6. Appendix

6.1. Proofs and Derivations

Proof. Theorem 1. Applying eigenvalue perturbation theory we obtain that $\lambda_p' = \lambda_p + u_p^T(\Delta \hat{M})u_p$ where λ_p' is the eigenvalue of \hat{M}' based on A' obtained after perturbing the graph. Using the fact that $\lambda_p = u_p^T \hat{M} u_p$, and the fact that singular values are equal to the absolute value of the corresponding eigenvalues we obtain the desired result. \square

Proof. Theorem 2. Denote with e_i the vector of all zeros and a single one at position i. Then, we have $\Delta A = \Delta w_{ij}(e_ie_j^T + e_je_i^T)$ and $\Delta D = \Delta w_{ij}(e_ie_i^T + e_je_j^T)$. From eigenvalue perturbation theory (Stewart, 1990), we get: $\lambda_y' \approx \lambda_y + u_y^T (\Delta A - \lambda_y \Delta D) u_y$. Substituting $\Delta A/\Delta D$ concludes the proof.

We include an immediate result to prove Theorem 3.

Lemma 4. Consider the generalized eigenvalue problem $Au = \lambda Du$ and suppose that we have the changes in the respective matrices/vectors: $\Delta A, \Delta D$ and $\Delta \lambda$, then the change in the eigenvectors Δu can be expressed as:

$$\Delta u = -(A - \lambda D)^{+} \left(\Delta A - \Delta \lambda D - \lambda \Delta D \right) u$$

Proof. **Theorem 3.** Let ΔA and ΔD be defined as in Theorem 2 and let $\Delta \lambda$ be the change in the eigenvalues as computed in Theorem 2. Plugging these terms in Lemma 4 and simplifying we obtain the result.

We include an intermediate result to prove Lemmas 2 and 3.

Lemma 5. λ is an eigenvalue of $D^{-1/2}AD^{-1/2} := A_{norm}$ with eigenvector $\hat{u} = D^{1/2}u$ if and only if λ and u solve the generalized eigen-problem $Au = \lambda Du$.

Proof. Lemma 5. We have $Az = \lambda Dz \Longrightarrow (Q^{-1}AQ^{-T})(Q^Tz) = \lambda(Q^Tz)$ for any real symmetric A and any positive definite D, where $D = QQ^T$ using the Cholesky factorization. Substituting the adjacency/degree matrix and using $Q = Q^T = D^{1/2}$ we obtain the result. \square

Proof. Lemma 2. S is equal to a product of three matrices $S = D^{-1/2} (\hat{U} \left(\sum_{r=1}^T \hat{\Lambda}^r \right) \hat{U}^T \right) D^{-1/2}$ where $\hat{U} \hat{\Lambda} \hat{U}^T = D^{-1/2} A D^{-1/2} =: A_{norm}$ is the eigenvalue decomposition of A_{norm} (Qiu et al. (2018)). From Lemma 5 we have the fact that λ is an eigenvalue of $D^{-1/2} A D^{-1/2}$ with eigenvector $\hat{u} = D^{1/2} u$ if and only if λ and u solve the generalized eigen-problem $Au = \lambda Du$. Substituting $\hat{\Lambda} = \Lambda$ and $\hat{U} = D^{1/2} U$ in S, and use the fact that D is diagonal. \square

Proof. Lemma 3. Following (Qiu et al., 2018), the singular values of S can be bounded by $\sigma_p(S) \leq$

 $\frac{1}{d_{min}} \Big| \sum_{r=1}^T (\hat{\mu}_{\pi(p)})^r \Big| \text{ where } \mu \text{ are the (standard) eigenvalues of } A_{norm}. \text{ Using Lemma 5, the same bound applies using the generalized eigenvalues } \lambda_p \text{ of } A. \text{ Now using Theorem 2, we obtain } \tilde{\lambda}_p' \text{ an approximation of the p-th } generalized \text{ eigenvalue of } A'. \text{ Plugging it into the singular value bound we obtain: } \sigma_p(S) \leq \frac{1}{d_{min}} \Big| \sum_{r=1}^T (\tilde{\lambda}_{\pi(p)}')^r \Big| \text{ which concludes the proof.}$

Please note that the permutation π does not need be computed/determined explicitly. In practice, for every $\tilde{\lambda}'_p$, we compute the term $\left|\sum_{r=1}^T (\tilde{\lambda}'_p)^r\right|$. Afterwards, these terms are simply sorted.

6.2. Analysis of Spectral Embedding Methods

Attacking spectral embedding. Finding the spectral embedding is equivalent to the following trace minimization problem:

$$\min_{Z \in \mathbb{R}^{|V| \times K}} Tr(Z^T L_{xy} Z) = \sum_{i=1}^K \lambda_i(L_{xy}) = \mathcal{L}_{SC}$$
 (4)

subject to orthogonality constraints, where L_{xy} is the graph Laplacian. The solution is obtained via the eigendecomposition of L, with $Z^* = U_K$ where U_K are the K-first eigen-vectors corresponding to the K-smallest eigenvalues λ_i . The Laplacian is typically defined in three different ways: the unnormalized Laplacian L = D - A, the normalized random walk Laplacian $L_{rw} = D^{-1}L = I - D^{-1}A$ and the normalized symmetric Laplacian $L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}AD^{-1/2} = I - A_{norm}$, where A, D, A_{norm} are defined as before.

Lemma 6 ((von Luxburg, 2007)). λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of L_{sym} with eigenvector $w = D^{1/2}u$. Furthermore, λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigen-problem $Lu = \lambda Du$.

From Lemma 6 we see that we can attack both normalized versions of the graph Laplacian with a single attack strategy since they have the same eigenvalues. It also helps us to do that efficiently similar to our previous analysis (Theorem. 3).

Theorem 4. Let L_{rw} (or equivalently L_{sym}) be the initial graph Laplacian before performing a flip and λ_y and u_y be any eigenvalue and eigenvector of L_{rw} . The eigenvalue λ_y' of L_{rw}' obtained after flipping a single edge (i,j) is

$$\lambda'_{y} \approx \lambda_{y} + \Delta w_{ij} ((u_{yi} - u_{yj})^{2} - \lambda_{y} (u_{yi}^{2} + u_{yj}^{2}))$$
 (5)

where u_{yi} is the *i*-th entry of the vector u_y .

Proof. From Lemma 6 we can estimate the change in L_{rw} (or equivalently L_{sym}) by estimating the eigenvalues solving the generalized eigen-problem $Lu = \lambda Du$. Let

Figure 6: Comparison between the true eigenvalues λ' after performing a flip (i.e. doing a full eigen-decomposition) and our approximation $\tilde{\lambda'}$. Since the difference is several orders of magnitude smaller than the eigenvalues (sums of powers of eigenvalues resp.) themselves, we show a "zoomed-in" view (note the difference in the scale on the y-axis). In each subplot on the right side we show the average absolute difference and the standard deviation across the 5K randomly selected flips.

Figure 7: The singular value of S and our upper bound $d_{min}^{-1}|\sum_{r=1}^T \lambda_i^r| \geq \sigma_i(S)$ for different graphs.

 $\Delta L = L' - L$ be the change in the unnormalized graph Laplacian after performing a single edge flip (i,j) and ΔD be the corresponding change in the degree matrix. Let e_i be defined as before. Then $\Delta L = (1-2A_{ij})(e_i-e_j)(e_i-e_j)^T$ and $\Delta D = (1-2A_{ij})(e_ie_i^T+e_je_j^T)$. Based on the theory of eigenvalue perturbation we have $\lambda_y' \approx \lambda_y + u_y^T(\Delta L - \lambda_y \Delta D)u_y$. Finally, we substitute ΔL and ΔD .

Using now Theorem 4 and Eq. 4 we finally estimate the loss of the spectral embedding after flipping an edge $\mathcal{L}_{SC}(L'_{rw},Z)\approx\sum_{p=1}^K\lambda'_p$. Note that here we are summing over the K-first *smallest* eigenvalues. We see that spectral embedding and the random walk based approaches are indeed very similar.

Theorem 5. Let L be the initial unnormalized graph Laplacian before performing a flip and λ_y and u_y be any eigenvalue and eigenvector of L. The eigenvalue λ_y' of L' obtained after flipping a single edge (i,j) can be approximated by:

$$\lambda_y' \approx \lambda_y - (1 - 2A_{ij})(u_{yi} - u_{yj})^2 \tag{6}$$

Proof. Let $\Delta A = A' - A$ be the change in the adjacency matrix after performing a single edge flip (i,j) and ΔD be the corresponding change in the degree matrix. Let e_i be defined as before. Then $\Delta L = L' - L = (D + \Delta D) - (A + \Delta A) - (D - A) = \Delta D - \Delta A = (1 - 2A_{ij})(e_i e_i^T + e_j e_j^T - (e_i e_j^T + e_j e_i^T))$. Based on the theory of eigenvalue

perturbation we have $\lambda_y' \approx \lambda_y + u_y^T(\Delta L)u_y$. Substituting ΔL and re-arranging we get the above results. \square

6.3. Approximation Quality

Approximation quality of the eigenvalues. We randomly select 5K candidate edge flips (Cora) and we compare the true eigenvalues λ' after performing a flip (i.e. doing a full eigen-decomposition) and our approximation $\tilde{\lambda}'$ obtained from Theorem 2. We can see in Fig. 6a that the average absolute difference $|\lambda'-\tilde{\lambda}'|$ across the 5K randomly selected flips and the standard deviation are negligible: several orders of magnitude smaller than the eigenvalues themselves. The difference between the terms $|\sum_{r=1}^T \lambda_i'^r - \sum_{r=1}^T \tilde{\lambda}_i'^r|$ used in Lemma 3 is similarly negligible as shown in Fig. 6b.

Upper bound on the singular values. Lemma 3 shows that \mathcal{L}_{DW3} is an upper bound on \mathcal{L}_{DW1} (excluding the elementwise logarithm). For a better understanding of the tightness of the bound we visualize the true singular values $\sigma_i(S)$ of the matrix S and their respective upper bounds $d_{min}^{-1}|\sum_{r=1}^T \lambda_i^r| \geq \sigma_i(S)$ obtained by applying Lemma 3 for all datasets. As we can see in Fig. 7, the gap is different across the different graphs and it is relatively small overall.

These results together (Fig. 6 and Fig. 7) demonstrate that we have obtained a good approximation of both the eigenvalues and the singular values, leading to a good overall approximation of the loss.