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We provide the proofs in order of appearance of the
corresponding result:

– The proof of Lemma 1 in Appendix A
– The proof of Proposition 1 in Appendix B
– The proof of Lemma 2 in Appendix C
– The proof of Lemma 3 in Appendix D
– The proof of Theorem 2 in Appendix E

We also give more details on the numerical expression
of the covariance matrix Γ built in the experiments (see
Section 5.1) based on real data:

– Details on the covariance matrix Γ in Appendix F.

A. Proof of Lemma 1
The proof below relies on Laplace’s method on super-
martingales, which is a standard argument to provide con-
fidence bounds on a self-normalized sum of conditionally
centered random vectors. See Theorem 2 of Abbasi-Yadkori
et al. (2011) or Theorem 20.2 in the monograph by Latti-
more & Szepesvári (2018). Under Model 1 and given the
definition of Vt, we have the rewriting

θ̂t = V −1
t

t∑
s=1

φ(xs, ps)Ys,ps

= V −1
t

t∑
s=1

φ(xs, ps)
(
φ(xs, ps)

Tθ + pT
sεs
)

= V −1
t

(
(Vt − λId)θ +Mt

)
= θ − λV −1

t θ + V −1
t Mt ,

where we introduced

Mt =

t∑
s=1

φ(xs, ps)p
T
sεs ,

which is a martingale with respect to Ft = σ(ε1, . . . , εt).
Therefore, by a triangle inequality,wwV 1/2

t

(
θ̂t − θ

)ww =
ww−λV −1/2

t θ + V
−1/2
t Mt‖

6 λ
wwV −1/2

t θ
ww+

wwV −1/2
t Mt

ww .
On the one hand, given that all eigenvalues of the symmetric
matrix Vt are larger than λ (given the λId term in its defini-
tion), all eigenvalues of V −1/2

t are smaller than 1/
√
λ and

thus,

λ
wwV −1/2

t θ
ww 6 λ

1√
λ
‖θ‖ =

√
λ‖θ‖ .

We now prove, on the other hand, that with probability at
least 1− δ,

wwV −1/2
t Mt

ww 6 ρ

√
2 ln

1

δ
+ d ln

1

λ
+ ln det(Vt) ,

which will conclude the proof of the lemma.
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Step 1: Introducing super-martingales. For all ν ∈ Rd, we
consider

St,ν = exp

(
νTMt −

ρ2

2
νTVtν

)
and now show that it is an Ft–super-martingale. First, note
that since the common distribution of the ε1, ε2, . . . is ρ–
sub-Gaussian, then for all Ft−1–measurable random vec-
tors νt−1,

E
[
eν

T
t−1εt

∣∣∣Ft−1

]
6 eρ

2‖νt−1‖2/2 . (14)

Now,

St,ν = St−1,ν exp

(
νTφ(xt, pt)p

T
tεt

− ρ2

2
νTφ(xt, pt)φ(xt, pt)

Tν

)
where, by using the sub-Gaussian assumption (14) and the
fact that

∑
j p

2
j,t 6 1 for all convex weight vectors pt,

E
[
exp
(
νTφ(xt, pt)p

T
tεt

∣∣∣Ft−1

]
6 exp

(
ρ2

2
νTφ(xt, pt)p

T
tpt︸︷︷︸
61

φ(xt, pt)
Tν

)
.

This implies E
[
St,ν

∣∣Ft−1

]
6 St−1,ν .

Note that the rewriting of St,ν in its vertex form is, with
m = V −1

t Mt/ρ
2:

St,ν = exp

(
1

2
(ν −m)T ρ2Vt (ν −m) +

1

2
mTρ2Vtm

)
= exp

(
1

2
(ν −m)T ρ2Vt (ν −m)

)
× exp

(
1

2ρ2

wwV −1/2
t Mt

ww2
)
.

Step 2: Laplace’s method—integrating St,ν over ν ∈ Rd.
The basic observation behind this method is that (given
the vertex form) St,ν is maximal at ν = m = V −1

t Mt/ρ
2

and then equals exp
(wwV −1/2

t Mt

ww2
/(2ρ2)

)
, which is (a

transformation of) the quantity to control. Now, because the
exp function quickly vanishes, the integral over ν ∈ Rd is
close to this maximum. We therefore consider

St =

∫
Rd

St,ν dν .

We will make repeated uses of the fact that the Gaussian
density functions,

ν 7−→ 1√
det(2πC)

exp

(
(ν −m)TC−1(ν −m)

)
,

where m ∈ Rd and C is a (symmetric) positive-definite ma-
trix, integrate to 1 over Rd. This gives us first the rewriting

St =
√

det
(
2πρ−2V −1

t

)
exp

(
1

2ρ2

wwV −1/2
t Mt

ww2
)
.

Second, by the Fubini-Tonelli theorem and the super-
martingale property

E
[
St,ν

]
6 E

[
S0,ν

]
= exp

(
−λρ2‖ν‖2/2

)
,

we also have

E
[
St
]
6
∫
Rd

exp
(
−λρ2‖ν‖2/2

)
dν

=
√

det
(
2πρ−2λ−1Id

)
.

Combining the two statements, we proved

E

[
exp

(
1

2ρ2

wwV −1/2
t Mt

ww2
)]

6

√
det
(
Vt
)

λd
.

Step 3: Markov-Chernov bound. For u > 0,

P
[wwV −1/2

t Mt

ww > u
]

= P
[

1

2ρ2

wwV −1/2
t Mt

ww2
>

u2

2ρ2

]
6 exp

(
− u2

2ρ2

)
E

[
exp

(
1

2ρ2

wwV −1/2
t Mt

ww2
)]

6 exp

(
− u2

2ρ2
+

1

2
ln

det
(
Vt
)

λd

)
= δ

for the claimed choice

u = ρ

√
2 ln

1

δ
+ d ln

1

λ
+ ln det(Vt) .
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B. Proof of Proposition 1
Comment: The main difference with the regret analysis
of LinUCB provided by Chu et al. (2011) or Lattimore &
Szepesvári (2018) is in the first part of Step 1, as we need
to deal with slightly more complicated quantities: not just
with linear quantities of the form φ(xt, p)

Tθ. Steps 2 and 3
are easy consequences of Step 1.

We show below (Step 1) that for all t > 2, if

wwV 1/2
t−1

(
θ̂t−1 − θ

)ww 6 Bt−1(δt−2)

and
wwΓ− Γ̂t

ww
∞ 6 γ , (15)

then

∀p ∈ P,
∣∣`t,p − ̂̀t,p∣∣6 αt,p . (16)

Property (16), for those t for which it is satisfied, entails
(Step 2) that the corresponding instantaneous regrets are
bounded by

rt
def
= `t,pt −min

p∈P
`t,p 6 2αt,pt .

It only remains to deal (Step 3) with the rounds t when (16)
does not hold; they account for the 1− δ confidence level.

Step 1: Good estimation of the losses. When the two
events (15) hold, we have∣∣`t,p − ̂̀t,p∣∣
=

∣∣∣∣(φ(xt, p)
Tθ − ct

)2
+ pTΓp

−
([
φ(xt, p)

Tθ̂t−1

]
C
− ct

)2

+ pTΓ̂tp

∣∣∣∣
6
∣∣pTΓp− pTΓ̂tp

∣∣
+

∣∣∣∣(φ(xt, p)
Tθ − ct

)2 − ([φ(xt, p)
Tθ̂t−1

]
C
− ct

)2
∣∣∣∣.

On the one hand,
∣∣pTΓp − pTΓ̂tp

∣∣ 6 γ while on the other
hand,∣∣∣∣(φ(xt, p)

Tθ − ct
)2 − ([φ(xt, p)

Tθ̂t−1

]
C
− ct

)2
∣∣∣∣

=
∣∣∣φ(xt, p)

Tθ −
[
φ(xt, p)

Tθ̂t−1

]
C

∣∣∣
×
∣∣∣φ(xt, p)

Tθ +
[
φ(xt, p)

Tθ̂t−1

]
C
− 2ct

∣∣∣ ,
where by the boundedness assumptions (5), all quantities in
the final inequality lie in [0, C], thus∣∣∣φ(xt, p)

Tθ +
[
φ(xt, p)

Tθ̂t−1

]
C
− 2ct

∣∣∣ 6 2C .

Finally,∣∣∣φ(xt, p)
Tθ −

[
φ(xt, p)

Tθ̂t−1

]
C

∣∣∣
6
∣∣φ(xt, p)

Tθ − φ(xt, p)
Tθ̂t−1

∣∣
6
wwwV 1/2

t−1

(
θ − θ̂t−1

)wwwwwV −1/2
t−1 φ(xt, p)

ww , (17)

where we used the Cauchy-Schwarz inequality for the sec-
ond inequality, and the fact that

∣∣y − [x]C
∣∣ 6 |y − x| when

y ∈ [0, C] and x ∈ R for the first inequality. Collecting all
bounds together, we proved∣∣∣∣(φ(xt, p)

Tθ − ct
)2 − ([φ(xt, p)

Tθ̂t−1

]
C
− ct

)2
∣∣∣∣

6 2C
wwwV 1/2

t−1

(
θ − θ̂t−1

)www︸ ︷︷ ︸
6Bt−1(δt−2)

wwV −1/2
t−1 φ(xt, p)

ww ,
but of course, this term is also bounded by the quantity L
introduced in Section 3.5. This concludes the proof of the
claimed inequality (16).

Step 2: Resulting bound on the instantaneous regrets. We
denote by

p?t ∈ arg min
p∈P

{
`t,p + pTΓp

}
(18)

an optimal convex vector to be used at round t. By defini-
tion (3) of the optimistic algorithm, we have that the played
pt satisfies ̂̀

t,pt − αt,pt 6 ̂̀t,p?t − αt,p?t ,
that is, ̂̀

t,pt − ̂̀t,p?t 6 αt,pt − αt,p?t .

Now, for those t for which both events (15) hold, the prop-
erty (16) also holds and yields, respectively for p = pt and
p = p?t :

`t,pt − ̂̀t,pt 6 αt,pt and ̂̀
t,p?t
− `t,p?t 6 αt,p?t .

Combining all these three inequalities together, we proved

rt = `t,pt − `t,p?t
=
(
`t,pt − ̂̀t,pt)+

(̂̀
t,pt − ̂̀t,p?t )+

(̂̀
t,p?t
− `t,p?t

)
6 αt,pt + (αt,pt − αt,p?t ) + αt,p?t = 2αt,pt ,

as claimed. This yields the 2
∑
αt,pt in the regret bound,

where the sum is for t > n+ 1.

Step 3: Special cases. We conclude the proof by dealing
with the time steps t > n + 1 when at least one of the
events (15) does not hold. By a union bound, this happens
for some t > n+ 1 with probability at most

δ

2
+ δ

∑
t>n+1

t−2 6
δ

2
+ δ

∫ ∞
2

1

t2
dt = δ ,

where we used n > 2. These special cases thus account for
the claimed 1− δ confidence level.
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C. Proof of Lemma 2
We derived the proof scheme below from scratch as we
could find no suitable result in the literature for estimating
Γ in our context.

We first consider the following auxiliary result.

Lemma 4. Let n > 1. Assume that the common distribution
of the ε1, ε2, . . . is ρ–sub-Gaussian. Then, no matter how
the provider picks the pt, we have, for all δ ∈ (0, 1), with
probability at least 1− δ,∥∥∥∥∥

n∑
t=1

ptp
T
t

(
Γ̂n − Γ

)
ptp

T
t

∥∥∥∥∥
∞

6 κn
√
n ,

where the quantities κn, Mn and M ′n are defined as in
Lemma 2:

Mn
def
= ρ/2 + ln(6n/δ)

M ′n
def
= M2

n

√
2 ln(3K2/δ) + 2

√
exp(2ρ)δ/6

κn
def
=
(
C + 2Mn

)
Bn(δ/3) +M ′n

Proof of Lemma 4. We can show that Γ̂n defined in (4) sat-
isfies

n∑
t=1

ptp
T
t Γ̂nptp

T
t =

n∑
t=1

Ẑ2
t ptp

T
t , (19)

where we recall that Ẑt
def
= Yt,pt −

[
φ(xt, pt)

Tθ̂n
]
C

. Indeed,
with,

Φ
(
Γ̂
) def

=

n∑
t=1

(
Ẑ2
t − pT

t Γ̂pt

)2

=

n∑
t=1

(
Ẑ2
t − Tr

(
Γ̂ptp

T
t)
)2

,

using ∇ATr(AB) = B, we get

∇Γ̂Φ
(
Γ̂
)

=

n∑
t=1

2ptp
T
t

(
Ẑ2
t − pT

t Γ̂pt

)
,

which leads to (19) by canceling the gradient and keeping
in mind that pT

t Γ̂pt is a scalar value.

Let us denote

Zt
def
= Yt,pt − φ(xt, pt)

Tθ = pT
tεt

for all t > 1. To prove the lemma, we replace Γ̂n by
using (19) and apply a triangular inequality:∥∥∥∥ n∑
t=1

ptp
T
t

(
Γ̂n − Γ

)
ptp

T
t

∥∥∥∥
∞

(20)

6

∥∥∥∥ n∑
t=1

(Ẑ2
t − Z2

t )ptp
T
t

∥∥∥∥
∞

+

∥∥∥∥∥
n∑
t=1

Z2
t ptp

T
t − ptpT

tΓptp
T
t

∥∥∥∥∥
∞

We will consecutively provide bounds for each of the two
terms in the right-hand side of the above inequality, each

holding with probability at least 1−δ/3. To do so, we focus
on the event defined below where all Zt are bounded:

En(δ)
def
=
{
∀t = 1, . . . n, |Zt| 6Mn

}
, (21)

with Mn defined in the statement of the lemma. We will
show below that En(δ) takes place with probability at least
1− δ/3. All in all, our obtained global bound will hold with
probability at least 1− δ, as stated in the lemma.

Bounding the probability of the event En(δ). Recall that pt
is Ft−1 = σ(ε1, . . . , εt−1) measurable. For t ∈ {1, . . . , n},
as εt is a ρ–sub-Gaussian variable independent of Ft−1,

E
[
exp(pT

tεt)
∣∣∣Ft−1

]
6 exp

(
ρ‖pt‖2

2

)
6 exp

(ρ
2

)
;

see Footnote 1 for a reminder of the definition of a ρ–sub-
Gaussian variable. Using the Markov-Chernov inequality,
we obtain

P
(
Zt >Mn

∣∣Ft−1

)
6 E

[
exp(Zt)

∣∣∣Ft−1

]
exp(−Mn)

6 exp
(ρ

2
−Mn

)
=

δ

6n
. (22)

Symmetrically, we get that P(Zt 6 −Mn) 6 δ/6n. Com-
bining all these bounds for t = 1, . . . , n, the event En(δ)
happens with probability at least 1− δ/3.

Upper bound on the first term in (20). By Assumption (5),
we have φ(xt, pt)

Tθ ∈ [0, C], thus

|Ẑt − Zt| =
∣∣∣φ(xt, pt)

Tθ −
[
φ(xt, pt)

Tθ̂n
]
C

∣∣∣ 6 C ,

and therefore, on En(δ),∣∣Ẑt + Zt
∣∣ 6 ∣∣Ẑt − Zt∣∣+

∣∣2Zt∣∣ 6 C + 2Mn
def
= M ′′n .

Noting that all components of ptpT
t are upper bounded by 1,∥∥∥∥ n∑

t=1

(Ẑ2
t − Z2

t )ptp
T
t

∥∥∥∥
∞

6
n∑
t=1

∣∣Ẑ2
t − Z2

t

∣∣
=

n∑
t=1

∣∣(Ẑt − Zt)(Ẑt + Zt)
∣∣

6M ′′n

√√√√n

n∑
t=1

(Ẑt − Zt)2 ,

where the last inequality was obtained by |Ẑt + Zt| 6M ′′n
together with the Cauchy-Schwarz inequality. Using that∣∣y − [x]C

∣∣ 6 |y − x| when y ∈ [0, C] and x ∈ R, we note
that ∣∣Ẑt − Zt∣∣ 6 ∣∣∣φ(xt, pt)

T(θ̂n − θ)
∣∣∣ .
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All in all, we proved so far

∥∥∥∥ n∑
t=1

(Ẑ2
t − Z2

t )ptp
T
t

∥∥∥∥
∞

6M ′′n

√√√√n(θ̂n − θ)T

(
n∑
t=1

φ(xt, pt)φ(xt, pt)T

)
(θ̂n − θ)

= M ′′n

√
n(θ̂n − θ)T (Vn − λI) (θ̂n − θ)

6M ′′n

√
n(θ̂n − θ)TVn(θ̂n − θ)

= M ′′n
∥∥V 1/2

n

(
θ − θ̂n

)∥∥√n ,
where Vn = λI +

∑n
t=1 φ(xt, pt)φ(xt, pt)

T was used for
the last steps.

From Lemma 1 and the bound (6), we finally obtain that
with probability at least 1− δ/3,

∥∥∥∥ n∑
t=1

(Ẑ2
t − Z2

t )ptp
T
t

∥∥∥∥
∞

6M ′′n Bn(δ/3)
√
n (23)

= (C + 2Mn)Bn(δ/3)
√
n .
(24)

Upper bound on the second term in (20). Recall that pt is
Ft−1 measurable and that in Model 1, we defined Zt =
Yt,pt − φ(xt, pt)

Tθ = pT
tεt, which is a scalar value. These

two observations yield

E
[
Z2
t ptp

T
t

∣∣Ft−1

]
= E

[
ptZ

2
t p

T
t

∣∣Ft−1

]
= E

[
ptp

T
tεtε

T
tptp

T
t

∣∣Ft−1

]
= ptp

T
t E
[
εtε

T
t

∣∣Ft−1

]
ptp

T
t = ptp

T
tΓptp

T
t . (25)

We wish to apply the Hoeffding–Azuma inequality to each
component of Z2

t ptp
T
t , however, we need some bounded-

ness to do so. Therefore, we consider insteadZ2
t 1{|Zt|6Mn}.

The indicated inequality, together with a union bound, en-
tails that with probability at least 1− δ/3,

∥∥∥∥∥
n∑
t=1

Z2
t 1{|Zt|6Mn}ptp

T
t

−
n∑
t=1

E
[
Z2
t 1{|Zt|6Mn}ptp

T
t

∣∣∣Ft−1

]∥∥∥∥∥
∞

6M2
n

√
2n ln(3K2/δ) . (26)

Over En(δ), using (25) and applying a triangular inequality,

we obtain∥∥∥∥ n∑
t=1

Z2
t ptp

T
t − ptpT

tΓptp
T
t

∥∥∥∥
∞

=

∥∥∥∥ n∑
t=1

Z2
t 1{|Zt|6Mn}ptp

T
t −

n∑
t=1

E
[
Z2
t ptp

T
t

∣∣Ft−1

]∥∥∥∥
∞

6

∥∥∥∥ n∑
t=1

Z2
t 1{|Zt|6Mn}ptp

T
t

−
n∑
t=1

E
[
Z2
t ptp

T
t1{|Zt|6Mn}

∣∣Ft−1

]∥∥∥∥
∞

+

n∑
t=1

∥∥∥∥E[Z2
t ptp

T
t1{|Zt|>Mn}

∣∣Ft−1

]∥∥∥∥
∞
. (27)

We just need to bound the last term of the inequality above
to conclude this part. Using that x2 6 exp(x) for x > 0,
we get

E
[
Z2
t 1{|Zt|>Mn}

∣∣∣Ft−1

]
6 E

[
exp
(
|Zt|

)
1{|Zt|>Mn}

∣∣∣Ft−1

]
.

Applying a conditional Cauchy-Schwarz inequality yields

E
[

exp
(
|Zt|

)
1{|Zt|>Mn}

∣∣∣Ft−1

]
6
√

E
[

exp
(
2|Zt|

) ∣∣Ft−1

]
E
[
1{|Zt|>Mn}

∣∣Ft−1

]
.

Now, thanks to the sub-Gaussian property of εt used with
ν = 2pt and ν = −2pt, we have

E
[

exp
(
2|Zt|

)
6 E

[
exp(2Zt)

∣∣Ft−1

]
+ E

[
exp(−2Zt)

∣∣Ft−1

]
6 2 exp(2ρ) .

The bound (22) and its symmetric version indicate that

P
(
|Zt| >Mn

∣∣Ft−1

)
6

δ

3n
.

We therefore proved

E
[

exp
(
|Zt|

)
1{|Zt|>Mn}

∣∣∣Ft−1

]
6

√
2 exp(2ρ)

δ

3n
.

Thus, we have E
[
Z2
t 1{|Zt|>Mn}

∣∣Ft−1

]
6 2

√
exp(2ρ)δ/(6n)

and as all components of the ptpT
t are in [0, 1],wwwE[Z2

t 1{|Zt|>Mn}ptp
T
t

∣∣Ft−1

]www
∞

6 2

√
exp(2ρ)

δ

6n
.

(28)
Finally , combining (27) with (26) and (28), we get with
probability 1− δ/3∥∥∥∥ n∑
t=1

Z2
t ptp

T
t − ptpT

tΓptp
T
t

∥∥∥∥
∞

6M2
n

√
2n ln(3K2/δ) + 2n

√
exp(2ρ)δ/(6n) = M ′n

√
n ,
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where M ′n is defined in the statement of the lemma.

Combining the two upper bounds into (20). Combining the
above upper bound with (20) and (24), we proved that with
probability 1− δ,∥∥∥∥ n∑

t=1

ptp
T
t

(
Γ̂n − Γ

)
ptp

T
t

∥∥∥∥
∞

6M ′n
√
n+M ′′nBn(δ/3)

√
n ,

which concludes the proof.

Conclusion of the proof of Lemma 2

Remember from Section 3.3 that all vectors p(i,j) are played
at least n0 times in the n exploration rounds.

Proof of Lemma 2. Applying Lemma 4 together with

ptp
T
t

(
Γ̂n − Γ

)
ptp

T
t = ptTr

(
pT
t

(
Γ̂n − Γ

)
pt

)
pT
t

= Tr
((

Γ̂n − Γ
)
ptp

T
t

)
ptp

T
t (29)

we have, with probability at least 1− δ, that for all pairs of
coordinates (i, j) ∈ E,∣∣∣∣∣

n∑
t=1

Tr
((

Γ̂n − Γ
)
ptp

T
t

)[
ptp

T
t

]
i,j

∣∣∣∣∣ 6 κn
√
n . (30)

Remember that in the set E considered in Section 3.3, we
only have pairs (i, j) with i 6 j. However, for symmetry
reasons, it will be convenient to also consider the vectors
p(i,j) with i > j, where the latter vectors are defined in an
obvious way. We note that for all 1 6 i, j 6 K,

p(i,j)p(i,j)T
= p(j,i)p(j,i)T

. (31)

Now, our aim is to control∣∣∣qT
(
Γ̂n − Γ

)
q
∣∣∣ =

∣∣∣∣Tr
((

Γ̂n − Γ
)
qqT
)∣∣∣∣ (32)

uniformly over q ∈ P . The proof consists of two steps:
establishing such a control for the special cases where q
is one of the p(i,j) and then, extending the control to arbi-
trary vectors q ∈ P , based on a decomposition of qqT as a
weighted sum of p(i,j)p(i,j)T

vectors.

Part 1: The case of the p(i,j) vectors. Consider first the
off-diagonal elements 1 6 i < j 6 K. Note that since pt is
of the form p(i′,j′) for all 1 6 t 6 n, we have

[
ptp

T
t

]
i,j

=

{
1/4 if pt = p(i,j),
0 otherwise.

(33)

Using that pt = p(i,j) at least for n0 rounds, Inequality (30)
entails

n0

4

∣∣∣Tr
((

Γ̂n − Γ
)
p(i,j)p(i,j)T

)∣∣∣ 6 κn
√
n ,

or put differently,∣∣∣Tr
((

Γ̂n − Γ
)
p(i,j)p(i,j)T

)∣∣∣ 6 4κn
√
n

n0
. (34)

Now, let us consider the diagonal elements. Let 1 6 i 6 K.
We have

[
ptp

T
t

]
i,i

=


1 if pt = p(i,i),
1/4 if pt = p(i,j) for some j > i,
1/4 if pt = p(k,i) for some k < i,
0 otherwise,

(35)
where we recall that the pt are necessarily of the form p(k,`)

with k 6 `. Therefore, Inequality (30) yields

n0

∣∣∣∣∣Tr

((
Γ̂n − Γ

)(
p(i,i)p(i,i)T

+
1

4

∑
j>i

p(i,j)p(i,j)T

+
1

4

∑
k<i

p(k,i)p(k,i)T
))∣∣∣∣∣ 6 κn

√
n ,

which we rewrite by symmetry—see (31)—as∣∣∣∣∣Tr

((
Γ̂n − Γ

)(
p(i,i)p(i,i)T

+
1

4

∑
j 6=i

p(i,j)p(i,j)T
))∣∣∣∣∣

6
κn
√
n

n0
. (36)

Part 2-1: Decomposing arbitrary vectors q ∈ P . Now, let
q ∈ P . We show below by means of elementary calculations
that

qqT =

K∑
i=1

K∑
j=1

u(i, j) p(i,j)p(i,j)T
(37)

with u(i, j) = 2qiqj if i 6= j and u(i, i) = 2q2
i − qi.

Indeed, by identification and by imposing u(i, j) = u(j, i)
for all pairs i, j, the equalities (33) and the symmetry prop-
erty (31) entail, for k 6= k′:

qkqk′ =
[
qqT
]
k,k′

=

K∑
i=1

K∑
j=1

u(i, j)
[
p(i,j)p(i,j)T]

k,k′

=
u(k, k′)

4
+
u(k′, k)

4
=
u(k, k′)

2
,

which can be rephrased as u(k, k′) = u(k′, k) = 2qkqk′ .
Now, let us calculate the diagonal elements, by identifica-
tion and by the equalities (35) as well as by the symmetry
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property (31):

q2
k =

[
qqT
]
k,k

=

K∑
i=1

K∑
j=1

u(i, j)
[
p(i,j)p(i,j)T]

k,k

= u(k, k) +
∑
i6=k

u(i, k)

4
+
∑
j 6=k

u(k, j)

4

= u(k, k) +
1

2

∑
i 6=k

u(i, k) = u(k, k) +
∑
i 6=k

qkqi

= u(k, k) +

K∑
i=1

qkqi − q2
k = u(k, k) + qk − q2

k ,

which leads to u(k, k) = 2q2
k − qk.

We introduce the notation

P (i,j) = p(i,j)p(i,j)T

and in light of (34) and (36), we rewrite (37) as

qqT =

K∑
i=1

u(i, i)

P (i,i) +
1

4

∑
j 6=i

P (i,j)


+

K∑
i=1

∑
j 6=i

(
u(i, j)− u(i, i)

4

)
P (i,j) .

Part 2-2: Controlling arbitrary vectors q ∈ P . Therefore,
substituting this decomposition of qqT into the aim (32),
and using the linearity of the trace as well as the triangle
inequality for absolute values, we obtain∣∣∣qT

(
Γ̂n − Γ

)
q
∣∣∣ =

∣∣∣Tr
((

Γ̂n − Γ
)
qqT
)∣∣∣

6
K∑
i=1

∣∣u(i, i)
∣∣ ∣∣∣∣∣Tr

((
Γ̂n − Γ

)(
P (i,i) +

1

4

∑
j 6=i

P (i,j)
))∣∣∣∣∣

+

K∑
i=1

∑
j 6=i

∣∣∣∣u(i, j)− u(i, i)

4

∣∣∣∣ ∣∣∣∣Tr
((

Γ̂n − Γ
)
P (i,j)

)∣∣∣∣

We then substitute the upper bounds (34) and (36) and get

∣∣∣qT
(
Γ̂n − Γ

)
q
∣∣∣

6
κn
√
n

n0

(
K∑
i=1

∣∣u(i, i)
∣∣+4

K∑
i=1

∑
j 6=i

∣∣∣∣u(i, j)− u(i, i)

4

∣∣∣∣
)
.

By the triangle inequality, by the values 2qiqj of the coeffi-

cients u(i, j) when i 6= j and by using |u(i, i)| 6 qi,

K∑
i=1

∣∣u(i, i)
∣∣+ 4

K∑
i=1

∑
j 6=i

∣∣∣∣u(i, j)− u(i, i)

4

∣∣∣∣
6 K

K∑
i=1

∣∣u(i, i)
∣∣+ 4

K∑
i=1

∑
j 6=i

∣∣u(i, j)
∣∣

6 K

K∑
i=1

qi + 8

K∑
i=1

∑
j 6=i

qiqj

= K + 8

K∑
i=1

qi(1− qi) 6 K + 8 .

Putting all elements together, we proved

sup
q∈P

∣∣∣qT
(
Γ̂n − Γ

)
q
∣∣∣ 6 κn

√
n

n0
(K + 8) ,

which concludes the proof of Lemma 2.
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D. Proof of Lemma 3
We recall that this lemma is a straightforward adapta-
tion/generalization of Lemma 19.1 of the monograph by Lat-
timore & Szepesvári (2018); see also a similar result in
Lemma 3 by Chu et al. (2011).

We consider the worst case when all summations would start
at n+ 1 = 2.

By definition, the quantity B upper bounds all the
Bt−1(δt−2). It therefore suffices to upper bound

T∑
t=2

min
{
L, 2CB

wwV −1/2
t−1 φ(xt, pt)

ww}

6
√
T

√√√√ T∑
t=2

min
{
L2,

(
2CB

)2wwV −1/2
t−1 φ(xt, pt)

ww2
}

=
√
T

√√√√ T∑
t=2

min

{
L2,

(
2CB

)2( det(Vt)

det(Vt−1)
− 1

)}

where we applied first the Cauchy-Schwarz inequality and
used second the equality

1 +
wwV −1/2

t−1 φ(xt, pt)
ww2

= 1 + φ(xt, pt)
TV −1
t−1φ(xt, pt) =

det(Vt)

det(Vt−1)
,

that follows from a standard result in online matrix theory,
namely, Lemma 5 below.

Now, we get a telescoping sum with the logarithm function
by using the inequality

∀b > 0, ∀u > 0, min{b, u} 6 b
ln(1 + u)

ln(1 + b)
, (38)

which is proved below. Namely, we further bound the sum
above by

T∑
t=2

min

{
L2,

(
2CB

)2( det(Vt)

det(Vt−1)
− 1

)}

6
(
2CB

)2 T∑
t=2

min

{
L2(

2CB
)2 , det(Vt)

det(Vt−1)
− 1

}

6
(
2CB

)2 T∑
t=2

L2/
(
2CB

)2
ln
(

1 + L2/
(
2CB

)2) ln

(
det(Vt)

det(Vt−1)

)

=
L2

ln
(

1 + L2/
(
2CB

)2) ln

(
det(VT )

det(V2)

)

6
L2

ln
(

1 + L2/
(
2CB

)2) d ln
λ+ T

λ

where we used (5) and one of its consequences to get the
last inequality.

Finally, we use 1/ ln(1 + u) 6 1/u+ 1/2 for all u > 0 to
get a more readable constant:

L2

ln
(

1 + L2/
(
2CB

)2) 6
(
2CB

)2
+
L2

2
.

The proof is concluded by collecting all pieces.

Finally, we now provide the proofs of two either straightfor-
ward or standard results used above.

D.1. A Standard Result in Online Matrix Theory

The following result is extremely standard in online matrix
theory (see, among many others, Lemma 11.11 in Cesa-
Bianchi & Lugosi, 2006 or the proof of Lemma 19.1 in the
monograph by Lattimore & Szepesvári, 2018).

Lemma 5. Let M a d× d full-rank matrix, let u, v ∈ Rd
be two arbitrary vectors. Then

1 + vTM−1u =
det
(
M + uvT)

det(M)
.

The proof first considers the case M = Id. We are then left
with showing that det

(
Id + uvT

)
= 1 + vTu, which follows

from taking the determinant of every term of the equality[
Id 0
vT 1

] [
Id + uvT u

0 1

] [
Id 0
−vT 1

]
=

[
Id u
0 1 + vTu

]
.

Now, we can reduce the case of a general M to this simpler
case by noting that

det
(
M + uvT) = det(M) det

(
Id +

(
M−1u

)
vT
)

= det(M)
(
1 + vTM−1u

)
.

D.2. Proof of Inequality (38)

This inequality is used in Lemma 19.1 of the monograph
by Lattimore & Szepesvári (2018), in the special case b = 1.
The extension to b > 0 is straightforward.

We fix b > 0. We want to prove that

∀u > 0, min{b, u} 6 b
ln(1 + u)

ln(1 + b)
. (39)

We first note that

min{b, u} = b
ln(1 + u)

ln(1 + b)
for u = b
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and that min{b, u} = b for u > b, with the right-hand side
of (39) being an increasing function of u. Therefore, it
suffices to prove (39) for u ∈ [0, b], where min{b, u} = u.
Now,

u 7−→ b
ln(1 + u)

ln(1 + b)
− u

is a concave and (twice) differentiable function, vanishing
at u = 0 and u = b, and is therefore non-negative on [0, b].
This concludes the proof.

E. Proof of Theorem 2
Comment: The key observation lies in Step 1 (and is
tagged as such); the rest is standard maths.

Because of the expression for the expected losses (8) and the
consequence (10) of attainability, the regret can be rewritten
as

RT =

T∑
t=1

`t,pt =

T∑
t=1

(
φ(xt, pt)

Tθ − ct
)2
.

We first successively prove (Step 1) that for t > 2, if the
bound of Lemma 1 holds, namely,wwwV 1/2

t−1

(
θ − θ̂t−1

)www 6 Bt−1(δt−2) , (40)

then

`t,pt 6 2βt,pt + 2˜̀t,pt , (41)˜̀
t,pt 6 βt,pt + ˜̀t,p?t − βt,p?t , (42)˜̀
t,p?t

6 βt,p?t . (43)

These inequalities collectively entail the bound
`t,pt 6 4βt,pt . Of course, because of the bounded-
ness assumptions (5), we also have `t,pt 6 C2. It then
suffices to bound the sum (Step 2) of the `t,pt by the sum of
the min

{
C2, 4βt,pt

}
and control for the probability of (40).

Step 1: Proof of (41)–(43). Inequality (42) holds by def-
inition of the algorithm. For (43) and (41), we re-use the
inequality (17) proved earlier: for all p ∈ P ,(

φ(xt, p)
T
(
θ − θ̂t−1

))2

6
wwwV 1/2

t−1

(
θ − θ̂t−1

)www2wwV −1/2
t−1 φ(xt, p)

ww2
(44)

6 Bt−1(δt−2)2
wwV −1/2

t−1 φ(xt, p)
ww2 def

= βt,p , (45)

where we used the bound (40) for the last inequality. This
inequality directly yields (43) by taking p = p?t .

Now comes the specific improvement and our key observa-
tion: using that (u+ v)2 6 2u2 + 2v2, we have

`t,pt =
(
φ(xt, pt)

Tθ − φ(xt, pt)
Tθ̂t−1

+ φ(xt, pt)
Tθ̂t−1 − ct

)2

6 2
(
φ(xt, pt)

Tθ − φ(xt, pt)
Tθ̂t−1

)2
+ 2

(
φ(xt, pt)

Tθ̂t−1 − ct
)2︸ ︷︷ ︸

=˜̀
t,pt

,

which yields (41) via (45) used with p = pt.

Step 2: Summing the bounds. First, the bound (40) holds, by
Lemma 1, with probability at least 1−δt−2 for a given t > 2.
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By a union bound, it holds for all t > 2 with probability at
least 1 − δ. By bounding `t,pt by C2 and the Bt−1(δt−2)
by B, we therefore get, from Step 1, that with probability at
least 1− δ,

RT 6 C2 +

T∑
t=2

min
{
C2, 4B

2wwV −1/2
t−1 φ(xt, p)

ww2
}
.

Now, as in the proof of Lemma 3 above (Appendix D),

T∑
t=2

min
{
C2, 4B

2wwV −1/2
t−1 φ(xt, p)

ww2
}

=

T∑
t=2

min

{
C2, 4B

2
(

det(VT )

det(V1)
− 1

)}

6 4B
2
T∑
t=2

C2/
(
4B

2)
ln
(

1 + C2/
(
4B

2)) ln

(
det(Vt)

det(Vt−1)

)

=
C2

ln
(

1 + C2/
(
4B

2)) ln

(
det(VT )

det(V1)

)

6

(
4B

2
+
C2

2

)
d ln

λ+ T

λ
.

This concludes the proof.

F. Numerical expression of the covariance
matrix Γ built on data

The covariance matrix Γ was built based on historical data
as indicated in Section 5.1. Namely, we considered the
time series of residuals associated with our estimation of the
consumption. The diagonal coefficients Γj,j were given by
the empirical variance of the residuals associated with tariff
j, while non-diagonal coefficients Γj,j′ were given by the
empirical covariance between residuals of tariffs j and j′ at
times t and t± 48. (A more realistic model might consider
a noise which depends on the half-hour of the day).

Numerical expression obtained. More precisely, the vari-
ance terms Γ1,1, Γ2,2, and Γ3,3 were computed with re-
spectively 788, 15 072 and 1 660 observations, while the
non-diagonal coefficients were based on fewer observations:
1 318 for Γ2,3 and 620 for Γ1,2, but only 96 for Γ1,3. The
resulting matrix Γ is

Γ = σ2

1.11 0.46 0.04
0.46 1.00 0.56
0.04 0.56 2.07

 with σ = 0.02.

To get an idea of the orders of magnitude at stake, we indi-
cate that in the data set considered, the mean consumption
remained between 0.08 and 0.21 kWh per half-hour and
that its empirical average equals 0.46.

Off-diagonal coefficients are non-zero. We may test, for
each j 6= j′, the null hypothesis Γj,j′ = 0 using the Pear-
son correlation test; we obtain low p–values (smaller than
something of the order of 10−13), which shows that Γ is
significantly different from a diagonal matrix. We may con-
duct a similar study to show that it is not proportional to the
all-ones matrix, nor to any matrix with a special form.


