
Understanding the Origins of Bias in Word

Embeddings

(Supplemental Material)

1 Computing the Bias Gradient for GloVe

The bias gradient ∇XB(w(X)) can be thought of as a V × V matrix indicating
the direction of perturbation of the corpus (co-occurrences) that will result in
the maximal change in bias.

∇XB(w(X)) = ∇wB(w)∇Xw(X)

=

V∑
i=1

∇wi
B(w)∇Xwi(X)

Where the first line is obtained through the chain rule, and the second line is a
partial expansion of the resulting Jacobian product. Recall w = {w1, w2, ...wV },
wi ∈ RD and X ∈ RV×V .

When the bias metric is only a function of a small subset of the words in the
vocabulary, as in the case of WEAT, this can be further simplified to:

∇XB(w(X)) =
∑
i∈U
∇wiB(w)∇Xwi(X) (1)

Where U are the indices of the words used by the bias metric; U = S ∪T ∪A∪B
for WEAT. For the bias metrics we have explored, the first part of this expression,
∇wiB(w), can be efficiently computed through automatic differentiation. The
difficulty lies in finding an expression for ∇Xwi(X). However, in Section 4.2
of the main text we developed an approximation for the learned embedding
under corpus (co-occurrence) perturbations in GloVe using influence functions.
We can use this same approximation to create an expression for wi(X) that is
differentiable in X.

Recall, given the learned optimal GloVe parameters w∗, u∗, b∗, c∗, on co-
occurrence matrix X, we can approximate the word vectors given a small corpus
perturbation as:

w̃i ≈ w∗i −
1

V
H−1wi

[
∇wi

L(X̃i, w
∗)−∇wi

L(Xi, w
∗)
]

(2)
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Until now, we have been interested in perturbations stemming from the removal
of some part of corpus, e.g. document k, giving us X̃ = X −X(k). However, the
above approximation holds for an (almost) arbitrary co-occurrence perturbation,
which we shall denote Y . With this change of variable, X̃ = X − Y , we can
introduce the approximation from Equation (2):

∇Xwi(X) = −∇Y wi(X̃(Y ))|Y=0

≈ −∇Y
[
w∗i −

1

V
H−1wi

[
∇wiL(X̃i(Y ), w∗)−∇wiL(Xi, w

∗)
]]
|Y=0

≈ 1

V
H−1wi
∇Y∇wiL(X̃i(Y ), w∗)|Y=0

(3)

Where we have made the dependence on Y in Equation (2) explicit. The higher-
order jacobian, ∇Y∇wiL(X̃i(Y ), w∗)|Y=0, can be thought of as a D × V × V
tensor. We again note a significant sparsity, since X̃i(Y ) is only a function of Yi.
Therefore, this tensor is 0 in all but the ith position along one of the V axes.
The D × V “matrix” in that non-zero position can be found by computing:

∇Yi

V∑
j=1

2V f(Xij − Yij)
(
wTi uj + bi + cj − log(Xij − Yij)

)
uj

evaluated at Yij = 0. Alternatively the Jacobian can simply by obtained using
automatic differentiation.

Substituting this result into Equation (1), we get:

∇XB(w(X)) =
∑
i∈U
∇wi

B(w)∇Xwi(X)

≈ 1

V

∑
i∈U
∇wi

B(w)H−1wi
∇Y∇wi

L(X̃i(Y ), w∗)|Y=0

Which gives us the full approximation of the Bias Gradient in GloVe.
Note that since ∇wi

L(X̃i(Y ), w∗) is not differentiable in Y at Y = 0 where
Xij = 0, the bias gradient is only defined at non-zero co-occurrences. This
prevents us from using the bias gradient to study corpus additions which create
previously unseen word co-occurrences. However, this does not affect our ability
to study arbitrary removals from the corpus, since removals cannot affect a
zero-valued co-occurrence. Of course, nothing limits us from using the bias
gradient to also consider additions to the corpus that not change the set of zero
co-occurrences.
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2 Experimental Setup

Table 1 presents a summary of the corpora and embedding hyperparameters
used throughout our experimentation. We list the complete set of the words
used in each of the two WEATs below.

Table 1: Experimental Setups

Wiki NYT

Corpus
Min. doc. length 200 100
Max. doc. length 10,000 30,000
Num. documents 29,344 1,412,846
Num. tokens 17,033,637 975,624,317

Vocabulary
Token min. count 15 15
Vocabulary size 44,806 213,687

GloVe
Context window symmetric symmetric
Window size 8 8
α 0.75 0.75
xmax 100 100
Vector Dimension 75 200
Training epochs 300 150

Performance
TOP-1 Analogy 35% 54%
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WEAT 1

S science science, technology, physics, chemistry, einstein, nasa,
experiment, astronomy

T arts poetry, art, shakespeare, dance, literature, novel, sym-
phony, drama

A male male, man, boy, brother, he, him, his, son

B female female, woman, girl, sister, she, her, hers, daughter

WEAT 2

S instruments bagpipe, cello, guitar, lute, trombone, banjo, clarinet,
harmonica, mandolin, trumpet, bassoon, drum, harp,
oboe, tuba, bell, fiddle, harpsichord, piano, viola,
bongo, flute, horn, saxophone, violin

T weapons arrow, club, gun, missile, spear, axe, dagger, har-
poon, pistol, sword, blade, dynamite, hatchet, rifle,
tank, bomb, firearm, knife, shotgun, teargas, cannon,
grenade, mace, slingshot, whip

A pleasant caress, freedom, health, love, peace, cheer, friend,
heaven, loyal, pleasure, diamond, gentle, honest,
lucky, rainbow, diploma, gift, honor, miracle, sun-
rise, family, happy, laughter, paradise, vacation

B unpleasant abuse, crash, filth, murder, sickness, accident, death,
grief, poison, stink, assault, disaster, hatred, pollute,
tragedy, divorce, jail, poverty, ugly, cancer, kill, rot-
ten, vomit, agony, prison
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3 Detailed Experimental Methodology

Here we detail the experimental methodology used to test our method’s accuracy.

I - Train a baseline. We start by training 10 word embeddings using the
parameters in Table 1 above, but using different random seeds. These embeddings
create a baseline for the unperturbed bias B(w∗).

II - Approximate the differential bias of each document. For each
WEAT test, we approximate the differential bias of every document in the
corpus. We do so with a combination of Equations (8) and (5) of the main text.
This step is summarize by Algorithm 1 in the main text. Note that we make
the differential bias approximation for each document several times, using the
learned parameters w∗, u∗, b∗ and c∗ from the 10 different baseline embeddings
in our different approximations. We then average these approximations for each
document, and construct a histogram.

III - Construct perturbation sets. We perturb the corpus by removing
sets of documents. We construct three types of perturbation sets: increase,
random, and decrease. The targeted (increase, decrease) perturbation sets are
constructed from the documents whose removals were predicted to cause the
greatest differential bias (in absolute value), i.e., the documents located in the
tails of the histograms. For the Wiki setup we consider the 10, 30, 100, 300,
and 1000 most influential documents for each bias, while for the NYT setup we
consider the 100, 300, 1000, 3000, and 10,000 most influential. This results in 10
perturbations sets per corpus per bias, for a total of 40.

The random sets are, as their name suggests, drawn uniformly at random
from the entire set of documents used in the training corpus. For the Wiki setup
we consider 6 sets of 10, 30, 100, 300, and 1000 documents (30 total). Because
training times are much longer, we limit this to 6 sets of 10,000 documents for
the NYT setup. Therefore we consider a total of 36 random sets.

IV - Approximate the differential bias of each perturbation set. We
then approximate the differential bias of each perturbation set. Note that
∇wL(Xi, w) is not linear in Xi. Therefore determining the differential bias of a
perturbation set does not amount to simply summing the differential bias of each
document in the set (although in practice we find it to be close). Here we also
make 10 approximations, one with each of the different baseline embeddings.

V - Construct ground truth and assess. Finally, for each perturbation set,
we remove the target documents from the corpus, and train 5 new embeddings
on this perturbed corpus. We use the same hyperparameters, again varying only
the random seed. The bias measured in these embeddings serve as the ground
truth for assessment.
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4 Additional experimental results

Here we include additional experimental results.

Figure 1: Histogram of the approximated differential bias of removal for every
document in our Wiki setup (top) and NYT setup (bottom), considering WEAT1
(left) and WEAT2 (right), measured in percent change from the corresponding
mean baseline bias.

Table 2: Correlation of Approximated and Validated Mean Biases

WEAT1 WEAT2

Wiki r2: 0.986 r2: 0.993
NYT r2: 0.995 r2: 0.997

6



Understanding the Origins of Bias in Word Embeddings

Figure 2: Approximated vs. ground truth WEAT bias effect size due to the
removal of each (non-random) perturbation set in Wiki setup (top) and NYT
setup (bottom), considering WEAT1 (left) and WEAT2 (right); points plot the
means; error bars depict one standard deviation; dashed line shows least squares;
the baseline means are shown with vertical dotted lines; correlations in Table 2.

Table 3: A comparison of the effect of removing the most impactful documents
as identified by a PPMI baseline technique versus when identified by our method
(Wiki setup, mean of WEAT1 in 10 retrained GloVe embeddings).

Document Set ∆B when Identified by
objective num. docs. baseline our method

correct 300 -67% -187%
correct 100 -50% -147%
correct 30 -23% -57%
correct 10 -4% -40%
aggravate 10 -0.5% 32%
aggravate 30 20% 53%
aggravate 100 15% 79%
aggravate 300 47% 84%
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Figure 3: Approximated and ground truth differential bias of removal for every
(non-random) perturbation set in Wiki setup (top) and NYT setup (bottom),
considering WEAT1 (left) and WEAT2 (right); the baseline means are shown
with vertical dotted lines

Figure 4: The correlation of the WEAT as measured in our NYT GloVe em-
beddings versus the corpus’ PPMI representation in 2000 randomly generated
word sets, r2 = 0.725 (left); versus when measured in word2vec embeddings with
comparable hyper-parameters, r2 = 0.803 (right).
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5 Influential Documents - NYT WEAT 1

The below documents were identified to be the 50 most WEAT1 bias influencing
documents in our NYT setup. We list the article titles. Publication dates
range from January 1, 1987 to June 19, 2007. Most can be found through
https://www.nytimes.com/search. A subscription may be required for access.

∆docB Bias Decreasing

-0.52 Hormone Therapy Study Finds Risk for Some
-0.50 For Women in Astronomy, a Glass Ceiling in the Sky
-0.49 Sorting Through the Confusion Over Estrogen
-0.36 Young Astronomers Scan Night Sky and Help Wanted

Ads
-0.33 Campus Where Stars Are a Major
-0.33 A New Look At Estrogen And Stroke
-0.31 Scenes From a Space Thriller
-0.30 The Cosmos Gets Another Set of Eyes
-0.29 The Stars Can’t Help It
-0.28 Making Science Fact, Now Chronicling Science Fic-

tion
-0.27 Estrogen Heart Study Proves Discouraging
-0.26 EINSTEIN LETTERS TELL OF ANGUISHED

LOVE AFFAIR
-0.25 Divorcing Astronomy
-0.24 Astronomers Open New Search for Alien Life
-0.23 AT WORK WITH: Susie Cox; Even Stars Need a

Map To the Galaxy
-0.22 CAMPUS LIFE: Minnesota; Astronomer Spots Clue

To Future of Universe
-0.21 Clothes That Are Colorful and TV’s That Are Thin

Make Many Lists
-0.20 We Are the Fourth World
-0.20 Hitched to a Star, With a Go-To Gadget
-0.19 Material World
-0.19 Shuttle’s Stargazing Disappoints Astronomers
-0.19 2 Equity Firms Set to Acquire Neiman Marcus
-0.18 Volunteer’s Chain Letter Embarrasses a Hospital
-0.18 What Doctors Don’t Know (Almost Everything)
-0.18 Astronomers Edging Closer To Gaining Black Hole

Image
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∆docB Bias Increasing

0.38 Kaj Aage Strand, 93, Astronomer At the U.S. Naval
Observatory

0.32 Gunman in Iowa Wrote of Plans In Five Letters
0.29 ENGINEER WARNED ABOUT DIRE IMPACT OF

LIFTOFF DAMAGE
0.29 Fred Gillett, 64; Studied Infrared Astronomy
0.27 Robert Harrington, 50, Astronomer in Capital
0.27 For Voyager 2’s ’Family’ of 17 Years, It’s the Last of

the First Encounters
0.26 Despite the Light, Astronomers Survive
0.25 LONG ISLAND GUIDE
0.25 THE GUIDE
0.24 Telescope Will Offer X-Ray View Of Cosmos
0.23 Astronomers Debate Conflicting Answers for the Age

of the Universe
0.23 The Wild Country of Anza Borrego
0.21 What Time Is It in the Transept?
0.21 Jan H. Oort, Dutch Astronomer In Forefront of Field,

Dies at 92
0.21 Logging On to the Stars
0.20 The Sky, Up Close and Digital
0.20 Q&A
0.19 Getting Attention With Texas Excess
0.19 Emily’s College
0.19 60 New Members Elected to Academy of Sciences
0.18 Theoretical Physics, in Video: A Thrill Ride to ’the

Other Side of Infinity’
0.18 Charles A. Federer Jr., Stargazer-Editor, 90
0.18 Some Web sites are taking their brands from the

Internet into some very offline spheres.
0.18 A Wealth of Cultural Nuggets Waiting to Be Mined
0.18 Can a Robot Save Hubble? More Scientists Think So
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6 Influence of Mulitple Perturbations

Here we show how we can extend the influence function equations presented by
Koh & Liang (2017) to address the case of multiple training point perturbations.
We do not intend this to be a rigorous mathematical proof, but rather to provide
insight into the logical steps we followed.

First we summarize the derivation in the case of a single train point pertur-
bation. Let R(z, θ) be a convex scalar loss function for a learning task, with
optimal model parameters θ∗ of the form in Equation 4 below, where {z1, ..., zn}
are the training data points and L(zi, θ) is the point-wise loss.

R(z, θ) =
1

n

n∑
i=1

L(zi, θ) θ∗ = argmin
θ

R(z, θ) (4)

We would like to determine how the optimal parameters θ∗ would change
if we perturbed the kth point in the training set; i.e., zk → z̃k. The optimal
parameters under perturbation can be written as:

θ̃(ε) = argmin
θ

{
R(z, θ) + εL(z̃k, θ)− εL(zk, θ)

}
(5)

where we seek θ̃|ε= 1
n

, noting that θ̃|ε=0 = θ∗. Since θ̃ minimizes Equation 5, we
must have

0 = ∇θR(z, θ̃) + ε∇θL(z̃k, θ̃)− ε∇θL(zk, θ̃)

for which we can compute the first order Taylor series expansion (with respect
to θ) around θ∗. This gives:

0 ≈∇θR(z, θ∗) + ε∇θL(z̃k, θ
∗)− ε∇θL(zk, θ

∗)

+
[
∇2
θR(z, θ∗) + ε∇2

θL(z̃k, θ
∗)− ε∇2

θL(zk, θ
∗)
]
(θ̃ − θ∗)

Noting ∇θR(z, θ∗) = 0, then keeping only O
(
ε
)

terms, solving for θ̃, and
evaluating at ε = 1

n we obtain:

θ̃ − θ∗ ≈
(
−1

n

)
H−1θ∗ [∇θL(z̃k, θ

∗)−∇θL(zk, θ
∗)] (6)

where Hθ∗ = 1
n

∑n
i=1∇2

θL(zi, θ
∗) is the Hessian of the total loss.

Now, we address the more general case where several training points are
perturbed. This corresponds to replacing the expression εL(z̃k, θ) − εL(zk, θ)
in Equation (5) with

∑
k∈δ

(
εL(z̃k, θ)− εL(zk, θ)

)
, where δ is the set of indices

of perturbed points. Because of the linearity of the gradient operator, we can
readily carry this substitution through the subsequent equations, resulting in:

θ̃ − θ∗ ≈
(
−1

n

)
H−1θ∗

∑
k∈δ

[∇θL(z̃k, θ
∗)−∇θL(zk, θ

∗)] (7)

where we assume |δ| � n.
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