Section 6,
we present a lower bound for the correlated bandit prob-
lem. We provide sketches of convergence proofs in Sec-
tion 7. While not the thrust of this work, we provide a few
illustrative examples in Section 8 showing the performance
of our successive-rejects type algorithm. Finally, in Sec-
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tion 9 we provide our concluding remarks.

2. Model

We consider a set M = {1,...,K} of K correlated
arms X1,..., Xk, whose samples are i.i.d. in time. For
each arm i, let £; denote the minimum mean-squared error
(MMSE) of X; estimating all the remaining arms, i.e.,

&= mqlnE[(XM — g(Xi))T(XM —9(Xi))]. @

Consider the special case of jointly Gaussian r.v.s
X1, ..., Xk, whose joint probability distribution is charac-
terized by the mean (taken to be zero for the sake of expos-
itory simplicity), and covariance matrix ¥ = E[X L X p]:

2
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In the above, Jg, p € M is the variance of arm p and p;;,
i,7=1,...,K, i # j, the correlation coefficient between
arms ¢ and j.

The best estimate g*, which achieves the minimum in (2),
is known to be the MMSE estimate. For zero-mean jointly
Gaussian r.v.s, this is given by (cf. Chapter 3 of (Hajek,
2009))

9" (Xi) = E[Xm|X,] = [E[X1] X)) .. E[Xx | X)),

[ J I]Xi — pl].o-] X?, (4)

The corresponding MMSE for arm 7 is

K
&= Y E[(%; - B X))°] =S o2 - ). )
=1 J#i

Note that there is no error in arm ¢ estimating itself and
the error in estimating the jth arm is characterized by the
correlation between X; and X; and the relevant variances.
Further, the MMSE estimate for the case of Gaussian r.v.s
is linear. In the more general case of non-Gaussian r.v.s,
the MMSE estimate is typically nonlinear and any online
computation is typically a computationally intense task. In
such cases, we restrict ourselves to employing an optimal
linear estimator which is still defined as the right side of
(4). Thus, the right-side of (5) holds for all optimal linear
estimators, with it being optimal for Gaussian r.v.s.

We consider a setting where the arms X7, ..., Xk are sub-
Gaussian, and focus on linear estimators. We recall the
definition of sub-Gaussianity below.

Definition 1. A rv. X is said to be o-sub-Gaussian if

E (e)‘X) < exp (A22"2) , VieR.

For equivalent characterizations of sub-Gaussianity, the
reader is referred to Theorem 2.1 of (Wainwright, 2015).

We consider a fixed budget best-arm identification frame-
work, and the interaction of our (bandit) algorithm with the
environment is given below.

Correlated bandit algorithm
Input: set of pairs of arms S, number of rounds n.
Forallt =1,2,..., n, repeat
1. Based on samples {(X;, ;, X;,1), I =1,...,t —
1} seen so far, select a pair (is, j;) € S = {(i,5) |
i,7=1,...,K,i <j}.

2. Observe a sample from the bivariate distribution
corresponding to the arms i, j;.

After n rounds, output an arm An.

Notice that, in each round, the algorithm above pulls a pair
of arms, and this is necessary to learn the underlying corre-
lation structure.

In our setting, the performance metric associated with each
arm 17 is its MSE &;, and the optimal arm, say *, has the
lowest MSE, i.e.,
1" = argmin &;.
ieM

The objective is to minimize the probability of error in
identifying the best arm, i.e., P (in #* z*) , where 7, is the
estimate of the best arm based on n samples.

For i # ¢*, the suboptimality of the arm ¢ is quantified
by its gap in its MSE with respect to the optimal arm, i.e.,
A; = &—E&;~. The notation (i) is used to refer to the i™ best
arm (with ties broken arbitrarily), i.e., A(i)s are ordered

gaps of the arms: A1) £ Ag) < Ay < ... < Agy.

Note that the problem with K = 2 reduces to identifying
the arm with higher variance and has no dependence on
the correlation between the arms. The analysis of this case
would be similar (estimate variance instead of mean) to the
classical bandit problems and differs considerably from the
setting with K > 3 arms, which is the setting assumed
hereafter.

3. MSE Estimation

Let {(Xi, Xj¢), t = 1,...,n} denote the set of n ii.d.
samples obtained from the bivariate Gaussian distribution
corresponding to the pair of arms (i, 7). To identify the
optimal arm, we form an estimate of &; to which end we
form estimates for the variances 07,07 and the correla-

tion coefficient p;;. We employ the following estimators
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for the aforementioned quantities: For any (i,j) € S =
{p.9)1<pg< K, p#q},

—2 —2 -

R 1 (X, X X; X

pijél_i =+ —2—2 ], (6)
g; Uj 00

(}?:7?, 6?:?3, where

The estimate for p in (6) is akin to that proposed in (Liu
& Bubeck, 2014), which considers a simpler setting where
all the arms are known to have unit variance, i.e., J? =
1, «+ = 1,..., K. For the unit variance setup, (Liu &
Bubeck, 2014) establish via a likelihood ratio test that the
difference based estimator for p;;

1, —2 =2 —
1—§(Xi + X —2Xin) @)

. . XX,
is advantageous over the natural estimator for p;; : Z51.
: "y

This superiority depends explicitly on the a priori knowl-
edge of the variances being one, which is not applicable
to the general setting considered here, i.e., a setting where
the variances are not necessarily one. However, to exploit
the optimality of the likelihood ratio test, we express the
estimator above in the spirit of (7) which depend on the es-
timates of the variances to scale the samples to obtain

2

— —2 -
A 11X X 5 XX
pij =1 2(&3"*‘&5. 255 |

Unlike the unit variance setup of (Liu & Bubeck,
2014), it is not possible to obtain a difference based
estimator in our setting.  Nevertheless, p;; concen-
trates faster as p;; approaches 1 and this can be ar-
gued as follows: On the high probability event C =

2 2
o ~9 2 05 ~92 2
{—2 <of < 207, 5 <03 <202},Wehave

P((1 = pij) = (1= pij) > €,C)
i
= oxp <_me (2(1jpij)’ (2(1i/h’j))2>> ’

., 1 (X2 X XX,
where Vi, & ——— L 4 —2———= |, and
o

(A —piy) \ 67 67 = 6i0;
—2 —2 [
_ 1 X X XX
Vimee—— |3+ -2+
(1—pi) \ o; o’ 00,

For any arm 4, the corresponding MSE &; is estimated using
the quantities defined in (6) as follows:

25 (1=ph)+ 2 (=)  ®
PF#i,J
The main result concerning the concentration of the MSE
estimate &; is given below.

Proposition 1. (MSE Concentration) Assume 02 < 1,i =
1,..., K. Let &, be the MSE estimate given in (8), for i =
1,...,K. Then, forany i = 1,..., K, and for any ¢ €
[0,2K], we have

P

where c is a universal constant, and 0 < | = min o
K3

R 12 2
E =&l > E) < 14K exp <—n€r) s
cK?®

2

i -

In the above, it suffices to look at ¢ < 2K, since &; is less
than K — 1, owing to the assumption that o2 < 1, Vi.

Proof. See Section 7 for a sketch. The detailed proof is
available in (Boda & Prashanth, 2019). O]

The claim in Proposition 1 holds for the more general case
of sub-Gaussian r.v.s {X;,...,Xx}. However, in this
case, the MSE ¢&; is best in the class of linear estimators,
and is not necessarily the minimum MSE estimator.

4. Uniform Sampling

A simple approach towards identifying the best arm is to
select each pair (i, j) € S equal number of times, estimate
the MSE errors ép, p € M and recommend the arm with
the lowest MSE estimate to be optimal, i.e., the samples
used for estimation are n;; = ﬁ = %, 1% 7.
Theorem 1. For uniform sampling, the probability of error
in identifying the optimal arm is

. leA(Ql)
P(A, #i*) < 84K%exp | — = |
C

where c is a universal constant.

Proof. Proof uses Proposition 1 along with an union bound
and is available in (Boda & Prashanth, 2019). O]

If the correlations between all pairs of arms and the vari-
ances of all the arms are similar, then the optimal strategy
would involve sampling all pairs of arms an equal number
of times. However, when this is not the case, uniform sam-
pling is inferior. The elimination-based strategy that we
present in the following section overcomes the shortcom-
ings of uniform sampling.
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Phase k =2,..., K — 1:

ak+1, among the active arms in By.

2. Set Bk+1 = By, \ Ak+1 and Ak+1

End of phase K — 1: Recommend the arm in Ag.

Set Ay =8,B1={1,...,K}andfork=1,..., K — 2,
_ n—(3)
ng = {O(K)(K—i—l—k)-‘ , where C(K

Phase 1: Sample each pair (i, j) € A; for ny number of times, estimate the MSE differences using (8), remove the
worst two arms from Bj and the corresponding pair from A; to obtain Bs and As respectively.

1. Pull each pair in Ay (ng — nk—1) number of times. Estimate the MSEs using (8) and find the worst arm, say

= Ap \ {(ak+1,a1), (ag41,02), .. .,
is the set of arms that are out of contention by the end of phase k — 1.

K-2

-|- 1K <KlogK
i=

(ak+1,ar)}, where B = {a1,...,a,}

Figure 1. Successive rejects algorithm for correlated bandits.

5. Successive Rejects

The successive rejects (SR) algorithm, which pulls pairs
of arms' to identify the arm which minimizes MSE, op-
erates over K — 2 phases as described in Figure 1 . The
idea is to maintain a set of active arms and pairs of arms
(for phase k, these are denoted by A and Bj) and elimi-
nate arms (and some of their corresponding pairs) that have
high MSE. The elimination scheme employed in Figure 1
departs significantly from the approach adopted in the clas-
sic SR algorithm for finding the arm with highest mean. To
illustrate this, consider a setting with 5 arms. If arms 4, 5
are out of contention after phase 1, Ay = A; \ (4,5). In
the second phase, all the pairs in Ay are pulled (ny — ny)
number of times. Now, if arm 3 is out of contention at the
end of this phase, the pairs (3, 4) and (3, 5) will be removed
from As and no longer be pulled in the later phases. From
the foregoing, the total number of samples used by SR is

<K>”” (5)(3)]<n>+
() ( )}Wl—nm)

= (k—=Dnp + (K — 1)nkg-1 <mn,
k=1
where the final inequality follows by using the definition of

ng.

Notice that a strategy that finds the worst arm according to
empirical MSE estimates and discards all pairs associated
with that arm is clearly suboptimal, because samples from
some of the discarded pairs of arms are essential to form
estimate of MSE of arms which remain in contention. For
e.g., in a 5-armed bandit setting, suppose that we discard
all pairs associated with arm 5 in some round. This would
impact the quality of MSE estimate of arm 1, since the pair

'With abuse of notation, (a;,a;) is used to denote the (un-
ordered) pair of arms a;, a;.

(1,5) would be useful in training a better estimate of £; via
P15-

Before presenting the main result that bounds the probabil-
ity of error in identifying the best arm of the algorithm in
Figure 1, we present the following problem complexities
that capture the hardness of the learning task at hand (i.e.,
the order of number of samples required to find the best
arm with reasonable probability):

i — 1
Hy = max— es and H = Z N2 9)
2 Z;ﬁ?* 7

The quantities H> and H, have a connotation similar to that
in the classical bandit setup and using arguments similar to
those employed in (Audibert et al., 2010), it can be shown
that

H2 S H S 10g(K)H2,
. K—2
where log(K) = > 1. Observe that the problem com-
i=2

plexities depend both on the variances of the arms and the
correlation between the arms through the gaps.

Theorem 2. The probability of error in identifying the best

arm of SR satisfies , .
P(A, £ %) < 84K exp | - = (3))
" a cK5 C(K)Hy |’

where c is a universal constant.

The detailed proof is available in (Boda & Prashanth,
2019). From Theorem 1, itis apparent that an uniform sam-
pling strategy would require O( ) samples to achieve a
certain accuracy, while our SR Varlant for correlated ban-
dits would require O(K°® H) number of samples. SR scores
over uniform sampling w.r.t. dependence on the number of
arms K because in our SR algorithm an increasing number
of pairs of arms are removed from contention in successive
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phases. More importantly, SR has better dependence on the
underlying gaps when compared to uniform sampling. In
problem instances where the gaps are uneven, SR finds the
best arm much faster than uniform sampling.

6. Lower Bound

To obtain the lower bound, we consider a K -armed Gaus-
sian bandit problem with the underlying joint probability
distribution governed by the following covariance matrix:

L p p p ... p

p 1 p P PP
s=|r 7 1 0 . Pl o

p P2 PP . pRTl o1
Observe that X is a valid covariance matrix and is positive
semi-definite. The MSEs corresponding to arms 1,..., K
are £, = (K—1)(1—-p?), & = (1-p*)+ (K -2)(1-p")

and more generally

Zp21+

Hence, we have the following order on the MSEs: & <
E < ... <Ek.

Z_]' (1_ )7

An approach in recent papers, cf. (Audibert et al., 2010;
Kaufmann et al., 2015), for establishing lower bound for
best-arm identification is to transform the bandit problem
so that one of the sub-optimal arm is turned into an opti-
mal one, while not affecting the rest of the arms. However,
our setting involves correlated arms, with the correlation
factors appearing in the mean-squared error objective and
hence, one cannot make a sub-optimal arm optimal in a
standalone fashion. We swap pairs of arms to interchange
the MSE of a sub-optimal arm with that of the optimal arm
and this introduces major deviations in the proof as com-
pared classic K -armed case, as we shall soon see. We de-
scribe our problem transformations next.

We form K — 1 transformations of the bandit problem for-
mulated at the beginning of this section. For “problem m,”
m = 2,...,K, arm m is the best and for achieving this,
we swap the first and mth rows in 3. Let G be the pdf
associated with the given problem as in (10), and G" rep-
resent the pdf of the transformed bandit problem, where
m represents the mth transformation. Since we consider
arms whose samples are i.i.d. in time, the joint distribu-
tion of n samples is a product distribution of the underly-
ing random variables (G)®™ and for the transformed prob-
lem by (gm)®”. For compactness, we use P; £ Pgyens

A A A
El = E(g)®n al’ld P"L = P(gm)®n, IE”L - E(gm)(@n.

For any problem with p> < UB,2 £1— \/%2, we define

K

i=1,..., K.

c1 = and ¢y = and the min-max proba-

1 _pr_
1-UB,» 1-UB,;
bility of error in identifying the optimal arm is given by the
theorem below.

Theorem 3. For any bandit strategy that returns the arm
A, after n rounds, there exists a transformation of the co-
variance matrix such that the probability of error on the
transformed problem satisfies

25 P #m) > G (= G ().
where Hy, = ; Ai is the problem complexity term,

i
€ - aumax{%log 12K (K — 1)n,
\/% log 12K (K — 1)n} and ¢ = max (3cy, 48¢2).

Proof. See Section 7 for a sketch. The detailed proof is
available in (Boda & Prashanth, 2019). O

Note the gap between the upper and lower bounds on the
probability of error in Theorems 2 and 3. The problem
complexity term in the upper bound involved the square of
the gaps, whereas the lower bound involves just the gaps.
We believe the upper bound for SR algorithm is optimal in
terms of gap dependence and it would be interesting future
work to establish a lower bound that involves squares of the
gaps. In the lower bound proof, the Kullback-Leibler diver-
gence terms for the transformed problems were bounded
above by the gaps (for e.g., see (12) in Section 7), leading
to an overall lower bound with complexity H;,. Neverthe-
less, the current proof is challenging owing to (i) pairs of
arms being pulled in each round; (ii) the covariance matrix
in (10) is non-trivial and its problem transformations are
novel and finally, (iii) arriving at the bound for the afore-
mentioned KL-divergence terms requires non-trivial alge-
braic effort.

7. Analysis
Proof of Proposition 1 (Sketch)

The MSE estimate in (8) involves sample variances and
sample correlation coefficients, and hence, MSE concen-
tration requires each of these quantities to concentrate.
While one can use Bernstein’s inequality for handling sam-
ple variance, a finite sample concentration bound for sam-
ple correlation coefficient does not exist, to the best of our
knowledge. We fill this gap in the result below.

Lemma 1. For independent Gaussian rvs X;, © =
1,...,n, with mean zero and covariance matrix ¥ as de-
fined in (3) and with 62, p;; formed from n samples using
(6), foranyi,j =1,..., K, andfor any € € [0, 7], we have

P (1pij — pij| > €)
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n 1 . le [le\?
<26exp| ——————min | —, | = ,
836(1+mn) 3°\3
where [ is a positive constant satisfying | < o? < 1, Vi.

The proof is available in (Boda & Prashanth, 2019). We
now provide a sketch of the proof of Proposition 1.

Proof. (Sketch)

We prove the proposition for ¢ = 1, but the
analysis below holds in general. Consider the
event. B = {ol-e<6?<ol+ei=1,....K,
andplj — € S ﬁlj S P1j +€, fOI'j = 2,,K} Then,

from the lemma above on sample correlation coefficient
concentration and sample variance concentration (cf.
Proposition 2.2 in (Wainwright, 2015)), we have

(e [1e)2
P (B°¢) < 28K exp (—%m min (%7 (%) )) .
We shall bound the tail probability P (5’1 —& >e€

the event B and use the bounds on the probability of B¢
to arrive at an unconditional bound on the aforementioned
tail probability. Using an union bound, we have

on

11»(5}*51 Ze) gp(g}f& 26,8) +P(BY

<P (o3 (1= %) - o} (1 sh) = 2 py.5)
K

+ZIP(5—§(1
p=3

+P(B).

~ €
= h1p) —op (1= pi,) 2 (K_D,B)

(11

The first term on the RHS above can be bounded as follows:

p( (1= %) — o2 (1= p2) = (Ke—l)’B)

€
<P —pp>——-—— B
= (Pm P12 =2 MK —1D(L+7) )
P(63—02>-—).

+ (U 2 09 2 9 ( K — 1)

The proof proceeds by applying concentration results for
sample variance, sample standard deviation and sample
correlation coefficients to bound the RHS above. The rest
of the terms on the RHS of (11) are handled in a similar
fashion. The reader is referred to Section 7.2 of (Boda &
Prashanth, 2019) for further details. O

Proof of Theorem 3 (Sketch)

Proof. Consider problem m with underlying covariance
matrix X,,. For (i,j) € S, let ViV and Vv i % denote
bivariate normal distributions with variance and correla-
tions speciﬁed by ¥; and %;, respectively. Let KL} = =

K L(vivj||vjv;) denote the Kullback-Leibler dlvergence

and v/v’, where the latter distributions are

between v;v; Vi

derived from G,,.

If p> < 2E=5 we have the following bound for j =
3,...,K:
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Along similar lines, we can infer that

max{KL{} KLy}, KL, j # 1,m} <Ay, (12)
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For (i,j) € S, let N;; denote the number of samples ob-
tained from the joint distribution of (X;, X;). Let n;; =

EN;;, for (i, j) € S. Observe that
> Nij= 3 nij=n
(i,J)€S (i,5)€S

Notice that the problem transformations impact the distri-
bution of each arm and hence, we cannot employ a change
of measure identity similar to (Audibert et al., 2010). In-
stead, we factor in the KL-divergences KL;;, V (i,j) € S
and derive a change of measure identity as follows: for any
measurable event £ based on the samples,
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where 7;;(n) is the set of time instants when the algorithm
pulled the tuple (, 7). For (i,7) € S,1 <t <n,let

t

Zl

where (X, X; ) are iid. ~ G for all s < ¢. Here,
2(4,4),m 18 the covariance matrix of X;, X; for problem m,

and is a submatrix of X,,,. Let £ = {V(Lj) €S5,1<t<

dl/ldI/J
/d /

Xi,57 Xj,s)

Ut

n, Ia(ij)yt —KL;; < €t}, where €, is as defined in the the-
orem statement. Then, form = 1,..., K, P,,(£) > 5/6,
which implies that the empirical divergences concentrate.

Now, considering algorithms that satisfy £, (/1” £ 1) <

1/2, we obtain
. K
P, (A, #m) > ( ) )nen)
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where the final inequality follows from the bounds on KLZ
above.

Letl; =nia+...nmx + >, n;j. Then, there exists an

i#£1,i
i such that [; < "F(Ill(bz), where Hj, is as defined in the
theorem statement. If not, then we obtain a contradiction.

For the aforementioned i, we have

. 1 6nK K\ _
P (A, #m) > Eexp(— Hy — <2>nen). (13)

The main claim follows. O

8. Numerical Experiments

We show a few simple experiments here to illustrate our
theoretical analysis. Since, this line of work is new, we
compare our successive rejects type algorithm and uniform
sampling which is optimal in some settings. We show three
experiments, in which all the arms are jointly Gaussian
having mean zero and unit variance. Each experiment can
be seen to consist of two clusters of arms with the arms
in each cluster being independent of the arms in the other
cluster. Arm 1, in the first cluster, is optimal in all the three
experiments and the arms in the second cluster are typically
less correlated among themselves than the arms in the first
cluster.

In a setting with 35 arms, we employ the following covari-
ance matrices for the three experimental setups:

M, 0 M; 0
Y= o= 14
! { 0 Iosxos } 2 { 0 Triixs } 1

1 0.5 045 0.5 0
0.5 1 0.45 0.4 0
0.45 0.45 1 0.4 0
05 04 04 1 0

0 I30%30

Y3 = , (15)

where M; =[10.90.90.9; 0.910.850.85;
0.90.8510.85; 0.90.850.85 1], and Trx_5xx—5 is a
tridiagonal matrix with ones along the main diagonal, 0.2 in
the diagonals above and below and zeros elsewhere. Notice
that 3J; is a block diagonal matrix for each ¢ = 1,2, 3 and
hence, its eigenvalues are union of the nonzero diagonal
submatrices. It is easy to verify that the individual blocks,
ie., My and Trg 54 x—5, are positive semi-definite and
hence, so is X; for each 1.

In Example 1 corresponding to covariance matrix 3, arms
in the first cluster are highly correlated amongst them-
selves, and arms in the second cluster are independent of all
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Figure 2. Probability of error for uniform sampling and SR algo-
rithms on three different problems. The results are averages from
200 independent replications.

the arms. On the other hand, in Example 2 corresponding
to covariance matrix Yo, arms in the first cluster are highly
correlated among themselves and the arms in the second
cluster are weakly correlated amongst themselves. Finally,
in Example 3 corresponding to covariance matrix s, arms
in the first cluster are weakly correlated among themselves
and arms in the second cluster are independent of all the
arms. In all the three examples, multiple arms in the first
cluster have MSE close to that of the optimal arm. Clearly,
more samples of the pairs of arms corresponding to the first
cluster of arms are required to identify the optimal arm ac-
curately. As number of arms K increases, the proportion
of samples used for pairs corresponding to the clearly sub-
optimal arms increases at a faster rate for uniform sampling
algorithm as compared to SR.

We conduct our experiments with the number of samples

equaling = 3% for each experiment. Figure 2 compares
the probability of error for the three settings with covari-
ance matrices given in (14)—(15). In all three settings, SR
recommends the optimal arm with higher probability, and
this is because SR algorithm rejects the sub-optimal arms
in the beginning phases using fewer samples and allocates
more samples to the first cluster to distinguish between the
arms in this cluster.

9. Conclusions

We presented a new formulation of the K-armed bandit
problem where the goal, using the MSE criterion, is to find
an arm that best captures information about all arms. Both
estimation of MSE for individual arms, and exploration to
find the best arm in a correlated bandit are challenging. We
proposed an MSE estimator that uses samples from the dis-
tribution underlying any pair of arms, and showed that our
estimator concentrates. We adapted the SR algorithm to
successively eliminate arm pairs, and proved a bound on
the probability of error in identifying the best arm. We also
derived a lower bound for the correlated bandit problem.
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