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6. Appendix
6.1. Proofs and Derivations

Proof. Theorem 1. Applying eigenvalue perturbation the-
ory we obtain that X, = X, + ul (AN )u, where X, is
the eigenvalue of M’ based on A’ obtained after perturbing
the graph. Using the fact that \, = ugM Uy, and the fact
that singular values are equal to the absolute value of the
corresponding eigenvalues we obtain the desired result. [

Proof. Theorem 2. Denote with e; the vector of all ze-
ros and a single one at position . Then, we have AA =
Aw;j(eie] +ejel ) and AD = Aw;j(e;ef +ejel’ ). From
eigenvalue perturbation theory (Stewart, 1990), we get:
N, = Ay + ul (AA — A\yAD)u,. Substituting AA/AD
concludes the proof. O

We include an immediate result to prove Theorem 3.

Lemma 4. Consider the generalized eigenvalue problem
Au = ADu and suppose that we have the changes in the
respective matrices/vectors: AA, AD and A), then the
change in the eigenvectors Au can be expressed as:

Au=—(A-AD)* (AA — AND — AAD)u

Proof. Theorem 3. Let AA and A D be defined as in The-
orem 2 and let AX be the change in the eigenvalues as
computed in Theorem 2. Plugging these terms in Lemma 4
and simplifying we obtain the result. O

We include an intermediate result to prove Lemmas 2 and 3.

Lemma 5. ) is an eigenvalue of D~Y2AD~Y2 := A, 0rm
with eigenvector . = D'/ ?w if and only if X and u solve the
generalized eigen-problem Au = \Du.

Proof. Lemma 5. We have Az = M\Dz =
(QTAQ 1) (QT2) = AMQT2) for any real symmetric A
and any positive definite D, where D = QQ” using the
Cholesky factorization. Substituting the adjacency/degree
matrix and using Q = QT = D'/? we obtain the result. [

Proof. Lemma 2. S is equal to a product of three matrices

S = DV2(U(SI_, A" UT)D=/? where UAUT =
D=Y2AD~1Y2 =: A, ,m is the eigenvalue decomposition
of A,,orm (Qiu et al. (2018)). From Lemma 5 we have the
fact that \ is an eigenvalue of D~/2AD~1/2 with eigen-
vector ¢ = D'/?v if and only if A and u solve the general-
ized eigen-problem Au = ADu. Substituting A = A and
U = DY2U in S, and use the fact that D is diagonal. []

Proof. Lemma 3. Following (Qiu et al., 2018), the
singular values of S can be bounded by o,(S) <

% ZTT»:1 (ﬂn(p))’”| where p are the (standard) eigenval-

ues of A, . Using Lemma 5, the same bound applies
using the generalized eigenvalues A, of A. Now using The-
orem 2, we obtain )\Z, an approximation of the p-th gener-
alized eigenvalue of A’. Plugging it into the singular value
bound we obtain: 0,(S) < dniin Zzzl(j\;(p))r} which
concludes the proof. O

Please note that the permutation 7 does not need be com-
puted/determined explicitly. In practice, for every X/, we

compute the term | Zle(j\g)ﬂ. Afterwards, these terms
are simply sorted.

6.2. Analysis of Spectral Embedding Methods

Attacking spectral embedding. Finding the spectral em-
bedding is equivalent to the following trace minimization
problem:

K
: T

,min Tr(ZT Ly, 7) = ; Ni(Lay) = Lsc (4
subject to orthogonality constraints, where L., is the
graph Laplacian. The solution is obtained via the eigen-
decomposition of L, with Z* = Uk where Uk are the K-
first eigen-vectors corresponding to the K -smallest eigen-
values \;. The Laplacian is typically defined in three dif-
ferent ways: the unnormalized Laplacian L = D — A,
the normalized random walk Laplacian L,.,, = D7'L =
I—D~' A and the normalized symmetric Laplacian L, =
D7V2LD=Y2 = [-D=Y2AD~Y2 = [ — A, prm, Where
A, D, A, o-m are defined as before.

Lemma 6 ((von Luxburg, 2007)). X is an eigenvalue of
L, with eigenvector u if and only if ) is an eigenvalue of
L gym with eigenvector w = DY 2. Furthermore, \ is an
eigenvalue of L., with eigenvector u if and only if A and u
solve the generalized eigen-problem Lu = \Du.

From Lemma 6 we see that we can attack both normalized
versions of the graph Laplacian with a single attack strategy
since they have the same eigenvalues. It also helps us to do
that efficiently similar to our previous analysis (Theorem. 3).

Theorem 4. Let L., (or equivalently L) be the initial
graph Laplacian before performing a flip and \, and u,, be
any eigenvalue and eigenvector of L.,. The eigenvalue )\’y
of L., obtained after flipping a single edge (i, j) is

)‘;/ ~ Ay + Awij((uy; — uyj)2 - Ay(uz +u, ) (5)

yi yJj
where w,; is the i-th entry of the vector u,,.
Proof. From Lemma 6 we can estimate the change in

L., (or equivalently L) by estimating the eigenvalues
solving the generalized eigen-problem Lu = ADwu. Let
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Figure 6: Comparison between the true eigenvalues \" after performing a flip (i.e. doing a full eigen-decomposition) and
our approximation ). Since the difference is several orders of magnitude smaller than the eigenvalues (sums of powers of
eigenvalues resp.) themselves, we show a ”zoomed-in” view (note the difference in the scale on the y-axis). In each subplot
on the right side we show the average absolute difference and the standard deviation across the SK randomly selected flips.
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Figure 7: The singular value of .S and our upper bound d

AL = L’ — L be the change in the unnormalized graph
Laplacian after performing a single edge flip (7, j) and AD
be the corresponding change in the degree matrix. Let e; be
defined as before. Then AL = (1—24;;)(e;—e;)(ei—e;)T
and AD = (1 — 2A4;;)(ese] +eje] ). Based on the theory
of eigenvalue perturbation we have )\; Ay + ug(AL —
AyAD)u,. Finally, we substitute AL and AD. O

Using now Theorem 4 and Eq. 4 we finally estimate
the loss of the spectral embedding after flipping an edge
Lso(Ll,,,Z) ~ Zle Ap,- Note that here we are summing
over the K-first smallest eigenvalues. We see that spec-
tral embedding and the random walk based approaches are

indeed very similar.

Theorem 5. Let L be the initial unnormalized graph Lapla-
cian before performing a flip and A\, and u,, be any eigen-
value and eigenvector of L. The eigenvalue /\; of L' ob-
tained after flipping a single edge (i, j) can be approximated
by:

Ny~ Ay — (1= 2445) (uyi — uy;)? (6)
Proof. Let AA = A’ — A be the change in the adjacency
matrix after performing a single edge flip (7, j) and AD be
the corresponding change in the degree matrix. Let e; be
defined as before. Then AL = L' — L = (D + AD) —
(A+AA)— (D—A)=AD—AA=(1-2A4;;)(e;e] +

ejel — (eie] + ejel)). Based on the theory of eigenvalue
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| 23:1 AT| > 0,(9) for different graphs.

perturbation we have X, ~ A, + u; (AL)u,,. Substituting
AL and re-arranging we get the above results. O

6.3. Approximation Quality

Approximation quality of the eigenvalues. We randomly
select 5K candidate edge flips (Cora) and we compare the
true eigenvalues )\’ after performing a flip (i.e. doing a full
eigen-decomposition) and our approximation M obtained
from Theorem 2. We can see in Fig. 6a that the average
absolute difference |\' — \'| across the 5K randomly selected
flips and the standard deviation are negligible: several orders
of magnitude smaller than the eigenvalues themselves. The
difference between the terms | 30 A" — 327 A'7| used
in Lemma 3 is similarly negligible as shown in Fig. 6b.

Upper bound on the singular values. Lemma 3 shows
that Lpws is an upper bound on Lpy1 (excluding the
elementwise logarithm). For a better understanding of the
tightness of the bound we visualize the true singular values
0;(S) of the matrix S and their respective upper bounds
d;i | Zle Al| > o;(S) obtained by applying Lemma 3
for all datasets. As we can see in Fig. 7, the gap is different
across the different graphs and it is relatively small overall.

These results together (Fig. 6 and Fig. 7) demonstrate that
we have obtained a good approximation of both the eigen-
values and the singular values, leading to a good overall
approximation of the loss.



