Deep Counterfactual Regret Minimization

A. Rules for Heads-Up Limit Texas Hold’em and Flop Hold’em Poker

Heads-up limit Texas hold’em is a two-player zero-sum game. There are two players and the position of the two players
alternate after each hand. On each betting round, each player can choose to either fold, call, or raise. Folding results in the
player losing and the money in the pot being awarded to the other player. Calling means the player places a number of chips
in the pot equal to the opponent’s share. Raising means that player adds more chips to the pot than the opponent’s share. A
round ends when a player calls (if both players have acted). There cannot be more than three raises in the first or second
betting round or more than four raises in the third or fourth betting round, so there is a limited number of actions in the
game. Raises in the first two rounds are $100 and raises in the second two rounds are $200.

At the start of each hand of HULH, both players are dealt two private cards from a standard 52-card deck. P; must place
$50 in the pot and P, must place $100 in the pot. A round of betting then occurs starting with P;. When the round ends,
three community cards are dealt face up that both players can ultimately use in their final hands. Another round of betting
occurs, starting with P, this time. Afterward another community card is dealt face up and another betting round occurs.
Then a final card is dealt face up and a final betting round occurs. At the end of the betting round, unless a player has folded,
the player with the best five-card poker hand constructed from their two private cards and the five community cards wins the
pot. In the case of a tie, the pot is split evenly.

Flop Hold’em Poker is identical to HULH except there are only the first two betting rounds.

B. Proofs of Theorems
B.1. Review of MCCFR
We begin by reviewing the derivation of convergence bounds for external sampling MCCFR from Lanctot et al. 2009.

An MCCEFR scheme is completely specified by a set of blocks Q = {Q;} which each comprise a subset of all terminal
histories Z. On each iteration MCCFR samples one of these blocks, and only considers terminal histories within that block.
Let g; > 0 be the probability of considering block (; in an iteration.

Let Z; be the set of terminal nodes that contain a prefix in I, and let z[/] be that prefix. Define 77 (h — z) as the probability
of playing to z given that player p is at node h with both players playing o.

o (h — z) = Z Ww”(z).
z2€Z1

w7 (I — z) is undefined when 7(I) = 0.

Letg(z) =) jizeQ; U be the probability that terminal history z is sampled in an iteration of MCCFR. For external sampling
MCCFR, ¢(z) = 77,(2).

The sampled value v (I]j) when sampling block j is

)= S (), (AT (A1) — 2) ®)
zEQ;NZ;

For external sampling, the sampled value reduces to

Ul = Y up()mg (] = 2) @)

ZGQjﬁZI

The sampled value is an unbiased estimator of the true value v, (I). Therefore the sampled instantaneous regret (I, a) =
f)gt (I,a)— ﬁgt (I) is an unbiased estimator of (I, a).

The sampled regret is calculated as RT (I, a) = Zthl (I, a).

We first state the general bound shown in (Lanctot, 2013), Theorem 3.
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Lanctot 2013 defines B, to be a set with one element per distinct action sequence @ played by p, containing all infosets that
may arise when p plays @. M), is then defined by » 5 B, | B|. Let A be the difference between the maximum and minimum
payoffs in the game.

Theorem 2. (Lanctot 2013, Theorem 3) For any p € (0, 1], when using any algorithm in the MCCFR family such that for
all@ € Qand B € B,

77 (2[I] = 2)77,(2[I]) - 1
S 5

IS

IeB \zeQNZ;

®)

where § < 1, then with probability at least 1 — p, total regret is bounded by

Ry < (Mp+ ”'f}’/W) (;) AVIAIT )

For the case of external sampling MCCFR, ¢(z) = 7%,(z). Lanctot et al. 2009, Theorem 9 shows that for external sampling,
for which ¢(z) = 77, (z), the inequality in (8) holds for § = 1, and thus the bound implied by (9) is

A < <M,, N fg@w) A*/J%” 10
V2 V]A
< <1 + m) AIp|\/|T| because |B,| < M, < |Z,| (11)

B.2. Proof of Lemma 1

We show \ . .
EQJNQ [ﬁg (I)‘Z] ﬂQj 7& (Z)i| =7 (I)/TFZP(I)

Letg; = P(QJ)

sae [ fzinasd] - el

_ a,c0% Leezing, ()%, ()T (211 = 2)/a(2)

77, (1)
ez, (Zayeeq, 6) t ()T G (1) — 2)/a(2)
B mo (1)
_ Yees q(z)up<z>w0;£f[(fl})>wa Gl =2/ ionof a(s)
_ v
77, (1)

The result now follows directly.

B.3. K-external sampling

We first show that performing MCCFR with K external sampling traversals per iteration (K -ES) shares a similar convergence
bound with standard external sampling (i.e. 1-ES). We will refer to this result in the next section when we consider the full
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Deep CFR algorithm. This convergence bound is rather obvious and the derivation pedantic, so the reader is welcome to
skip this section.

We model T rounds of K -external sampling as 7' x K rounds of external sampling, where at each round ¢ - K + d (for
integer ¢ > 0 and integer 0 < d < K) we play

Bic@ e pt >0
oicya(a) = { B B (12)
arbitrary, otherwise

In prior work, o is typically defined to play ﬁ when R; 7(a) <0, but in fact the convergence bounds do not constraint o’s

play in these situations, which we will demonstrate explicitly here. We need this fact because minimizing the loss £(V) is
defined only over the samples of (visited) infosets and thus does not constrain the strategy in unvisited infosets.

Lemma 2. [f regret matching is used in K-ES, then for0 < d < K

> Rfc(a)rigra(a) <0 (13)

a€A

Proof. If R, - <0, then Ry (a) = 0 for all a and the result follows directly. For R;t x>0,

Z RtK TfK+d Z RT UfK+d(a) - UtK+d(UtK)) (14)
a€A acA
- <Z RZ‘K(a)thK+d(a)> - (utk+d(0tk) Z R:‘K(a)> (15)
acA a€A
= <Z RZrK(a)UtKer(a)) ( o td(a)uirtala )) RJZr,tK(a) (16)
acA acA
+ R;LK +
= Y Rfx(a)umxrala) R+ utK+d( ) | RS 1 (a) (17)
acA acA Y, tK
(Z R (@)uik ta ) < a)utktd(a )) (18)
acA a€cA
=0 (19)
O

Theorem 3. Playing according to Equation 12 guarantees the following bound on total regret

> (Rig(a)? < |AA’K°T (20)
acA

Proof. We prove by recursion on 7T'.

K—1 2
> (Rig(a) Z( (T-1)K +Z7“tK a(a > 21

acA acA
K-1 —-1K-1
3 (R0 2 3 Ry o)+ 3= 3 rrcsrnwat@)) @2
acA =0 d=0 d’'=0

By Lemma 2,
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K-1K-1
Z (Rfx(a))? < Z (r-nr@ +Z Z ZTTK ala)rrr—a(a)
acA acA a€A d=0 d’'=0

By induction,

S (R (@) < [AIAX(T - 1)

a€cA

From the definition, |rrx_q(a)] < A

Y (Rig(a))® < |AJAX(T —1) + K?|A|A® = [A|]A’K°T
acA

Theorem 4. (Lanctot 2013, Theorem 3 & Theorem 5) After T iterations of K-ES, average regret is bounded by

R?é( ﬁ)m INGE]

1+T JT

with probability 1 — p.

(23)

(24)

(25)

(26)

Proof. The proof follows Lanctot 2013, Theorem 3. Note that K-ES is only different from ES in terms of the choice of
o7, and the proof in Lanctot 2013 only makes use of o7 via the bound on (3, R% (a))? that we showed in Theorem 3.

Therefore, we can apply the same reasoning to arrive at

- AM,\/[AITK
TK p
R, < 5
(Lanctot 2013, Eq. (4.30)).

Lanctot et al. 2009 then shows that RI?K and R};K are similar with high probability, leading to

~ QI B, AITKA?
Bl S @rm-aray| | < 2BlE

IeT,

(Lanctot 2013, Eq. (4.33), substituting 7' — T'K).
Therefore, by Markov’s inequality, with probability at least 1 — p,

RTK V2|Z,||Bp| |AITK A AM\/|A|TK
NG
, where external sampling permits § = 1 (Lanctot, 2013).

Using the fact that M < |Z,| and |B,| < |Z,| and dividing through by KT leads to the simplified form

RTK < <1+\@>A| ,,\\/W

VK VT
with probability 1 — p.

27

(28)

(29)

(30)
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We point out that the convergence of K-ES is faster as K increases (up to a point), but it still requires the same order of
iterations as ES.

B.4. Proof of Theorem 1

Proof. Assume that an online learning scheme plays
yi([,a) if t I 0
ot(l,a) = Savila) 2ayila) >0 G1)
arbitrary, otherwise

Morrill 2016, Corollary 3.0.6 provides the following bound on the total regret as a function of the L2 distance between y;"
and RT>* at each infoset.

T
meag(RT(L a))® < |A|A®T 4+ 4A|A| Z Z \/(Ri(L a) =y (I,a))? (32)
t=1acA
T
< AT +4AJA1D Y V(R a) — yi(I,a))? (33)
t=1acA

Since o'(1, a) from Eq. 31 is invariant to rescaling across all actions at an infoset, it’s also the case that for any C'(1) > 0

max(R"(I,a))* < [A|A’T +4A|A]Y Y V/(RII,a) — C(D)y'(1,a))? (34)

cA
“ t=1 acA

Let 2* () be an indicator variable that is 1 if I was traversed on iteration ¢. If I was traversed then 7*(I) was stored in My,
otherwise 7 (I) = 0. Assume for now that My, is not full, so all sampled regrets are stored in the memory.

Let IT¢(T) be the fraction of iterations on which x*(I) = 1, and let

e(I) = ||B, [FH(D)]a"(I) = 1] — V(La\Gt)HQ.

Inserting canceling factors of 3_F,_, «* (I) and setting C'(I) = S_¢,_, ¥ (I),

T t ~ 2
- . Ri(I,a)
max (RT(I,a))? <|A|AT + 4A|A| ( xt (1)) ( —yi(I, a)> (35)
acA ; t,zz:l g Zi/:1 z¥(I)
T t
=|A|APT + 4A[A] Y (Z z (1)) |E. [7(D)|a"(I) = 1] — V(I,a|6")|, (36)
t=1 \t'=1
T
=|A|AT 4+ 4A[A| Y tTT'(I)e'(I) by definition (37)
t=1
T
<|AJAPT +4A[AIT Y TIH(I)e!(I) (38)
t=1
(39)

The first term of this expression is the same as Theorem 3, while the second term accounts for the approximation error.

"The careful reader may note that C'(1) = 0 for unvisited infosets, but o* (I, a) can play an arbitrary strategy at these infosets so it’s
okay.
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In the case of K -external sampling, the same derivation as shown in Theorem 3 leads to

T
max (R"(I,a))” < |AJA’TK? + 4A/JAITK? ) T (1)€' (1)
ac -1

in this case. We elide the proof.

The new regret bound in Eq. (40) can be plugged into Lanctot 2013, Theorem 3 as we do for Theorem 4, leading to

_ V2 Al 4 d
Ty <1+>A‘/|;|+ﬁ |A|At=ZIHt(I)etI

_ 2 VAl 4/TAlA d
T < Y2 A|Z,| 4] | 4V S (et (1)
pK VT VT i \=
_ 2 VI 4\/|A\A Yrer, |w— . .
RI<|1+—2=|AlZ 7 E ITE(I)et (1 Adding canceling factors
P < \/T) | P| \/* \/* ‘ p| |Ip| pot ( ) ( )

VA AAL] | <&
<[1+ ﬁ A|Z,| | | | ‘ | Z Z It (1 by Jensen’s inequality
VK VT =1 iez,

Now, lets consider the average MSE loss LT, (MT) at time T over the samples in memory M7 .
We start by stating two well-known lemmas:
Lemma 3. The MSE can be decomposed into bias and variance components
E.[(z — 0)%] = (0 — E[2])? + Var(0)
Lemma 4. The mean of a random variable minimizes the MSE loss

argmin B, [(z — 0)?] = E[x]
0

and the value of the loss at when 6 = E[z] is Var(x).

1 2
ct Vv (1167)
Y Yrez, Zthl zt(I) EZIPE H H2

‘I T2 S e ) v
Iez, t=1

‘I | S () E, U\ V(I|9T)Hz‘a:t(1) - 1}
1€Z,

Let V* be the model that minimizes £ on M. Using Lemmas 3 and 4,

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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2 Z 7 (1 (HV(I|9T) — B, [F(D)]a' (1) = 1] |5 + L‘T*) (50)
IGI
So,
Ly — L. >—=— > 1'(I) ) (51)
|I =3
y on'a ) < |L|(LE — L) (52)
1€Z,

Plugging this into Eq. 42, we arrive at

T
( f)A 7, YA, 4VIAIAL) TN (E ) (53)

IRV VT JT

V2 VIA]
< <1+ W) ALY+, V] A[Aez (54)

So far we have assumed that My, contains all sampled regrets. The number of samples in the memory at iteration ¢ is
bounded by K - |Z,]| - t. Therefore, if K - |Z,,| - T" < |My| then the memory will never be full, and we can make this
assumption.® O

B.S. Proof of Corollary 1
Proof. Let p=T~1/4,

P (Rp (1 + \/\%> AlZ, |TV ‘i +4|Z, |\/|A|Ae[;> < T4 (55)

Therefore, for any € > 0,

Jim P( — AL, )/[A]Ae > e) —0. (56)

8We do not formally handle the case where the memories become full in this work. Intuitively, reservoir sampling should work well
because it keeps an ‘unbiased’ sample of previous iterations’ regrets. We observe empirically in Figure 4 that reservoir sampling performs
well while using a sliding window does not.
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C. Network Architecture

In order to clarify the network architecture used in this work, we provide a PyTorch (Paszke et al., 2017) implementation
below.

import torch
import torch.nn as nn
import torch.nn.functional as F

class CardEmbedding (nn.Module):
def __init__(self, dim):
super (CardEmbedding , self). __init__ ()
self.rank = nn.Embedding (13, dim)
self.suit nn . Embedding (4, dim)
self .card nn. Embedding (52, dim)

def forward(self, input):
B, num_cards = input.shape
X = input.view(—1)

valid = x.ge(0). float() # —I means ’'no card’
X = X.clamp (min=0)

self.card(x) + self.rank(x // 4) + self.suit(x % 4)
embs * valid.unsqueeze(l) # zero out ’'no card’ embeddings

embs =
embs =
# sum across the cards in the hole/board
return embs.view (B, num_cards, —1).sum(1)

class DeepCFRModel (nn.Module):
def __init__(self, ncardtypes, nbets, nactions, dim=256):
super (DeepCFRModel, self ). __init__ ()

self.card_embeddings = nn.ModuleList(
[CardEmbedding (dim) for _ in range(ncardtypes)])

self .cardl = nn.Linear(dim * ncardtypes, dim)
self.card2 = nn.Linear (dim, dim)

self.card3 = nn.Linear (dim, dim)

self.betl = nn.Linear(nbets *x 2, dim)

self .bet2 = nn.Linear(dim, dim)

nn.Linear(2 % dim, dim)
nn. Linear (dim, dim)
nn. Linear (dim, dim)

self .combl
self.comb2
self .comb3

self.action_head = nn.Linear(dim, nactions)

def forward(self, cards, bets):

RETEN

cards: ((N x 2), (Nx 3)[, (Nx 1), (Nx 1)]) # (hole, board, [turn, river])
bets: N x nbet_feats

RRIEY

# 1. card branch

# embed hole, flop, and optionally turn and river

card_embs = []

for embedding, card_group in zip(self.card_embeddings, cards):
card_embs . append (embedding (card_group))

card_embs = torch.cat(card_embs, dim=1)
x = F.relu(self.cardl (card_embs))
x = F.relu(self.card2(x))
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x = F.relu(self.card3(x))

# 1. bet branch
bet_size = bets.clamp(0, le6)
bet_occurred = bets.ge(0)

bet_feats = torch.cat([bet_size, bet_occurred.float ()],

F.relu(self.betl (bet_feats))
F.relu(self.bet2(y) + vy)

combined trunk
torch.cat([x, y], dim=1)
F.relu(self.combl(z))
F.relu(self.comb2(z) + z)
F.relu(self.comb3(z) + z)

N N N N 3 « <
I w

z = normalize(z) # (z — mean) / std
return self.action_head(z)

dim=1)



