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A. Code and Videos
Code as well as supplemental videos are avail-
able at https://github.com/hiwonjoon/
ICML2019-TREX.

B. T-REX Results on the MuJoCo Domain
B.1. Policy performance

Table 1 shows the full results for the MuJoCo experiments.
The T-REX (time-ordered) row shows the resulting perfor-
mance of T-REX when demonstrations come from observ-
ing a learning agent and are ranked based on timestamps
rather than using explicit preference rankings.

B.2. Policy visualization

We visualized the T-REX-learned policy for HalfCheetah
in Figure 1. Visualizing the demonstrations from different
stages shows the specific way the policy evolves over time;
an agent learns to crawl first and then begins to attempt
to walk in an upright position. The T-REX policy learned
from the highly suboptimal Stage 1 demonstrations results
in a similar-style crawling gait; however, T-REX captures
some of the intent behind the demonstration and is able to
optimize a gait that resembles the demonstrator but with in-
creased speed, resulting in a better-than-demonstrator policy.
Similarly, given demonstrations from Stage 2, which are still
highly suboptimal, T-REX learns a policy that resembles the
gait of the best demonstration, but is able to optimize and
partially stabilize this gait. Finally, given demonstrations
from Stage 3, which are still suboptimal, T-REX is able to
learn a near-optimal gait.

C. Behavioral Cloning from Observation
To build the inverse transition models used by BCO (Torabi
et al., 2018) we used 20,000 steps of a random policy to
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collect transitions with labeled states. We used the Adam
optimizer with learning rate 0.0001 and L2 regularization of
0.0001. We used the DQN architecture (Mnih et al., 2015)
for the classification network, using the same architecture
to predict actions given state transitions as well as predict
actions given states. When predicting P (a|st, st+1), we
concatenate the state vectors obtaining an 8x84x84 input
consisting of two 4x84x84 frames representing st and st+1.

We give both T-REX and BCO the full set of demonstrations.
We tried to improve the performance of BCO by running be-
havioral cloning only on the best X% of the demonstrations,
but were unable to find a parameter setting that performed
better than X = 100, likely due to a lack of training data
when using very few demonstrations.

D. Atari reward learning details
We used the OpenAI Baselines implementation of PPO with
default hyperparameters. We ran all of our experiments on
an NVIDIA TITAN V GPU. We used 9 parallel workers
when running PPO.

When learning and predicting rewards, we mask the score
and number of lives left for all games. We did this to avoid
having the network learn to only look at the score and rec-
ognize, say, the number of significant digits, etc. We addi-
tionally masked the sector number and number of enemy
ships left on Beam Rider. We masked the bottom half of
the dashboard for Enduro to mask the position of the car in
the race. We masked the number of divers found and the
oxygen meter for Seaquest. We masked the power level and
inventory for Hero.

To train the reward network for Enduro, we randomly down-
sampled full trajectories. To create a training set we repeat-
edly randomly select two full demonstrations, then randomly
cropped between 0 and 5 of the initial frames from each
trajectory and then downsampled both trajectories by only
keeping every xth frame where x is randomly chosen be-
tween 3 and 6. We selected 2,000 randomly downsampled
demonstrations and trained the reward network for 10,000
steps of Adam with a learning rate of 5e-5.

https://github.com/hiwonjoon/ICML2019-TREX
https://github.com/hiwonjoon/ICML2019-TREX
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Table 1. The results on three robotic locomotion tasks when given suboptimal demonstrations. For each stage and task, the best
performance given suboptimal demonstrations is shown on the top row, and the best achievable performance (i.e. performance achieved
by a PPO agent) under the ground-truth reward is shown on the bottom row. The mean and standard deviation are based on 25 trials
(obtained by running PPO five times and for each run of PPO performing five policy rollouts). The first row of T-REX results show the
performance when demonstrations are ranked using the ground-truth returns. The second row of T-REX shows results for learning from
observing a learning agent (time-ordered). The demonstrations are ranked based on the timestamp when they were produced by the PPO
algorithm learning to perform the task.

HalfCheetah Hopper Ant
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2

Best Demo
Performance

12.52
(1.04)

44.98
(0.60)

89.87
(8.15)

3.70
(0.01)

5.40
(0.12)

7.95
(1.64)

1.56
(1.28)

54.64
(22.09)

T-REX
(ours)

46.90
(1.89)

61.56
(10.96)

143.40
(3.84)

15.13
(3.21)

10.10
(1.68)

15.80
(0.37)

4.93
(2.86)

7.34
(2.50)

T-REX
(time-ordered)

51.39
(4.52)

54.90
(2.29)

154.67
(57.43)

10.66
(3.76)

11.41
(0.56)

11.17
(0.60)

5.55
(5.86)

1.28
(0.28)

BCO 7.71
(8.35)

23.59
(8.33)

57.13
(19.14)

3.52
(0.14)

4.41
(1.45)

4.58
(1.07)

1.06
(1.79)

26.56
(12.96)

GAIL 7.39
(4.12)

8.42
(3.43)

26.28
(12.73)

8.09
(3.25)

10.99
(2.35)

12.63
(3.66)

0.95
(2.06)

5.84
(4.08)

Best w/
GT Reward

199.11
(9.08)

15.94
(1.47)

182.23
(8.98)

(a) Stage 1

(b) Stage 2

(c) Stage 3

Figure 1. HalfCheetah policy visualization. For each subplot, (top) is the best given demonstration policy in a stage, and (bottom) is the
trained policy with a T-REX reward function.



Extrapolating Beyond Suboptimal Demonstrations – Supplement

E. Comparison to active reward learning
In this section, we examine the ability of prior work on
active preference learning to exceed the performance of the
demonstrator. In Table 2, we denote the results that sur-
pass the best demonstration with an asterisk (*). DQfD+A
only surpasses the demonstrator in 3 out of 9 games tested,
even with thousands of active queries. Note that DQfD+A
extends the original DQfD algorithm (Hester et al., 2017),
which uses demonstrations combined with RL on ground-
truth rewards, yet is only able to surpass the best demon-
stration in 14 out of 41 Atari games. In contrast, we are
able to leverage only 12 ranked demos to achieve better-
than-demonstrator performance on 7 out of 8 games tested,
without requiring access to true rewards or access to thou-
sands of active queries from an oracle.

Ibarz et al. (2018) combine Deep Q-learning from demon-
strations and active preference queries (DQfD+A). DQfD+A
uses demonstrations consisting of (st, at, st+1)-tuples to
initialize a policy using DQfD (Hester et al., 2017). The
algorithm then uses the active preference learning algorithm
of Christiano et al. (2017) to refine the inferred reward func-
tion and initial policy learned from demonstrations. The first
two columns of Table 2 compare the demonstration qual-
ity given to DQfD+A and T-REX. While our results make
use of more demonstrations (12 for T-REX versus 4–7 for
DQfD+A), our demonstrations are typically orders of mag-
nitude worse than the demonstrations used by DQfD+A:
on average the demonstrations given to DQfD+A are 38

times better than those used by T-REX. However, despite
this large gap in the performance of the demonstrations, T-
REX surpasses the performance of DQfD+A on Q*Bert, and
Seaquest. We achieve these results using 12 ranked demon-
strations. This requires only 66 comparisons (n · (n− 1)/2)
by the demonstrator. In comparison, the DQfD+A results
used 3,400 preference labels obtained during policy training
using ground-truth rewards.
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F. Human Demonstrations and Rankings
F.1. Human demonstrations

We used the Atari Grand Challenge data set (Kurin et al.,
2017) to collect actual human demonstrations for five Atari
games. We used the ground truth returns in the Atari Grand
Challenge data set to rank demonstrations. To generate
demonstrations we removed duplicate demonstrations (hu-
man demonstrations that achieved the same score). We then
sorted the remaining demonstrations based on ground truth
return and selected 12 of these demonstrations to form our
training set. We ran T-REX using the same hyperparameters
as described above.

The resulting performance of T-REX is shown in Table 3.
T-REX is able to outperform the best human demonstration
on Q*bert, Space Invaders, and Video Pinball; however, it is
not able to learn a good control policy for Montezuma’s Re-
venge or Ms Pacman. These games require maze navigation
and balancing different objectives, such as collecting objects
and avoiding enemies. This matches our results in the main
text that show that T-REX is unable to learn a policy for
playing Hero, a similar maze navigation task with multiple
objectives such as blowing up walls, rescuing people, and
destroying enemies. Extending T-REX to work in these
types of settings is an interesting area of future work.

F.2. Human rankings

To measure the effects of human ranking noise, we took the
same 12 PPO demonstrations described above in the main
text and had humans rank the demonstrations. We used
Amazon Mechanical Turk and showed the workers two side-
by-side demonstrations and asked them to classify whether
video A or video B had better performance or whether they
were unsure.

We took all 132 possible sequences of two videos across
the 12 demonstrations and collected 6 labels for each pair
of demonstrations. Because the workers are not actually
giving the demonstrations and because some workers may
exploit the task by simply selecting choices at random, we
expect these labels to be a worst-case lower bound on the
accuracy. To ameliorate the noise in the labels we take all 6
labels per pair and use the majority vote as the human label.
If there is no majority or if the majority selects the “Not
Sure” label, then we do not include this pair in our training
data for T-REX.

The resulting accuracy and number of labels that had a ma-
jority preference are shown in Table 4. We ran T-REX using
the same hyperparameters described in the main text. We
ran PPO with 3 different seeds and report the performance
of the best final policy averaged over 30 trials. We found
that surprisingly, T-REX is able to optimize good policies
for many of the games, despite noisy labels. However, we

did find cases such as Enduro, where the labels were too
noisy to allow successful policy learning.

G. Atari Reward Visualizations
We generated attention maps for the learned rewards for the
Atari domains. We use the method proposed by Greydanus
et al. (2018), which takes a stack of 4 frames and passes a
3x3 all-zero mask over each of the frames with a stride of 1.
For each masked 3x3 region, we compute the absolute differ-
ence in predicted reward when the 3x3 region is not masked
and when it is masked. This allows us to measure the in-
fluence of different regions of the image on the predicted
reward. The sum total of absolute changes in reward for
each pixel is used to generate an attention heatmap. We used
the trajectories shown in the extrapolation plots in Figure 4
of the main text and performed a search using the learned
reward function to find the observations with minimum and
maximum predicted reward. We show the minimum and
maximum observations (stacks of four frames) along with
the attention heatmaps across all four stacked frames for the
learned reward functions in figures 2–9. The reward func-
tion visualizations suggest that our networks are learning
relevant features of the reward function.
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Table 2. Best demonstrations and average performance of learned policies for T-REX (ours) and DQfD with active preference learning
(DQfD+A) (see Ibarz et al. (2018) Appendix A.2 and G). Results for T-REX are the best performance over 3 random seeds averaged over
30 trials. Results that exceed the best demonstration are marked with an asterisk (*). Note that T-REX requires at most only 66 pair-wise
preference labels (n(n− 1)/2 for n = 12 demonstrations), whereas DQfD+A uses between 4–7 demonstrations along with 3.4K labels
queried during policy learning. DQfD+A requires action labels on the demonstrations, whereas T-REX learns from observation.

Best Demonstration Received Average Algorithm Performance

Game DQfD+A T-REX DQfD+A T-REX

Beam Rider 19,844 1,188 4,100 *3,335.7
Breakout 79 33 *85 *221.3
Enduro 803 84 *1200 *586.8
Hero 99,320 13,235 35,000 0.0

Montezuma’s Revenge 34,900 - 3,000 -
Pong 0 -6 *19 *-2.0

Private Eye 74,456 - 52,000 -
Q*bert 99,450 800 14,000 *32,345.8

Seaquest 101,120 600 500 *747.3
Space invaders - 600 - *1,032.5

Table 3. T-REX performance with real novice human demonstrations collected from the Atari Grand Challenge Dataset (Kurin et al.,
2017). Results are the best average performance over 3 random seeds with 30 trials per seed.

Novice Human
Game Best Average T-REX

Montezuma’s Revenge 2,600 1,275.0 0.0
Ms Pacman 1,360 818.3 550.7

Q*bert 875 439.6 6,869.2
Space Invaders 470 290.0 1,092.0
Video Pinball 4,210 2,864.3 20,000.2

Table 4. Evaluation of T-REX on human rankings collected using Amazon Mechanical Turk. Results are the best average performance
over 3 random seeds with 30 trials per seed.

Human-Ranked Demonstrations
Game Best Average Ranking Accuracy Num. Labels T-REX avg. perf.

Beam Rider 1,332 686.0 63.0% 54 3,457.2
Breakout 32 14.5 88.1% 59 253.2
Enduro 84 39.8 58.6% 58 0.03
Hero 13,235 6742 77.6% 58 2.5
Pong -6 -15.6 79.6% 54 -13.0

Q*bert 800 627 75.9% 58 66,082
Seaquest 600 373.3 80.4% 56 655.3

Space Invaders 600 332.9 84.7% 59 1,005.3
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(a) Beam Rider observation with maximum predicted reward

(b) Beam Rider reward model attention on maximum predicted reward

(c) Beam Rider observation with minimum predicted reward

(d) Beam Rider reward model attention on minimum predicted reward

Figure 2. Maximum and minimum predicted observations and corresponding attention maps for Beam Rider. The observation with the
maximum predicted reward shows successfully destroying an enemy ship, with the network paying attention to the oncoming enemy ships
and the shot that was fired to destroy the enemy ship. The observation with minimum predicted reward shows an enemy shot that destroys
the player’s ship and causes the player to lose a life. The network attends most strongly to the enemy ships but also to the incoming shot.
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(a) Breakout observation with maximum predicted reward

(b) Breakout reward model attention on maximum predicted reward

(c) Breakout observation with minimum predicted reward

(d) Breakout reward model attention on minimum predicted reward

Figure 3. Maximum and minimum predicted observations and corresponding attention maps for Breakout. The observation with maximum
predicted reward shows many of the bricks destroyed with the ball on its way to hit another brick. The network has learned to put most of
the reward weight on the remaining bricks with some attention on the ball and paddle. The observation with minimum predicted reward is
an observation where none of the bricks have been destroyed. The network attention is focused on the bottom layers of bricks.
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(a) Enduro observation with maximum predicted reward

(b) Enduro reward model attention on maximum predicted reward

(c) Enduro observation with minimum predicted reward

(d) Enduro reward model attention on minimum predicted reward

Figure 4. Maximum and minimum predicted observations and corresponding attention maps for Enduro. The observation with maximum
predicted reward shows the car passing to the right of another car. The network has learned to put attention on the controlled car as well as
the sides of the road with some attention on the car being passed and on the odometer. The observation with minimum predicted reward
shows the controlled car falling behind other racers, with attention on the other cars, the odometer, and the controlled car.
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(a) Hero observation with maximum predicted reward

(b) Hero reward model attention on maximum predicted reward

(c) Hero observation with minimum predicted reward

(d) Hero reward model attention on minimum predicted reward

Figure 5. Maximum and minimum predicted observations and corresponding attention maps for Hero. The observation with maximum
predicted reward is difficult to interpret, but shows the network attending to the controllable character and the shape of the surrounding
maze. The observation with minimum predicted reward shows the agent setting off a bomb that kills the main character rather than the
wall. The learned reward function attends to the controllable character, the explosion and the wall that was not destroyed.
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(a) Pong observation with maximum predicted reward

(b) Pong reward model attention on maximum predicted reward

(c) Pong observation with minimum predicted reward

(d) Pong reward model attention on minimum predicted reward

Figure 6. Maximum and minimum predicted observations and corresponding attention maps for Pong. The network mainly attends to the
ball, with some attention on the paddles.
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(a) Q*bert observation with maximum predicted reward

(b) Q*bert reward model attention on maximum predicted reward

(c) Q*bert observation with minimum predicted reward

(d) Q*bert reward model attention on minimum predicted reward

Figure 7. Maximum and minimum predicted observations and corresponding attention maps for Q*bert. The observation for the maximum
predicted reward shows an observation from the second level of the game where stairs change color from yellow to blue. The observation
for the minimum predicted reward is less interpretable. The network attention is focused on the different stairs, but it is difficult to attribute
any semantics to the attention maps.
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(a) Seaquest observation with maximum predicted reward

(b) Seaquest reward model attention on maximum predicted reward

(c) Seaquest observation with minimum predicted reward

(d) Seaquest reward model attention on minimum predicted reward

Figure 8. Maximum and minimum predicted observations and corresponding attention maps for Seaquest. The observation with maximum
predicted reward shows the submarine in a relatively safe area with no immediate threats. The observation with minimum predicted
reward shows an enemy that is about to hit the submarine—the submarine fires a shot, but misses. The attention maps show that the
network focuses on the nearby enemies and also on the controlled submarine.
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(a) Space Invaders observation with maximum predicted reward

(b) Space Invaders reward model attention on maximum predicted reward

(c) Space Invaders observation with minimum predicted reward

(d) Space Invaders reward model attention on minimum predicted reward

Figure 9. Maximum and minimum predicted observations and corresponding attention maps for Space Invaders. The observation with
maximum predicted reward shows an observation where all the aliens have been successfully destroyed and the protective barriers are
still intact. Note that the agent never observed a demonstration that successfully destroyed all the aliens. The attention map shows that
the learned reward function is focused on the barriers, but does not attend to the location of the controlled ship. The observation with
minimum predicted reward shows the very start of a game with all aliens still alive. The network attends to the aliens and barriers, with
higher weight on the aliens and barrier closest to the space ship.


