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Abstract

We present a blended conditional gradient ap-
proach for minimizing a smooth convex function
over a polytope P, combining the Frank—Wolfe
algorithm (also called conditional gradient) with
gradient-based steps, different from away steps
and pairwise steps, but still achieving linear con-
vergence for strongly convex functions, along
with good practical performance. Our approach
retains all favorable properties of conditional gra-
dient algorithms, notably avoidance of projections
onto P and maintenance of iterates as sparse con-
vex combinations of a limited number of extreme
points of P. The algorithm is lazy, making use
of inexpensive inexact solutions of the linear pro-
gramming subproblem that characterizes the con-
ditional gradient approach. It decreases measures
of optimality rapidly, both in the number of itera-
tions and in wall-clock time, outperforming even
the lazy conditional gradient algorithms of (Braun
et al., 2017). We also present a streamlined ver-
sion of the algorithm that applies when P is the
probability simplex.

1. Introduction

A common paradigm in convex optimization is minimiza-
tion of a smooth convex function f over a polytope P.
The conditional gradient (CG) algorithm, also known as
“Frank—Wolfe” (Frank & Wolfe, 1956), (Levitin & Polyak,
1966) is enjoying renewed popularity because it can be im-
plemented efficiently to solve important problems in data
analysis. It is a first-order method, requiring access to gradi-
ents V f(x) and function values f(z). In its original form,
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CG employs a linear programming (LP) oracle to minimize
a linear function over the polytope P at each iteration. The
cost of this operation depends on the complexity of P.

In this work, we describe a blended conditional gradient
(BCG) approach, which takes one of several types of steps
on the basis of the gradient V f at the current point. Our ap-
proach maintains an “active vertex set,” consisting of some
solutions from previous iterations. Building on (Braun et al.,
2017), BCG uses a “weak-separation oracle” to find a vertex
of P for which the linear objective attains some fraction
of the reduction in f promised by the LP oracle, typically
by searching among the current set of active vertices. If no
vertex yielding acceptable reduction can be found, the LP
oracle used in the original FW algorithm may be deployed.
On other iterations, BCG employs a “simplex descent ora-
cle,” which takes a step within the convex hull of the active
vertices, yielding progress either via reduction in function
value (a “descent step”) or via culling of the active vertex
set (a “drop step”). The size of the active vertex set typi-
cally remains small, which benefits both the efficiency of
the method and the “sparsity” of the final solution (i.e., its
representation as a convex combination of a relatively small
number of vertices).

BCG has similar theoretical convergence rates to several
other variants of CG that have been studied recently, in-
cluding pairwise-step and away-step variants and the lazy
variants of (Braun et al., 2017). In several cases, we observe
better empirical convergence for BCG than for these other
variants. While the lazy variant of (Braun et al., 2017) has
an advantage over baseline CG when the LP oracle is expen-
sive, our BCG approach consistently outperforms the other
variants in more general circumstances, both in per-iteration
progress and in wall-clock time.

Related work

There has been an extensive body of work on conditional
gradient algorithms; see the excellent overview of (Jaggi,
2013). Here we review only those papers most closely
related to our work.

Our main inspiration comes from (Braun et al., 2017; Lan
et al., 2017), which introduces the weak-separation oracle
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as a lazy alternative to calling the LP oracle in every it-
eration. It is influenced too by the method of (Rao et al.,
2015), which maintains an active vertex set, using projected
descent steps to improve the objective over the convex hull
of this set, and culling the set on some steps to keep its size
under control. While the latter method is a heuristic with
no proven convergence bounds beyond those inherited from
the standard Frank—Wolfe method, our BCG algorithm em-
ploys a criterion for optimal trade-off between the various
steps, with a proven convergence rate equal to state-of-the-
art Frank—Wolfe variants up to a constant factor.

Our main result shows linear convergence of BCG for
strongly convex functions. Linearly convergent variants
of CG were studied as early as (Guélat & Marcotte, 1986)
for special cases and (Garber & Hazan, 2013) for the gen-
eral case (though the latter work involves very large con-
stants). More recently, linear convergence has been estab-
lished for various pairwise-step and away-step variants of
CG in (Lacoste-Julien & Jaggi, 2015), where the concept of
an active vertex set is used to improve performance. Other
memory-efficient decomposition-invariant variants were de-
scribed in (Garber & Meshi, 2016) and (Bashiri & Zhang,
2017). Modification of descent directions and step sizes,
reminiscent of the drop steps used in BCG, have been con-
sidered by (Freund & Grigas, 2016; Freund et al., 2017).
The use of an inexpensive oracle based on a subset of the
vertices of P, as an alternative to the full LP oracle, has
been considered in (Kerdreux et al., 2018b). (Garber et al.,
2018) proposes a fast variant of conditional gradients for
matrix recovery problems.

BCG is quite distinct from the fully-corrective Frank—Wolfe
algorithm (FCFW) (see, for example, (Holloway, 1974;
Lacoste-Julien & Jaggi, 2015)). Both approaches maintain
active vertex sets, generate iterates that lie in the convex
hulls of these sets, and alternate between Frank—Wolfe steps
generating new vertices and correction steps optimizing
within the current active vertex set. However, convergence
analyses of the FCFW algorithm assume that the correction
steps have unit cost, though they can be quite expensive in
practice, requiring multiple evaluations of the gradient V f.
For BCG, by contrast, we assume only a single step of gra-
dient descent type having unit cost (disregarding cost of line
search). For further explanation of the differences between
BCG and FCFW, see computational results in Figure 12 and
discussion in Appendix D.

Contribution
Our contribution can be summarized as follows:

Blended Conditional Gradients (BCG). The BCG approach
blends different types of descent steps: the traditional CG
steps of (Frank & Wolfe, 1956), the lazified CG steps of
(Braun et al., 2017), and gradient descent steps over the

convex hull of the current active vertex set. It avoids projec-
tions onto P or onto the convex hull of the active vertices,
and does not use away steps and pairwise steps, which
are elements of other popular variants of CG. It achieves
linear convergence for strongly convex functions (see The-
orem 3.1), and O(1/t) convergence after ¢ iterations for
general smooth functions. While the linear convergence
proof of the Away-step Frank—Wolfe Algorithm (Lacoste-
Julien & Jaggi, 2015, Theorem 1, Footnote 4) requires the
objective function f to be defined on the Minkowski sum
P — P+ P, BCG does not need f to be defined outside
the polytope P. The algorithm has complexity comparable
to pairwise-step or away-step variants of conditional gra-
dients, both in per-iteration running time and in the space
required to store vertices and iterates. It is affine-invariant
and parameter-free; estimates of such parameters as smooth-
ness, strong convexity, or the diameter of P are not required.
It maintains iterates as (often sparse) convex combinations
of vertices, typically much sparser than the baseline CG
methods, a property that is important for some applications.
Such sparsity is due to the aggressive reuse of active ver-
tices, and the fact that new vertices are added only as a kind
of last resort. In wall-clock time as well as per-iteration
progress, our computational results show that BCG can be
orders of magnitude faster than competimg CG methods on
some problems.

Simplex Gradient Descent (SiGD). In Section 4, we de-
scribe a new projection-free gradient descent procedure for
minimizing a smooth function over the probability simplex,
which can be used to implement the “simplex descent oracle”
required by BCG.

Computational Experiments. We demonstrate the excel-
lent computational behavior of BCG compared to other
CG algorithms on standard problems, including video co-
localization, sparse regression, structured SVM training,
and structured regression. We observe significant compu-
tational speedups and in several cases empirically better
convergence rates.

Outline

We summarize preliminary material in Section 2, including
the two oracles that are the foundation of our BCG proce-
dure. BCG is described and analyzed in Section 3, establish-
ing linear convergence rates. The simplex gradient descent
routine, which implements the simplex descent oracle, is
described in Section 4. Our computational experiments
are summarized in Section 5; more extensive experiments
appear in Appendix D. Variants on the analysis and other
auxiliary materials are relegated to the appendix. We men-
tion in particular a variant of BCG that applies when P is
the probability simplex, a special case that admits several
simplifications and improvements to the analysis.
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2. Preliminaries

We use the following notation: e; is the i-th coordinate
vector, 1 := (1,...,1) = e; + e3 + --- is the all-ones
vector, ||-|| denotes the Euclidean norm ({3-norm), D =
diam(P) = sup, ,ecpllu — v||2 is the £o-diameter of P,
and conv S denotes the convex hull of a set S of points. The
probability simplex A* := conv{ey, ..., ey} is the convex
hull of the coordinate vectors in dimension k.

Let f be a differentiable convex function. Recall that f is L-
smooth if f(y) — f () =V f(x)(y — ) < Llly —z||?/2 for
all x,y € P. The function f has curvature C'if f(yy+(1—
M) < f(@) + V(@) (y — 2) + Cy?/2, forall z,y € P
and 0 < v < 1. (Note that an L-smooth function always
has curvature C' < LD?.) Finally, f is strongly convex if
for some o > 0 we have f(y) — f(x) — Vf(z)(y — z) >
ally — z||?/2, for all z,y € P. We use the following fact
about strongly convex function when optimizing over P.

Fact 2.1 (Geometric strong convexity guarantee). (Lacoste-
Julien & Jaggi, 2015, Theorem 6 and Eq. (28)) Given a
strongly convex function f, there is a value pn > 0 called the
geometric strong convexity such that

(@) — min £(y) < (Wwesaer V@) = 2))

yeP 2u

for any x € P and for any subset S of the vertices of P for
which x lies in the convex hull of S.

The value of 1 depends both on f and the geometry of P.

2.1. Simplex Descent Oracle

Given a convex objective function f and an ordered finite
set S = {vy,..., v} of points, we define f5: A*¥ — R as

follows: i
fs(A) = f (Z Am) : (1)
i=1

When fg is Lyg-smooth, Oracle 1 returns an improving
point ' in conv S together with a vertex set S’ C S such
that 2’ € conv S’.

Oracle 1 Simplex Descent Oracle SiDO(z, S, f)

Input: finite set S C R”, point x € conv.S, convex
smooth function f: conv.S — R";

Output: finite set S C S, point 2’ € conv S’ satisfying
either

drop step: f(2') < f(z)and S’ # S
descent step:
f(@)=f(a) = [maxyves Vf(2)(u—v)]?/(4L¢,)

In Section 4 we provide an implementation (Algorithm 2)

of this oracle via a single descent step, which avoids pro-
jection and does not require knowledge of the smoothness
parameter L.

2.2. Weak-Separation Oracle

Oracle 2 Weak-Separation Oracle LPsepp(c, z, ®, K)

Input: linear objective ¢ € R™, point x € P, accuracy
K > 1, gap estimate & > 0;

Output: Either (1) vertex y € P with ¢(z —y) > ®/K, or
(2) false: ¢(x — z) < P forall z € P.

The weak-separation oracle Oracle 2 was introduced in
(Braun et al., 2017) to replace the LP oracle traditionally
used in the CG method. Provided with a point z € P,
a linear objective c, a target reduction value ® > 0, and
an inexactness factor K > 1, it decides whether there ex-
ists y € P with cx — ¢y > ®/K, or else certifies that
cx — cz < ® forall z € P. In our applications, ¢ = V f(z)
is the gradient of the objective at the current iterate z. Or-
acle 2 could be implemented simply by the standard LP
oracle of minimizing cz over z € P. However, it allows
more efficient implementations, including the following.
(1) Caching: testing previously obtained vertices y € P
(specifically, vertices in the current active vertex set) to see
if one of them satisfies cx — cy > ®/K. If not, the tradi-
tional LP oracle could be called to either find a new vertex of
P satisfying this bound, or else to certify that cx — cz < ®
for all z € P, and (2) Early Termination: Terminating the
LP procedure as soon as a vertex of P has been discovered
that satisfies cx — cy > ®/K. (This technique requires an
LP implementation that generates vertices as iterates.) If
the LP procedure runs to termination without finding such
a point, it has certified that cx — cz < ® forall z € P. In
(Braun et al., 2017) these techniques resulted in orders-of-
magnitude speedups in wall-clock time in the computational
tests, as well as sparse convex combinations of vertices for
the iterates x;, a desirable property in many contexts.

3. Blended Conditional Gradients

Our BCG approach is specified as Algorithm 1. We dis-
cuss the algorithm in this section and establish its con-
vergence rate. The algorithm expresses each iterate xy,
t =0,1,2,... as a convex combination of the elements
of the active vertex set, denoted by S;, as in the Pairwise
and Away-step variants of CG. At each iteration, the al-
gorithm calls either Oracle 1 or Oracle 2 in search of the
next iterate, whichever promises the smaller function value,
using a test in Line 6 based on an estimate of the dual gap.
The same greedy principle is used in the Away-step CG ap-
proach, and its lazy variants. A critical role in the algorithm
(and particularly in the test of Line 6) is played by the value
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®,, which is a current estimate of the primal gap — the
difference between the current function value f(x;) and the
optimal function value over P. When Oracle 2 returns false,
the curent value of ®; is discovered to be an overestimate
of the dual gap, so it is halved (Line 13) and we proceed to
the next iteration. In subsequent discussion, we refer to @,
as the “gap estimate.”

Algorithm 1 Blended Conditional Gradients (BCG)
Input: smooth convex function f, start vertex =g € P,
weak-separation oracle LPsepp, accuracy K > 1

Qutput: points z; in Pfort=1,...,T

1: ®¢ < maxyep V f(xo)(xo —v)/2 {Initial gap
estimate }
2: SO — {330}
3: fort =0to7T —1do
40 vft « argmax,cg, Vf(2)v
5. ofWY argmin, e g, V f(x¢)v
6:  if Vf(z) (v — v =9) > @, then
7: Zyt1, Sty1 < SiDO(xy, S;)  {either a drop step
or a descent step}
8: q)t+1 — (Pt
9: else
10: ve <= LPsepp(V f(z4), xt, P, K)
11: if v; = false then
12: Tyl < Tt
13: Dypq — Dy/2 {gap step}
14: St+1 — St
15: else
16: Tep1 < argmingep,, o, f(z) {FW step, with
line search}
17: Choose Si;+1 C Sy U {v;} minimal such that
Ti+41 € conv St+1.
18: (I)t+1 — O,
19: end if
20:  end if
21: end for

In Line 17, the active set S;1 is required to be minimal.
By Caratheodory’s theorem, this requirement ensures that
|Si+1] < dim P + 1. In practice, the S; are invariably
small and no explicit reduction in size is necessary. The
key requirement, in theory and practice, is that if after a call
to Oracle SiDO the new iterate x; 1 lies on a face of the
convex hull of the vertices in .S;, then at least one element of
S; is dropped to form ;. This requirement ensures that
the local pairwise gap in Line 6 is not too large due to stale
vertices in S;, which can block progress. Small size of the
sets Sy is crucial to the efficiency of the algorithm, in rapidly
determining the maximizer and minimizer of V f(x;) over
the active set S; in Lines 4 and 5.

The constants in the convergence rate described in our
main theorem (Theorem 3.1 below) depend on a modified

curvature-like parameter of the function f. Given a vertex
set S of P, recall from Section 2.1 the smoothness parame-
ter L s, of the function fg: AF* — R defined by (1). Define
the simplicial curvature C* to be

C%:=  max Ly, )
S:|S|<2dim P

to be the maximum of the L, over all possible active sets.
This affine-invariant parameter depends both on the shape
of P and the function f. This is the relative smoothness
constant Ly 4 from the predecessor of (Gutman & Pefia,
2019), namely (Gutman & Pefia, 2018, Definiton 2a), with
an additional restriction: the simplex is restricted to faces of
dimension at most 2 dim P, which appears as a bound on
the size of S in our formulation. This restriction improves
the constant by removing dependence on the number of
vertices of the polytope, and can probably replace the origi-
nal constant in convergence bounds. We can immediately
see the effect in the common case of L-smooth functions,
that the simplicial curvature is of reasonable magnitude,
specifically,
ob < LD?(dim P) ’
2

where D is the diameter of P. This result follows from
(2) and the bound on Ly, from Lemma A.l in the ap-
pendix. This bound is not directly comparable with the
upper bound Ly 4 < LD?/4 in (Gutman & Pefia, 2018,
Corollary 2), because the latter uses the 1-norm on the stan-
dard simplex, while we use the 2-norm, the norm used by
projected gradients and our simplex gradient descent. The
additional factor dim P is explained by the n-dimensional
standard simplex having constant minimum width 2 in 1-
norm, but having minimum width dependent on the dimen-
sion n (specifically, ©(1/+/n)) in the 2-norm. Recall that
the minimum width of a convex body P C R” in norm
[I-]] is ming max,, yep ¢(u — v), Where ¢ runs over all lin-
ear maps R” — R having dual norm ||¢|. = 1. For the
2-norm, this is just the minimum distance between parallel
hyperplanes such that P lies between the two hyperplanes.

For another comparison, recall the curvature bound C' <
LD2. Note, however, that the algorithm and convergence
rate below are affine invariant, and the only restriction on
the function f is that it has finite simplicial curvature. This
restriction readily provides the curvature bound

C <204, (3)

where the factor 2 arises as the square of the diameter of
the standard simplex A*. (See Lemma A.2 in the appendix
for details.) Note that S is allowed to be large enough so
that every point of P is in the convex hull of some vertex
subset .S, by Caratheodory’s theorem, and that the simplicial
curvature provides an upper bound on the curvature
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We describe the convergence of BCG (Algorithm 1) in the
following theorem.

Theorem 3.1. Let f be a strongly convex, smooth func-
tion over the polytope P with simplicial curvature C* and
geometric strong convexity p. Then Algorithm I ensures
flzr) — f(x*) < &, where x* is an optimal solution to f
in P for some iteration index T that satisfies

20 D
T< [logso—‘ + 8K [bg ngJ

4K204A AKCA A ol
+6 Cjﬁ% (7l=0(01%g,(@
v’ € I €

where log denotes logarithms to the base 2.

For smooth but not necessarily strongly convex func-
tions f, the algorithm ensures f(z7) — f(z*) < e after
T = O(max{C?, &} /¢) iterations by a similar argument,
which is omitted.

Proof. The proof tracks that of (Braun et al., 2017). We
divide the iteration sequence into epochs that are demarcated
by the gap steps, that is, the iterations for which the weak-
separation oracle (Oracle 2) returns the value false, which
results in @, being halved for the next iteration. We then
bound the number of iterates within each epoch. The result
is obtained by aggregating across epochs.

We start by a well-known bound on the function value using
the Frank-Wolfe point v/ = argmin,cp Vf(2;)v at
iteration ¢, which follows from convexity:

Flae) = f(@*) < V(@) (ze =) < V(o) (ze—v ™).

If iteration ¢ — 1 is a gap step, we have using z; = x;_; and
(bt = ¢t71/2 that

flze) = f(@®) S V(@) (z —of V) <28, (5)

This bound also holds at ¢ = 0, by definition of ®y. Thus
Algorithm 1 is guaranteed to satisfy f(z7) — f(z*) < e at
some iterate 7" such that 7' — 1 is a gap step and 2¢1 < ¢.
Therefore, the total number of gap steps Ng required to
reach this point satisfies

2¢
Ng < [log gﬂ : (6)

which is also a bound on the total number of epochs. The
next stage of the proof finds bounds on the number of itera-
tions of each type within an individual epoch.

If iteration ¢ — 1 is a gap step, we have z; = x;_; and
&, = ®,_1/2, and because the condition is false at Line 6
of Algorithm 1, we have

Vf(z) (i —a) < V(z) (vl —ofW=9) <28, (7)

This condition also holds trivially at ¢ = 0, since 11()4 =

véﬁw*s = xp. By summing (5) and (7), we obtain
Vf(x)(vft — oFW) < 49y, so it follows from Fact 2.1
FW
)

that f(z,) — f(a*) < Leevi TDE < 8% gy com-
bining this inequality with (5), we obtain

flze) = f(2%) < min {807 /11, 2P}, (8)

for all ¢ such that either ¢t = 0 or else ¢ — 1 is a gap step. In
fact, (8) holds for all t, because (1) the sequence of function
values { f(zs)}s is non-increasing; and (2) &, = ®, for all
s in the epoch that starts at iteration ¢.

We now consider the epoch that starts at iteration ¢, and
use s to index the iterations within this epoch. Note that
®, = P, for all s in this epoch.

We distinguish three types of iterations besides gap step.
The first type is a Frank—Wolfe step, taken when the weak-
separation oracle returns an improving vertex vs; € P such
that V f(zs)(zs — vs) > ®,/K = ®&;/K (Line 16). Us-
ing the definition of curvature C, we have by standard
Frank—Wolfe arguments that (c.f., (Braun et al., 2017)).

¢s . (I)s
>
f(zsy1) > 5K mln{l, KC}

>(I>tmin{1 il },

f(xs) —
)

"2KCA

where we used @, = ®, and C < 2C* (from (3)). We
denote by Ny, the number of Frank—~Wolfe iterations in the
epoch starting at iteration ¢.

The second type of iteration is a descent step, in which
Oracle SiDO (Line 7) returns a point 1 that lies in the
relative interior of conv S and with strictly smaller function
value. We thus have S;1; = S, and, by the definition of
Oracle SiDO, together with (2), it follows that

[V (@s) (v — v 52
ACH

o _ of

= 4c0A

flxs) = f(weq1) 2

(10)

T40n

We denote by N, the number of descent steps that take

place in the epoch that starts at iteration ¢.

The third type of iteration is one in which Oracle 1 returns
a point 411 lying on a face of the convex hull of S, so
that S5 is strictly smaller than .S,. Similarly to the Away-
step Frank—Wolfe algorithm of (Lacoste-Julien & Jaggi,
2015), we call these steps drop steps, and denote by ijp
the number of such steps that take place in the epoch that
starts at iteration ¢. Note that since S, is expanded only at
Frank—Wolfe steps, and then only by at most one element,
the total number of drop steps across the whole algorithm
cannot exceed the total number of Frank—Wolfe steps. We
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use this fact and (6) in bounding the total number of itera-
tions 7" required for f(xr) — f(z*) < e:

T < NQ) + Ndesc + NFW + Ndrop
20
< ’710g EO—‘ + Ndesc + 2]VFW

29
= [log Ow +
€

(11
Z (Njesc + 2Z\flf‘W)

t:epoch start

Here Ngesc denotes the total number of descent steps, Npw
the total number of Frank—Wolfe steps, and Ny the total
number of drop steps, which is bounded by Ngw, as just
discussed.

Next, we seek bounds on the iteration counts Nj.. and
Nt within the epoch starting with iteration ¢. For the total
decrease in function value during the epoch, Equations (9)
and (10) provide a lower bound, while f(z;) — f(z*) is
an obvious upper bound, leading to the following estimate

using (8).

o If &, > 2K CA then

. o2 P,
29, > f(xt) - f(.’L‘ ) 2 N;escwitA + N;‘Wﬁ
@tK (I)t (I)t
> Nt —— + Nty— > (N 2NLy) —
— +Vdesc 9 + FWQK_( desc+ FW)4K7
hence
Niese + 2Ny < 8K. (12)
o If &, < 2KC4, a similar argument provides
807 ) . ®F .
TZf(It)*f(I)ZNdesc@Jr FW 2 0A
> (Njee + 2Nf )i
= desc Fw 8K20A7
leading to
64K2C4
Ngesc + 2NIEW < — (13)

There are at most

—‘ epochs in the regime with &, > 2K cA,

KCcA : . . A
log epochs in the regime with &, < 2KC*~.

Combining (11) with the bounds (12) and (13) on Nfy, and
N{..., we obtain (4). O

esc?

4. Simplex Gradient Descent

Here we describe the Simplex Gradient Descent approach
(Algorithm 2), an implementation of the SiDO oracle (Ora-
cle 1). Algorithm 2 requires only O(|:S|) operations beyond
the evaluation of V f(x) and the cost of line search. (It is
assumed that x is represented as a convex combination of
vertices of P, which is updated during Oracle 1.) Apart
from the (trivial) computation of the projection of V f(z)
onto the linear space spanned by A*, no projections are
computed. Thus, Algorithm 2 is typically faster even than a
step of Frank—Wolfe, for typical small sets .S.

Alternative implementations of Oracle 1 are described in
Section C.1. Section C.2 describes the special case in which
P itself is a probability simplex. Here, BCG and its ora-
cles are combined into a single, simple method with better
constants in the convergence bounds.

In the algorithm, the form c1 denotes the scalar product of
cand 1, i.e., the sum of entries of c.

Algorithm 2 Simplex Gradient Descent Step (SiGD)
Input: polyhedron P, smooth convex function f: P — R,
subset S = {v1,va,...,v} of vertices of P, point
x € conv S
Output: set S’ C S, point 2’ € conv S’
1: Decompose x as a convex combination x = Zle iU,
withSF X =Tand\; >0,i=1,2,...,k
2: ¢ [Vf(@)vr,...,Vi(@)vg] {c =V fs(A);see (1)}

3: d <+ ¢— (c1)1/k {Projection onto the hyperplane of
AR}

4: if d = 0 then

5:  return =’ =01, S = {v} {Arbitrary vertex }

6: end if

7: p <« max{n >0:\—nd >0}

8: y—x—n)y, div;

9: if f(z) > f(y) then

10: 2/ <y

11:  Choose S’ C S, S’ # S withz’ € conv S’.

12: else

13: 2’ < argmin, ¢, 1 f(2)

4. S+« S

15: end if

16: return z’, S’

To verify the validity of Algorithm 2 as an implementation
of Oracle 1, note first that since y lies on a face of conv S
by definition, it is always possible to choose a proper subset
S’ C S in Line 11, for example, S" := {v; : \; > nd;}.
The following lemma shows that with the choice h := fg,
Algorithm 2 correctly implements Oracle 1.

Lemma 4.1. Let AF be the probability simplex in k di-
mensions and suppose that h: A¥ — R is an Lj,-smooth
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function. Given some N € AF, define d = Vh()\) —
(VR(AN)1/k)1 and let n > O be the largest value for which
7= A-nd > 0. Let \' == argmin,c, ;] h(2). Then
either h(\) > h(7) or

max<; j<x Vh(A)(e; — ;)]

4Ly,

h(Y) — h(X) > |

Proof. Letg(¢) == h(¢—(¢1)1/k), then Vg({) = Vh({—
(C1H1/k) — (Vh(¢— (¢1)1/k)1)1/k, and g is clearly Lj,-
smooth, too. In particular, Vg(\) = d.

From standard gradient descent bounds, not repeated here,
we have the following inequalities, for v < min{n, 1/L}:

h(A) = h(A = vd) = g(A) — g(A = yVg(N))
2 A IVIVIE iz Vo) (e o)
L . e.)]2
=7 [ma’XISZJSk VI(A) (e’L ej)] , (14)
where the second inequality uses that the /5-diameter of the
Ak is 2, and the last equality follows from Vg(\)(e; —e;) =
Vh(A)(ei — ¢;).

When 1 > 1/Lj, we conclude that A(\) < h(X —
(1/Ly)d) < h(\), hence

2

[max; jeq12,.. ky VR(A)(ei — e;)]?
V) > JE{1,2,., j
M)~ h(X) i ,

which is the second case of the lemma. When n < 1/Ly,
then setting v = 7 in (14) clearly provides h(\) —h(7) > 0,
which is the first case of the lemma. [

5. Computational Experiments (Summary)

To compare our experiments to previous work, we used
problems and instances similar to those in (Lacoste-Julien &
Jaggi, 2015; Garber & Meshi, 2016; Rao et al., 2015; Braun
etal., 2017; Lan et al., 2017). These include structured re-
gression, sparse regression, video co-localization, sparse sig-
nal recovery, matrix completion, and Lasso. We compared
various algorithms denoted by the following acronyms: our
algorithm (BCG), the Away-step Frank—Wolfe algorithm
(ACG) and the Pairwise Frank—Wolfe algorithm (PCG) from
(Lacoste-Julien & Jaggi, 2015; Garber & Meshi, 2016), the
vanilla Frank—Wolfe algorithm (CG), as well as their lazi-
fied versions from (Braun et al., 2017). We add a prefix ‘L’
for the lazified versions. Figure 1 summarizes our results
on four test problems. Further details and more extensive
computational results are reported in Appendix D.

Performance Comparison

We implemented Algorithm 1 as outlined above and used
SiGD (Algorithm 2) for the descent steps as described in

Section 4. For line search in Line 13 of Algorithm 2, we
perform standard backtracking, and for Line 16 of Algo-
rithm 1, we do ternary search. In Figure 1, each of the four
plots itself contains four subplots depicting results of four
variants of CG on a single instance. The two subplots in
each upper row measure progress in the logarithm (to base
2) of the function value, while the two subplots in each
lower row report the logarithm of the gap estimate ®, from
Algorithm 1. The subplots in the left column of each plot
report performance in terms of number of iterations, while
the subplots in the right column report wall-clock time.

As discussed earlier, 2®; upper bounds the primal gap
(the difference between the function value at the current
iterate and the optimal function value). The lazified al-
gorithms (including BCG) halve ®; occasionally, which
provides a stair-like appearance in the graphs. In imple-
mentations, if a stronger bound on the primal gap is avail-
able (e.g., from an LP oracle call), we reset ®; to half of
that value, thus removing unnecessary successive halving
steps. For the non-lazified algorithms, we plot the dual gap
max,cp Vf(xt)(xy — v) as a gap estimate. The dual gap
does not necessarily decrease in a monotone fashion (though
of course the primal gap is monotone decreasing), so the
plots have a zigzag appearance in some instances.

6. Final Remarks

In (Lan et al., 2017), an accelerated method based on weak
separation and conditional gradient sliding was described.
This method provided optimal tradeoffs between (stochastic)
first-order oracle calls and weak-separation oracle calls. An
open question is whether the same tradeoffs and acceleration
could be realized by replacing SiGD (Algorithm 2) by an
accelerated method.

After an earlier version of our work appeared online, (Ker-
dreux et al., 2018a) introduced the Holder Error Bound con-
dition (also known as sharpness or the Lojasiewicz growth
condition). This is a family of conditions parameterized
by 0 < p < 1, interpolating between strongly convex
(p = 0) and convex functions (p = 1). For such functions,
convergence rate O(1/e”) has been shown for Away-step
Frank—Wolfe algorithms, among others. Our analysis can
be similarly extended to objective functions satisfying this
condition, leading to similar convergence rates.
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Figure 1. Four representative examples. (Upper-left) Sparse signal recovery: mingegn. |z, <+ ||y — ®dz||3, where ® is of size 1000 x 3000
with density 0.05. BCG made 1402 iterations with 155 calls to the weak-separation oracle LPsep . The final solution is a convex
combination of 152 vertices. (Upper-right) Lasso. We solve min ¢ p || Az — b||> with P being the (scaled) £1-ball. A is a 400 x 2000
matrix with 100 non-zeros. BCG made 2130 iterations, calling LPsep , 477 times, with the final solution being a convex combination of
462 vertices. (Lower-left) Structured regression over the Birkhoff polytope of dimension 50. BCG made 2057 iterations with 524 calls to
LPsepp. The final solution is a convex combination of 524 vertices. (Lower-right) Video co-localization over net gen_12b polytope
with an underlying 5000-vertex graph. BCG made 140 iterations, with 36 calls to LPsep . The final solution is a convex combination of
35 vertices.
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