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6. Appendix
6.1. Proofs and Derivations

Proof. Theorem 1. Applying eigenvalue perturbation the-
ory we obtain that λ′p = λp + uTp (∆M̂)up where λ′p is
the eigenvalue of M̂ ′ based on A′ obtained after perturbing
the graph. Using the fact that λp = uTp M̂up, and the fact
that singular values are equal to the absolute value of the
corresponding eigenvalues we obtain the desired result.

Proof. Theorem 2. Denote with ei the vector of all ze-
ros and a single one at position i. Then, we have ∆A =
∆wij(eie

T
j + eje

T
i ) and ∆D = ∆wij(eie

T
i + eje

T
j ). From

eigenvalue perturbation theory (Stewart, 1990), we get:
λ′y ≈ λy + uTy (∆A − λy∆D)uy. Substituting ∆A/∆D
concludes the proof.

We include an immediate result to prove Theorem 3.

Lemma 4. Consider the generalized eigenvalue problem
Au = λDu and suppose that we have the changes in the
respective matrices/vectors: ∆A,∆D and ∆λ, then the
change in the eigenvectors ∆u can be expressed as:

∆u = −(A− λD)+

(
∆A−∆λD − λ∆D

)
u

Proof. Theorem 3. Let ∆A and ∆D be defined as in The-
orem 2 and let ∆λ be the change in the eigenvalues as
computed in Theorem 2. Plugging these terms in Lemma 4
and simplifying we obtain the result.

We include an intermediate result to prove Lemmas 2 and 3.

Lemma 5. λ is an eigenvalue ofD−1/2AD−1/2 := Anorm
with eigenvector û = D1/2u if and only if λ and u solve the
generalized eigen-problem Au = λDu.

Proof. Lemma 5. We have Az = λDz =⇒
(Q−1AQ−T )(QT z) = λ(QT z) for any real symmetric A
and any positive definite D, where D = QQT using the
Cholesky factorization. Substituting the adjacency/degree
matrix and usingQ = QT = D1/2 we obtain the result.

Proof. Lemma 2. S is equal to a product of three matrices
S = D−1/2

(
Û
(∑T

r=1 Λ̂r
)
ÛT
)
D−1/2 where Û Λ̂ÛT =

D−1/2AD−1/2 =: Anorm is the eigenvalue decomposition
of Anorm (Qiu et al. (2018)). From Lemma 5 we have the
fact that λ is an eigenvalue of D−1/2AD−1/2 with eigen-
vector û = D1/2u if and only if λ and u solve the general-
ized eigen-problem Au = λDu. Substituting Λ̂ = Λ and
Û = D1/2U in S, and use the fact that D is diagonal.

Proof. Lemma 3. Following (Qiu et al., 2018), the
singular values of S can be bounded by σp(S) ≤

1
dmin

∣∣∑T
r=1(µ̂π(p))

r
∣∣ where µ are the (standard) eigenval-

ues of Anorm. Using Lemma 5, the same bound applies
using the generalized eigenvalues λp of A. Now using The-
orem 2, we obtain λ̃′p an approximation of the p-th gener-
alized eigenvalue of A′. Plugging it into the singular value
bound we obtain: σp(S) ≤ 1

dmin

∣∣∑T
r=1(λ̃′π(p))

r
∣∣ which

concludes the proof.

Please note that the permutation π does not need be com-
puted/determined explicitly. In practice, for every λ̃′p, we
compute the term

∣∣∑T
r=1(λ̃′p)

r
∣∣. Afterwards, these terms

are simply sorted.

6.2. Analysis of Spectral Embedding Methods

Attacking spectral embedding. Finding the spectral em-
bedding is equivalent to the following trace minimization
problem:

min
Z∈R|V |×K

Tr(ZTLxyZ) =

K∑
i=1

λi(Lxy) = LSC (4)

subject to orthogonality constraints, where Lxy is the
graph Laplacian. The solution is obtained via the eigen-
decomposition of L, with Z∗ = UK where UK are the K-
first eigen-vectors corresponding to the K-smallest eigen-
values λi. The Laplacian is typically defined in three dif-
ferent ways: the unnormalized Laplacian L = D − A,
the normalized random walk Laplacian Lrw = D−1L =
I−D−1A and the normalized symmetric LaplacianLsym =
D−1/2LD−1/2 = I−D−1/2AD−1/2 = I−Anorm, where
A,D,Anorm are defined as before.

Lemma 6 ((von Luxburg, 2007)). λ is an eigenvalue of
Lrw with eigenvector u if and only if λ is an eigenvalue of
Lsym with eigenvector w = D1/2u. Furthermore, λ is an
eigenvalue of Lrw with eigenvector u if and only if λ and u
solve the generalized eigen-problem Lu = λDu.

From Lemma 6 we see that we can attack both normalized
versions of the graph Laplacian with a single attack strategy
since they have the same eigenvalues. It also helps us to do
that efficiently similar to our previous analysis (Theorem. 3).

Theorem 4. Let Lrw (or equivalently Lsym) be the initial
graph Laplacian before performing a flip and λy and uy be
any eigenvalue and eigenvector of Lrw. The eigenvalue λ′y
of L′rw obtained after flipping a single edge (i, j) is

λ′y ≈ λy + ∆wij((uyi − uyj)2 − λy(u2
yi + u2

yj)) (5)

where uyi is the i-th entry of the vector uy .

Proof. From Lemma 6 we can estimate the change in
Lrw (or equivalently Lsym) by estimating the eigenvalues
solving the generalized eigen-problem Lu = λDu. Let
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(a) Eigenvalues: |λ′ − λ̃′| (b) Sums of powers of eigenvalues:
∣∣∑T

r=1 λ
′r
i −

∑T
r=1 λ̃

′r
i

∣∣.
Figure 6: Comparison between the true eigenvalues λ′ after performing a flip (i.e. doing a full eigen-decomposition) and
our approximation λ̃′. Since the difference is several orders of magnitude smaller than the eigenvalues (sums of powers of
eigenvalues resp.) themselves, we show a ”zoomed-in” view (note the difference in the scale on the y-axis). In each subplot
on the right side we show the average absolute difference and the standard deviation across the 5K randomly selected flips.
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Figure 7: The singular value of S and our upper bound d−1
min|

∑T
r=1 λ

r
i | ≥ σi(S) for different graphs.

∆L = L′ − L be the change in the unnormalized graph
Laplacian after performing a single edge flip (i, j) and ∆D
be the corresponding change in the degree matrix. Let ei be
defined as before. Then ∆L = (1−2Aij)(ei−ej)(ei−ej)T
and ∆D = (1− 2Aij)(eie

T
i + eje

T
j ). Based on the theory

of eigenvalue perturbation we have λ′y ≈ λy + uTy (∆L −
λy∆D)uy . Finally, we substitute ∆L and ∆D.

Using now Theorem 4 and Eq. 4 we finally estimate
the loss of the spectral embedding after flipping an edge
LSC(L′rw, Z) ≈

∑K
p=1 λ

′
p. Note that here we are summing

over the K-first smallest eigenvalues. We see that spec-
tral embedding and the random walk based approaches are
indeed very similar.

Theorem 5. Let L be the initial unnormalized graph Lapla-
cian before performing a flip and λy and uy be any eigen-
value and eigenvector of L. The eigenvalue λ′y of L′ ob-
tained after flipping a single edge (i, j) can be approximated
by:

λ′y ≈ λy − (1− 2Aij)(uyi − uyj)2 (6)

Proof. Let ∆A = A′ − A be the change in the adjacency
matrix after performing a single edge flip (i, j) and ∆D be
the corresponding change in the degree matrix. Let ei be
defined as before. Then ∆L = L′ − L = (D + ∆D) −
(A+ ∆A)− (D−A) = ∆D−∆A = (1− 2Aij)(eie

T
i +

eje
T
j − (eie

T
j + eje

T
i )). Based on the theory of eigenvalue

perturbation we have λ′y ≈ λy + uTy (∆L)uy. Substituting
∆L and re-arranging we get the above results.

6.3. Approximation Quality

Approximation quality of the eigenvalues. We randomly
select 5K candidate edge flips (Cora) and we compare the
true eigenvalues λ′ after performing a flip (i.e. doing a full
eigen-decomposition) and our approximation λ̃′ obtained
from Theorem 2. We can see in Fig. 6a that the average
absolute difference |λ′−λ̃′| across the 5K randomly selected
flips and the standard deviation are negligible: several orders
of magnitude smaller than the eigenvalues themselves. The
difference between the terms |

∑T
r=1 λ

′r
i −

∑T
r=1 λ̃

′r
i | used

in Lemma 3 is similarly negligible as shown in Fig. 6b.

Upper bound on the singular values. Lemma 3 shows
that LDW3 is an upper bound on LDW1 (excluding the
elementwise logarithm). For a better understanding of the
tightness of the bound we visualize the true singular values
σi(S) of the matrix S and their respective upper bounds
d−1
min|

∑T
r=1 λ

r
i | ≥ σi(S) obtained by applying Lemma 3

for all datasets. As we can see in Fig. 7, the gap is different
across the different graphs and it is relatively small overall.

These results together (Fig. 6 and Fig. 7) demonstrate that
we have obtained a good approximation of both the eigen-
values and the singular values, leading to a good overall
approximation of the loss.


