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A Experiment in Figure 1

We tested the generalization performance in the setup of Section 4. We considered networks with
number of channels 4,6,8,20,50,100 and 200. The distribution in this setting has p+ = 0.5 and
p− = 0.9 and the training sets are of size 12 (6 positive, 6 negative). Note that in this case the
training set contains non-diverse points with high probability. The ground truth network can be
realized by a network with 4 channels. For each number of channels we trained a convolutional
network 100 times and averaged the results. In each run we sampled a new training set and new
initialization of the weights according to a gaussian distribution with mean 0 and standard deviation
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0.00001. For each number of channels c, we ran gradient descent with learning rate 0.04
c and stopped

it if it did not improve the cost for 20 consecutive iterations or if it reached 30000 iterations. The
last iteration was taken for the calculations. We plot both average test error over all 100 runs and
average test error only over the runs that ended at 0% train error. In this case, for each number of
channels 4,6,8,20,50,100,200 the number of runs in which gradient descent converged to a 0% train
error solution is 62, 79, 94, 100, 100, 100, 100, respectively.

B Proofs for Section 3

In the XOR problem, we are given a training set S = {(xi, yi)}4i=1 ⊆ {±1}2 × {±1}2 consisting of
points x1 = (1, 1), x2 = (−1, 1), x3 = (−1,−1), x4 = (1,−1) with labels y1 = 1, y2 = −1, y3 = 1
and y4 = −1, respectively. Our goal is to learn the XOR function f∗ : {±1}2 → {±1}, such that
f∗(xi) = yi for 1 ≤ i ≤ 4, with a neural network and gradient descent.

Neural Architecture: For this task we consider the following two-layer fully connected network.

NW (x) =

k∑
i=1

[
σ
(
w(i) · x

)
− σ

(
u(i) · x

)]
(1)

where W ∈ R2k×2 is the weight matrix whose rows are the w(i) vectors followed by the u(i) vectors, and
σ(x) = max{0, x} is the ReLU activation applied element-wise. We note that f∗ can be implemented
with this network for k = 2 and this is the minimal k for which this is possible. Thus we refer to
k > 2 as the overparameterized case.

Training Algorithm: The parameters of the network NW (x) are learned using gradient descent

on the hinge loss objective. We use a constant learning rate η =
cη
k , where cη <

1
2 . The parameters

NW are initialized as IID Gaussians with zero mean and standard deviation σg ≤ cη
16k3/2

. We consider
the hinge-loss objective:

`(W ) =
∑

(x,y)∈S

max{1− yNW (x), 0}

where optimization is only over the first layer of the network. We note that for k ≥ 2 any global
minimum W of ` satisfies `(W ) = 0 and sign(NW (xi)) = f∗(xi) for 1 ≤ i ≤ 4.

Notations: We will need the following notations. Let Wt be the weight matrix at iteration t of

gradient descent. For 1 ≤ i ≤ k, denote by w
(i)
t ∈ R2 the ith weight vector at iteration t. Similarly we

define u
(i)
t ∈ R2 to be the k+ i weight vector at iteration t. For each point xi ∈ S define the following

sets of neurons:
W+
t (i) =

{
j | w(j)

t · xi > 0
}

U+
t (i) =

{
j | u(j)

t · xi > 0
}

and for each iteration t, let ai(t) be the number of iterations 0 ≤ t′ ≤ t such that yiNWt′ (xi) < 1.

B.1 Overparameterized Network

Lemma B.1. Exploration at initialization. With probability at least 1− 8e−8, for all 1 ≤ j ≤ 4

k

2
− 2
√
k ≤

∣∣W+
0 (j)

∣∣ , ∣∣U+
0 (j)

∣∣ ≤ k

2
+ 2
√
k
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Proof. Without loss of generality consider
∣∣W+

0 (1)
∣∣. Since the sign of a one dimensional Gaussian

random variable is a Bernoulli random variable, we get by Hoeffding’s inequality

P
(∣∣∣∣∣∣W+

0 (1)
∣∣− k

2

∣∣∣∣ < 2
√
k

)
≤ 2e−

2(22k)
k = 2e−8

Since
∣∣W+

0 (1)
∣∣+∣∣W+

0 (3)
∣∣ = k with probability 1, we get that if

∣∣∣∣W+
0 (1)

∣∣− k
2

∣∣ < 2
√
k then

∣∣∣∣W+
0 (3)

∣∣− k
2

∣∣ <
2
√
k. The result now follows by symmetry and the union bound.

Lemma B.2. With probability ≥ 1−
√
8k√
πe8k

, for all 1 ≤ j ≤ k and 1 ≤ i ≤ 4 it holds that
∣∣∣w(j)

0 · xi
∣∣∣ ≤

√
2η
4 and

∣∣∣u(j)
0 · xi

∣∣∣ ≤ √2η
4 .

Proof. Let Z be a random variable distributed as N (0, σ2). Then by Proposition 2.1.2 in Vershynin
(2017), we have

P [|Z| ≥ t] ≤ 2σ√
2πt

e−
t2

2σ2

Therefore, for all 1 ≤ j ≤ k and 1 ≤ i ≤ 4,

P

[∣∣∣w(j)
0 · xi

∣∣∣ ≥ √2η

4

]
≤ 1√

8πk
e−8k

and

P

[∣∣∣u(j)
0 · xi

∣∣∣ ≥ √2η

4

]
≤ 1√

8πk
e−8k

The result follows by applying a union bound over all 2k weight vectors and the four points xi,
1 ≤ i ≤ 4.

Lemma B.3. Clustering Dynamics. Lemma 3.2 restated and extended. With probability

≥ 1−
√
8k√
πe8k

, for all t ≥ 0 there exists αi, 1 ≤ i ≤ 4 such that |αi| ≤ η and the following holds:

1. For i ∈ {1, 3} and j ∈W+
0 (i), it holds that w

(j)
t = w

(j)
0 + ai(t)ηxi + αix2.

2. For i ∈ {2, 4} and j ∈ U+
0 (i), it holds that u

(j)
t = u

(j)
0 + ai(t)ηxi + αix1.

Proof. By Lemma B.2, with probability ≥ 1 −
√
8k√
πe8k

, for all 1 ≤ j ≤ k and 1 ≤ i ≤ 4 it holds

that
∣∣∣w(j)

0 · xi
∣∣∣ ≤ √

2η
4 and

∣∣∣u(j)
0 · xi

∣∣∣ ≤ √
2η
4 . It suffices to prove the claim for W+

t (1). The other

cases follow by a symmetry. The proof is by induction. Assume that j ∈ W+
t (1). For t = 0 the

claim holds with αt1 = 0. For a point (x, y) let `(x,y) = max{1 − yNW (x), 0}. Then it holds that
∂`(x,y)
∂w(i) (W ) = −yσ′(w(i) · x)x1yNW (x)<1. Assume without loss of generality that α1 > 0. Define
β1 = 1NW (x1)<1 and β2 = 1NW (x2)>−1. Using these notations, we have

w
(j)
t+1 = w

(j)
t + β1ηx1 − β2ηx2

= w
(j)
0 + (ai(t) + β1)xi + (αi − β2η)x2

and for any values of β1, β2 ∈ {0, 1} the induction step follows.
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For each point xi, define the following sums:

S+
t (i) =

∑
j∈W+

t (i)

σ
(
w

(j)
t · xi

)

R+
t (i) =

∑
j∈U+

t (i)

σ
(
u
(j)
t · xi

)
We will prove the following lemma regarding S+

t (1), R+
t (1) for i = 1. By symmetry, analogous

lemmas follow for i 6= 1.

Lemma B.4. The following holds with probability ≥ 1−
√
8k√
πe8k

:

1. For all t ≥ 0, R+
t (1) ≤ 2kη.

2. If yNWt(x1) < 1, then S+
t+1(1) ≥ S+

t (1) +
∣∣W+

0 (1)
∣∣ η. Otherwise, if −yNWt(x1) ≥ 1 then

S+
t+1(1) = S+

t (1).

Proof. 1. Assume by contradiction that there exists t > 0, such that R+
t (1) > 2kη. It follows that

there exists j ∈ U+
t (1) such that σ

(
u
(j)
t · x1

)
> 2η. However, this contradicts Lemma B.3 and

Lemma B.2, because with probability 1, there exists l ∈ {2, 4} such that j ∈ U+
0 (l).

2. This follows by Lemma B.3. We note that by this lemma, if j ∈W+
0 (1) then j ∈W+

t (1) for all
t > 0.

Proposition B.5. Assume that k > 16. With probability ≥ 1 −
√
8k√
πe8k

− 8e−8, for all i, if until

iteration T there were at least l ≥ 1
cη

(
4
√
k√

k−4

)
iterations, in which yNWt(xi) < 1, then it holds that

yNWt(xi) ≥ 1 for all t ≥ T .

Proof. Without loss of generality assume that i = 1. By Lemma B.4 and Lemma E.3, with probability

≥ 1 −
√
8k√
πe8k

− 8e−8, if yNWt
(x1) < 1 then S+

t+1(1) ≥ S+
t (1) +

(
k
2 − 2

√
k
)
η. Therefore, by Lemma

B.4, for all t ≥ T

NWt(x1) = S+
t (1)−R+

t (1)

≥
(
k

2
− 2
√
k

)
lη − 2kη

≥ 1

where the last ineqaulity follows by the assumption on l.

Theorem B.6. Convergence and clustering. Theorem 3.3 restated. Assume that k > 16.

With probability ≥ 1−
√
8k√
πe8k
− 8e−8, after T > 1

cη

(
16
√
k√

k−4

)
iterations, gradient descent converges to a

global minimum. Furthermore, for i ∈ {1, 3} and all j ∈ W+
0 (i), the angle between w

(j)
T and xi is at

most arccos
(

1−2cη
1+cη

)
. Similarly, for i ∈ {2, 4} and all j ∈ U+

0 (i), the angle between u
(j)
T and xi is at

most arccos
(

1−2cη
1+cη

)
.

Proof. Proposition B.5 implies that there are at most 1
cη

(
16
√
k√

k−4

)
iterations in which there exists

(xi, yi) such that yiNWt
(xi) < 1. After at most that many iterations, gradient descent converges to

a global minimum.
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Without loss of generality, we prove the clustering claim for i = 1 and all j ∈W+
0 (1). At a global

minimum, NWT
(x1) ≥ 1. Therefore, by Lemma B.3 and Lemma B.4 it follows that

2η(ai(T ) + 1)
∣∣W+

0 (1)
∣∣ ≥ S+

t (1) ≥ 1

and thus ai(T ) ≥ 1
2cη
− 1. Therefore, for any j ∈W+

0 (1), the cosine of the angle between w
(j)
T and x1

is at least
(w

(j)
0 + a1(T )ηx1 + α1x2) · x1√

2(‖w(j)
0 ‖+

√
2ai(T )η +

√
2η)
≥ 2a1(T )

2a1(T ) + 3
≥ 1− 2cη

1 + cη

where we used the triangle inequality, Lemma B.3 and Lemma B.2. The last inequality follows
since f(x) = 2x

2x+3 is monotonically increasing. The claim follows.

B.2 Small Network

Lemma B.7. Non-exploration at initialization. With probability at least 0.75, there exists i ∈
{1, 3} such that W+

0 (i) = ∅ or i ∈ {2, 4} such that U+
0 (i) = ∅.

Proof. Since the sign of a one dimensional Gaussian random variable is a Bernoulli random variable,
the probability that W+

0 (i) 6= ∅ for i ∈ {1, 3} and U+
0 (i) 6= ∅ for i ∈ {2, 4} is 1

4 . The claim follows.

Theorem B.8. Assume that k = 2. With probability ≥ 0.75, gradient descent converges to a local
minimum.

Proof. As in the proof of Theorem 3.3, for i ∈ {1, 3} if W+
0 (i) 6= ∅, then eventually, yiNWt

(xi) ≥ 1.
Similarly, for i ∈ {2, 4} if U+

0 (i) 6= ∅, then eventually, yiNWt
(xi) ≥ 1. However, if without loss of

generality W+
0 (1) = ∅, then for all t,

NWt
(x1) = S+

t (1)−R+
t (1) ≤ 0

Furthermore, there exists the first iteration t′ such that yiNWt′ (xi) ≥ 1 for i = 3 (since W+
0 (3) 6= ∅)

and any i ∈ {2, 4} such that U+
0 (i) 6= ∅. Then, in iteration t′ + 1 for all 1 ≤ j ≤ 2 it holds that

u
(j)
t′+1xi < 0 and w

(j)
t′+1xi < 0 for i = 1 and i ∈ {2, 4} such that U+

0 (i) = ∅ (here we use the fact that∣∣∣u(j)
t x1

∣∣∣ ≤ η for all t by Lemma B.2. Similarly, for
∣∣∣w(j)

t xi

∣∣∣ where i ∈ {2, 4}). Therefore at t′ + 1 we

are at a local minimum.

C Proofs and Experiments for Section 4

C.1 VC Dimension

As noted in Remark 4.1, the VC dimension of the model we consider is at most 15. To see this, we
first define for any z ∈ {±1}2d the set Pz ⊆ {±1}2 which contains all the distinct two dimensional
binary patterns that z has. For example, for a positive diverse point z it holds that Pz = {±1}2.
Now, for any points z(1), z(2) ∈ {±1}2d such that Pz(1) = Pz(2) and for any filter w ∈ R2 it holds that

maxj σ
(
w · z(1)

j

)
= maxj σ

(
w · z(2)

j

)
. Therefore, for any W , NW (z(1)) = NW (z(2)). Specifically,

this implies that if both z(1) and z(2) are diverse then NW (z(1)) = NW (z(2)). Since there are 15
non-empty subsets of {±1}2, it follows that for any k the network can shatter a set of at most 15
points, or equivalently, its VC dimension is at most 15. Despite these expressive power limitations,
there is a generalization gap between small and large networks in this setting, as can be seen in Figure
1.
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Figure 1: Higher confidence of hinge-loss results in better performance in the XORD problem.

C.2 Hinge Loss Confidence

Figure 1 shows that setting γ = 5 gives better performance than setting γ = 1 in the XORD problem.
The setting is similar to the setting of Section A. Each point is an average test error of 100 runs.

D Experiments for Section 5

Here we show an example of a training set that has a non-diverse negative point. The training set
contains 6 diverse positive points, 5 diverse negative points and a negative non-diverse point that only
contains the pattern p4. We implemented the setting of Section 4 and ran gradient descent on this
training set. In Figure 2 we show the results. The large network recovers f∗, while the small does
not. This is despite the fact that both networks achieve zero training error.

(a) (b) (c) (d)

Figure 2: Overparameterization and generalization in XORD problem. The vectors in blue are the vectors

w
(i)
t and in red are the vectors u

(i)
t . (a) Exploration at initialization (t=0) for k = 100 (b) Clustering and

convergence to global minimum that recovers f∗ for k = 100 (c) Non-sufficient exploration at initialization
(t=0) for k = 2. (d) Convergence to global minimum with non-zero test error for k = 2.

E Proof of Theorem 6.3

We first restate the theorem.

Theorem E.1. (Theorem 6.3 restated and extended.) With probability at least
(
1− c− 16e−8

)
after running gradient descent for T ≥ 28(γ+1+8cη)

cη
iterations, it converges to a global minimum which
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satisfies sign (NWT
(x)) = f∗(x) for all x ∈ {±1}2d. Furthermore, for i ∈ {1, 3} and all j ∈ W+

0 (i),

the angle between w
(j)
T and pi is at most arccos

(
γ−1−2cη
γ−1+cη

)
.

We will first need a few notations. Define p1 = (1, 1),x2 = (1,−1),p3 = (−1,−1),p4 = (−1, 1)
and the following sets:

W+
t (i) =

{
j | arg max

1≤l≤4
w

(j)
t · pl = i

}
, U+

t (i) =

{
j | arg max

1≤l≤4
u
(j)
t · pl = i

}

W−t (i) =

{
j | arg max

l∈{2,4}
w

(j)
t · pl = i

}
, U−t (i) =

{
j | arg max

l∈{2,4}
u
(j)
t · pl = i

}
We can use these definitions to express more easily the gradient updates. Concretely, let j ∈

W+
t (i1) ∩W−t (i2) then the gradient update is given as follows:1

w
(j)
t+1 = w

(j)
t + ηpi11NW (x+)<γ − ηpi21NW (x−)<1 (2)

Similarly, for j ∈ U+
t (i1) ∩ U−t (i2) the gradient update is given by:

u
(j)
t+1 = u

(j)
t − ηpi11NW (x+)<γ + ηpi21NW (x−)<1 (3)

We denote by x+ a positive diverse point and x− a negative diverse point. Define the following
sums for φ ∈ {+,−}:

Sφt =
∑

j∈W+
t (1)∪W+

t (3)

[
max

{
σ
(
w(j) · xφ1

)
, ..., σ

(
w(j) · xφd

)}]

Pφt =
∑

j∈U+
t (1)∪U+

t (3)

[
max

{
σ
(
u(j) · xφ1

)
, ..., σ

(
u(j) · xφd

)}]

Rφt =
∑

j∈W+
t (2)∪W+

t (4)

[
max

{
σ
(
w(j) · xφ1

)
, ..., σ

(
w(j) · xφd

)}]
−

∑
j∈U+

t (2)∪U+
t (4)

[
max

{
σ
(
u(i) · xφ1

)
, ..., σ

(
u(i) · xφd

)}]
Note that R+

t = R−t since for z ∈ {x+,x−} there exists i1, i2 such that zi1 = p2, zi2 = p4.
Without loss of generality, we can assume that the training set consists of one positive diverse

point x+ and one negative diverse point x−. This follows since the network and its gradient have the
same value for two different positive diverse points and two different negative points. Therefore, this
holds for the loss function defined in Eq. 4 as well.

We let a+(t) be the number of iterations 0 ≤ t′ ≤ t such that NWt′ (x
+) < γ.

We will now proceed to prove the theorem. In Section E.0.1 we prove results on the filters at
initialization. In Section E.0.2 we prove several lemmas that exhibit the clustering dynamics. In
Section E.0.3 we prove upper bounds on S−t , P+

t and P−t for all iterations t. In Section E.0.4 we
characterize the dynamics of S+

t and in Section E.0.5 we prove an upper bound on it together with
upper bounds on NWt

(x+) and −NWt
(x−) for all iterations t.

We provide an optimization guarantee for gradient descent in Section E.0.6. We prove generaliza-
tion guarantees for the points in the positive class and negative class in Section E.0.7 and Section E.0.8,
respectively. We complete the proof of the theorem in Section E.0.9 with proofs for the clustering
effect at the global minimum.

1Note that with probability 1, σ′(w
(j)
t · pi1 ) = 1, σ′(w

(j)
t · pi2 ) = 1 for all t, and therefore we omit these from the

gradient update. This follows since σ′(w
(j)
t · pi1 ) = 0 for some t if and only if w

(j)
0 · pi1 is an integer multiple of η.
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E.0.1 Initialization Guarantees

Lemma E.2. Exploration. Lemma 6.1 restated and extended. With probability at least 1 −
4e−8, it holds that ∣∣∣∣∣∣W+

0 (1) ∪W+
0 (3)

∣∣− k

2

∣∣∣∣ ≤ 2
√
k

and ∣∣∣∣∣∣U+
0 (1) ∪ U+

0 (3)
∣∣− k

2

∣∣∣∣ ≤ 2
√
k

Proof. Without loss of generality consider
∣∣W+

0 (1) ∪W+
0 (3)

∣∣. Since P
[
j ∈W+

0 (1) ∪W+
0 (3)

]
= 1

2 , we
get by Hoeffding’s inequality

P
[∣∣∣∣∣∣W+

0 (1) ∪W+
0 (3)

∣∣− k

2

∣∣∣∣ < 2
√
k

]
≤ 2e−

2(22k)
k = 2e−8

The result now follows by the union bound.

Lemma E.3. With probability ≥ 1−
√
8k√
πe8k

, for all 1 ≤ j ≤ k and 1 ≤ i ≤ 4 it holds that
∣∣∣w(j)

0 · pi
∣∣∣ ≤

√
2η
4 and

∣∣∣u(j)
0 · pi

∣∣∣ ≤ √2η
4 .

Proof. Let Z be a random variable distributed as N (0, σ2). Then by Proposition 2.1.2 in Vershynin
(2017), we have

P [|Z| ≥ t] ≤ 2σ√
2πt

e−
t2

2σ2

Therefore, for all 1 ≤ j ≤ k and 1 ≤ i ≤ 4,

P

[∣∣∣w(j)
0 · pi

∣∣∣ ≥ √2η

4

]
≤ 1√

8πk
e−8k

and

P

[∣∣∣u(j)
0 · pi

∣∣∣ ≥ √2η

4

]
≤ 1√

8πk
e−8k

The result follows by applying a union bound over all 2k weight vectors and the four points pi,
1 ≤ i ≤ 4.

From now on we assume that the highly probable event in Lemma E.3 holds.

Lemma E.4. NWt
(x+) < 1 and −NWt

(x−) < 1 for 0 ≤ t ≤ 2.

Proof. By Lemma E.3 we have

NW0
(x+) =

k∑
i=1

[
max

{
σ
(
w

(i)
0 · x

+
1

)
, ..., σ

(
w

(i)
0 · x

+
d

)}
−max

{
σ
(
u
(i)
0 · x

+
1

)
, ..., σ

(
u
(i)
0 · x

+
d

)}]
≤
√

2ηk

4
< γ

and similarly −NW0(x−) < 1. Therefore, by Eq. 2 and Eq. 3 we get:

1. For i ∈ {1, 3}, l ∈ {2, 4}, j ∈W+
0 (i) ∩W−0 (l), it holds that w

(j)
1 = w

(j)
0 − ηpl + ηpi.

2. For i ∈ {2, 4} and j ∈W+
0 (i), it holds that w

(j)
1 = w

(j)
0 .
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3. For i ∈ {1, 3}, l ∈ {2, 4}, j ∈ U+
0 (i) ∩ U−0 (l), it holds that u

(j)
1 = u

(j)
0 − ηpi + ηpl.

4. For i ∈ {2, 4} and j ∈ U+
0 (i), it holds that u

(j)
2 = u

(j)
0 .

Applying Lemma E.3 again and using the fact that η ≤ 1
8k we have NW1(x+) < γ and −NW1(x−) < 1.

Therefore we get,

1. For i ∈ {1, 3}, l ∈ {2, 4}, j ∈W+
0 (i) ∩W−0 (l), it holds that w

(j)
2 = w

(j)
0 + 2ηpi.

2. For i ∈ {2, 4} and j ∈W+
0 (i), it holds that w

(j)
2 = w

(j)
0 .

3. For i ∈ {1, 3}, l ∈ {2, 4}, j ∈ U+
0 (i) ∩ U−0 (l), it holds that u

(j)
2 = u

(j)
0 − ηpi + ηpl.

4. For i ∈ {2, 4} and j ∈ U+
0 (i), it holds that u

(j)
2 = u

(j)
0 .

As before, by Lemma E.3 we have NW2(x+) < γ and −NW2(x−) < 1.

E.0.2 Clustering Dynamics Lemmas

In the following lemmas we assume that the highly probable event in Lemma E.3 holds. We therefore
do not mention the probability in the statements of the lemmas.

Lemma E.5. Clusetering. Lemma 6.2 restated and extended. For all t ≥ 0 there exists α
(t)
i ,

i ∈ {1, 3} such that
∣∣∣α(t)
i

∣∣∣ ≤ η and the following holds:

1. For i ∈ {1, 3} and j ∈W+
0 (i), it holds that w

(j)
t = w

(j)
0 + a+(t)ηpi + α

(t)
i p2.

2. For i ∈ {2, 4} and j ∈W+
0 (i), it holds that w

(j)
t = w

(j)
0 +mp2 for m ∈ Z.

3. W+
t (i) = W+

0 (i) for i ∈ {1, 3}.

Proof. By Lemma E.3, with probability ≥ 1 −
√
8k√
πe8k

, for all 1 ≤ j ≤ k and 1 ≤ i ≤ 4 it holds that∣∣∣w(j)
0 · xi

∣∣∣ ≤ √2η
4 and

∣∣∣u(j)
0 · xi

∣∣∣ ≤ √2η
4 . We will first prove the first claim and that W+

0 (i) ⊆ W+
t (i)

for all t ≥ 1. To prove this, we will show by induction on t ≥ 1, that for all j ∈W+
0 (i)∩W+

0 (l), where
l ∈ {2, 4} the following holds:

1. j ∈W+
t (i).

2. w
(j)
t · pl = w

(j)
0 · pl − 2η or w

(j)
t · pl = w

(0)
t · pl.

3. w
(j)
t = w

(j)
0 + a+(t)ηpi + α

(t)
i p2, where

∣∣∣α(t)
i

∣∣∣ ≤ η.

4. w
(j)
t · pi > 2η.

The claim holds for t = 1 by the proof of Lemma E.4. Assume it holds for t = T . By the induction
hypothesis there exists an l′ ∈ {2, 4} such that j ∈W+

T (i) ∩W−T (l′). By Eq. 2 we have,

w
(j)
T+1 = w

(j)
T + aηpi + bηpl′ (4)

where a = a+(t+ 1)− a+(t) and b ∈ {−1, 0}. From this follows the third claim of the induction proof
and the first claim of the lemma.

If w
(j)
T ·pl = w

(j)
0 ·pl then l′ = l and either w

(j)
T+1 ·pl = w

(j)
0 ·pl if b = 0 or w

(j)
T+1 ·pl = w

(j)
0 ·pl−2η if

b = −1. Otherwise, assume that w
(j)
T ·pl = w

(j)
0 ·pl−2η. By Lemma E.3 we have 0 < w

(j)
0 ·pl <

√
2η
4 .

Therefore −2η < w
(j)
T · pl < 0 and l′ 6= l. It follows that either w

(j)
T+1 · pl = w

(j)
0 · pl − 2η if b = 0

9



or w
(j)
T+1 · pl = w

(j)
0 · pl if b = −1. In both cases, we have

∣∣∣w(j)
T+1 · pl

∣∣∣ < 2η. Furthermore, by Eq. 4,

w
(j)
T+1 · pi ≥ w

(j)
T · pi > 2η. Hence, arg max1≤l≤4 w

(j)
T+1 · pl = i which by definition implies that

j ∈W+
T+1(i). This concludes the proof by induction which shows that W+

0 (i) ⊆W+
t (i) for all t ≥ 1.

To prove that W+
t (i) = W+

0 (i) for i ∈ {1, 3}, it suffices to show that W+
0 (2) ∪W+

0 (4) ⊆W+
t (2) ∪

W+
t (4). This follows since

⋃4
i=1W

+
t (i) = {1, 2, ..., k}. We will show by induction on t ≥ 1, that for

all j ∈W+
0 (2) ∪W+

0 (4), the following holds:

1. j ∈W+
t (2) ∩W+

t (4).

2. w
(j)
t = w

(j)
0 +mp2 for m ∈ Z.

This will conclude the proof of the lemma. The claim holds for t = 1 by the proof of Lemma E.4.
Assume it holds for t = T . By the induction hypothesis j ∈W+

T (2)∩W+
T (4). Assume without loss of

generality that j ∈W+
T (2). This implies that j ∈W−T (2) as well. Therefore, by Eq. 2 we have

w
(j)
T+1 = w

(j)
T + aηp2 + bηp2 (5)

where a ∈ {0, 1} and b ∈ {0,−1}. By the induction hypothesis, w
(j)
T+1 = w

(j)
0 + mp2 for m ∈ Z. If

a = 1 or b = 0 we have for i ∈ {1, 3},

w
(j)
T+1 · p2 ≥ w

(j)
T · p2 > w

(j)
T · pi = w

(j)
T+1 · pi

where the second inequality follows by Eq. 5 (we note that this inequality is strict with probability
1). This implies that j ∈W+

T+1(2) ∩W+
T+1(4).

Otherwise, assume that a = 0 and b = −1. By Lemma E.3 we have w
(j)
0 · p2 <

√
2η
4 . Since

j ∈W+
T (2), it follows by the induction hypothesis that w

(j)
T = w

(j)
0 +mp2, where m ∈ Z and m ≥ 0.

To see this, note that if m < 0, then w
(j)
T · p2 < 0 and j /∈ W+

T (2), which is a contradiction. Let

i ∈ {1, 3}. If m = 0, then w
(j)
T+1 = w

(j)
0 − p2, w

(j)
T+1 · p4 >

√
2η
4 and w

(j)
T+1 · pi = w

(j)
0 · pi <

√
2η
4 by

Lemma E.3. Therefore, j ∈W+
T+1(4).

Otherwise, if m > 0, then w
(j)
T+1 · p2 ≥ w

(j)
0 · p2 > w

(j)
0 · pi = w

(j)
T+1 · pi. Hence, j ∈ W+

T+1(2),
which concludes the proof.

Lemma E.6. For all t ≥ 0 we have

1. u
(j)
t = u

(j)
0 +mηp2 for m ∈ Z.

2. U+
0 (2) ∪ U+

0 (4) ⊆ U+
t (2) ∪ U+

t (4).

.

Proof. Let j ∈ U+
0 (2) ∪ U+

0 (4). It suffices to prove that u
(j)
t = u

(j)
0 + αtηp2 for αt ∈ Z. This

follows since the inequalities
∣∣∣u(j)

0 · p1

∣∣∣ < ∣∣∣u(j)
0 · p2

∣∣∣ ≤ √2η
4 imply that in this case j ∈ U+

t (2)∪U+
t (4).

Assume by contradiction that there exist an iteration t for which u
(j)
t = u

(j)
0 + αtηp2 + βtηpi where

βt ∈ {−1, 1}, αt ∈ Z, i ∈ {1, 3} and u
(j)
t−1 = u

(j)
0 + αt−1ηp2 where αt−1 ∈ Z. 2 Since the coefficient of

pi changed in iteration t, we have j ∈ U+
t−1(1) ∪ U+

t−1(3). However, this contradicts the claim above

which shows that if u
(j)
t−1 = u

(j)
0 + αt−1ηp2, then j ∈ U+

t−1(2) ∪ U+
t−1(4).

Lemma E.7. Let i ∈ {1, 3} and l ∈ {2, 4}. For all t ≥ 0, if j ∈ U+
0 (i) ∩ U−0 (l), then there exists

at ∈ {0,−1}, bt ∈ N such that u
(j)
t = u

(j)
0 + atηpi + btηpl.

2Note that in each iteration βt changes by at most η.
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Proof. First note that by Eq. 3 we generally have u
(j)
t = u

(j)
0 + αηpi + βηpl where α, β ∈ Z. Since∣∣∣u(j)

0 · p1

∣∣∣ ≤ √2η
4 , by the gradient update in Eq. 3 it holds that at ∈ {0,−1}. Indeed, a0 = 0 and by

the gradient update if at−1 = 0 or at−1 = −1 then at ∈ {−1, 0}.
Assume by contradiction that there exists an iteration t > 0 such that bt = −1 and bt−1 = 0.

Note that by Eq. 3 this can only occur if j ∈ U+
t−1(l). We have u

(j)
t−1 = u

(j)
0 + at−1ηpi where

at−1 ∈ {0,−1}. Observe that
∣∣∣u(j)
t−1 · pi

∣∣∣ ≥ ∣∣∣u(j)
0 · pi

∣∣∣ by the fact that
∣∣∣u(j)

0 · pi
∣∣∣ ≤ √

2η
4 . Since

u
(j)
0 · pi > u

(j)
0 · pl = u

(j)
t−1 · pl we have j ∈ U+

t−1(1) ∪ U+
t−1(3), a contradiction.

E.0.3 Bounding P+
t , P−t and S−t

Lemma E.8. The following holds

1. S−t ≤
∣∣W+

t (1) ∪W+
t (3)

∣∣ η for all t ≥ 1.

2. P+
t ≤

∣∣U+
t (1) ∪ U+

t (3)
∣∣ η for all t ≥ 1.

3. P−t ≤
∣∣U+
t (1) ∪ U+

t (3)
∣∣ η for all t ≥ 1.

Proof. In Lemma E.5 we showed that for all t ≥ 0 and j ∈W+
t (1)∪W+

t (3) it holds that
∣∣∣w(j)

t · p2

∣∣∣ ≤ η
. This proves the first claim. The second claim follows similarly. Without loss of generality, let
j ∈ U+

t (1). By Lemma E.6 it holds that U+
t′ (1) ⊆ U+

0 (1) ∪U+
0 (3) for all t′ ≤ t. Therefore, by Lemma

E.7 we have
∣∣∣u(j)
t p1

∣∣∣ < η, from which the claim follows.

For the third claim, without loss of generality, assume by contradiction that for j ∈ U+
t (1) it

holds that
∣∣∣u(j)
t · p2

∣∣∣ > η. Since
∣∣∣u(j)
t · p1

∣∣∣ < η by Lemma E.7, it follows that j ∈ U+
t (2) ∪ U+

t (4), a

contradiction. Therefore,
∣∣∣u(j)
t · p2

∣∣∣ ≤ η for all j ∈ U+
t (1) ∪ U+

t (3), from which the claim follows.

E.0.4 Dynamics of S+
t

Lemma E.9. Let

X+
t =

∑
j∈W+

t (1)

[
max

{
σ
(
w(i) · x+

1

)
, ..., σ

(
w(i) · x+

d

)}]
and

Y +
t =

∑
j∈W+

t (3)

[
max

{
σ
(
w(i) · x+

1

)
, ..., σ

(
w(i) · x+

d

)}]

Then for all t,
X+
t −X

+
0

|W+
t (1)| =

Y +
t −Y

+
0

|W+
t (3)| .

Proof. We will prove the claim by induction on t. For t = 0 this clearly holds. Assume it holds for
t = T . Let j1 ∈W+

T (1) and j2 ∈W+
T (3). By Eq. 2, the gradient updates of the corresponding weight

vector are given as follows:

w
(j1)
T+1 = w

(j1)
T + aηp1 + b1ηp2

and
w

(j2)
T+1 = w

(j2)
T + aηp3 + b2ηp2

where a ∈ {0, 1} and b1, b2 ∈ {−1, 0, 1}. By Lemma E.5, j1 ∈W+
T+1(1) and j2 ∈W+

T+1(3). Therefore,

max
{
σ
(
w

(j1)
T+1 · x

+
1

)
, ..., σ

(
w

(j1)
T+1 · x

+
d

)}
= max

{
σ
(
w

(j1)
T · x+

1

)
, ..., σ

(
w

(j1)
T · x+

d

)}
+ aη

11



and

max
{
σ
(
w

(j2)
T+1 · x

+
1

)
, ..., σ

(
w

(j2)
T+1 · x

+
d

)}
= max

{
σ
(
w

(j2)
T · x+

1

)
, ..., σ

(
w

(j2)
T · x+

d

)}
+ aη

By Lemma E.5 we have
∣∣W+

t (1)
∣∣ =

∣∣W+
0 (1)

∣∣ and
∣∣W+

t (3)
∣∣ =

∣∣W+
0 (3)

∣∣ for all t. It follows that

X+
T+1 −X

+
0∣∣W+

T+1(1)
∣∣ =

aη
∣∣W+

0 (1)
∣∣+X+

T −X
+
0∣∣W+

0 (1)
∣∣

= aη +
Y +
T − Y

+
0∣∣W+

0 (3)
∣∣

=
aη
∣∣W+

0 (3)
∣∣+ Y +

T − Y
+
0∣∣W+

0 (3)
∣∣

=
Y +
T+1 − Y

+
0∣∣W+

T+1(3)
∣∣

where the second equality follows by the induction hypothesis. This proves the claim.

Lemma E.10. The following holds:

1. If NWt
(x+) < γ and −NWt

(x−) < 1, then S+
t+1 = S+

t + η
∣∣W+

t (1) ∪W+
t (3)

∣∣.
2. If NWt

(x+) ≥ γ and −NWt
(x−) < 1, then S+

t+1 = S+
t .

3. If NWt(x
+) < γ and −NWt(x

−) ≥ 1, then S+
t+1 = S+

t + η
∣∣W+

t (1) ∪W+
t (3)

∣∣.
Proof. 1. The equality follows since for each i ∈ {1, 3}, l ∈ {2, 4} and j ∈W+

t (i) ∩W−t (l) we have

w
(j)
t+1 = w

(j)
t + ηpi − ηpl and W+

t+1(1) ∪W+
t+1(3) = W+

t (1) ∪W+
t (3) by Lemma E.5.

2. In this case for each i ∈ {1, 3}, l ∈ {2, 4} and j ∈ W+
t (i) ∩W−t (l) we have w

(j)
t+1 = w

(j)
t − ηpl

and W+
t+1(1) ∪W+

t+1(3) = W+
t (1) ∪W+

t (3) by Lemma E.5.

3. This equality follows since for each i ∈ {1, 3}, l ∈ {2, 4} and j ∈ W+
t (i) ∩ W−t (l) we have

w
(j)
t+1 = w

(j)
t + ηpi and W+

t+1(1) ∪W+
t+1(3) = W+

t (1) ∪W+
t (3) by Lemma E.5.

E.0.5 Upper Bounds on NWt(x
+), −NWt(x

−) and S+
t

Lemma E.11. Assume that NWt
(x+) ≥ γ and −NWt

(x−) < 1 for T ≤ t < T + b where b ≥ 2. Then
NWT+b

(x+) ≤ NWT
(x+)− (b− 1)cη + η

∣∣W+
0 (2) ∪W+

0 (4)
∣∣.

Proof. Define R+
t = Y +

t − Z+
t where

Y +
t =

∑
j∈W+

t (2)∪W+
t (4)

[
max

{
σ
(
w(i) · x+

1

)
, ..., σ

(
w(i) · x+

d

)}]
and

Z+
t =

∑
j∈U+

t (2)∪U+
t (4)

[
max

{
σ
(
u(i) · x+

1

)
, ..., σ

(
u(i) · x+

d

)}]
Let l ∈ {2, 4}, t = T and j ∈ U+

t+1(l). Then, either j ∈ U+
t (2) ∪ U+

t (4) or j ∈ U+
t (1) ∪ U+

t (3).

In the first case, u
(j)
t+1 = u

(j)
t + ηpl. Note that this implies that U+

t (2) ∪ U+
t (4) ⊆ U+

t+1(2) ∪ U+
t+1(4)
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(since pl will remain the maximal direction). Therefore,∑
j∈(U+

t+1(2)∪U
+
t+1(4))

⋂
(U+

t (2)∪U+
t (4))

[
max

{
σ
(
u
(j)
t+1 · x

+
1

)
, ..., σ

(
u
(j)
t+1 · x

+
d

)}]
−

∑
j∈U+

t (2)∪U+
t (4)

[
max

{
σ
(
u
(j)
t · x+

1

)
, ..., σ

(
u
(j)
t+1 · x

+
d

)}]
= η

∣∣∣(U+
t+1(2) ∪ U+

t+1(4)
)⋂(

U+
t (2) ∪ U+

t (4)
)∣∣∣

= η
∣∣U+
t (2) ∪ U+

t (4)
∣∣ (6)

In the second case, where we have j ∈ U+
t (1) ∪ U+

t (3), it holds that u
(j)
t+1 = u

(j)
t + ηpl, j ∈ U−t (l)

and u
(j)
t+1 · pl > η. Furthermore, by Lemma E.7, u

(j)
t · pi < η for i ∈ {1, 3}. Note that by Lemma E.7,

any j1 ∈ U+
t (1) ∪ U+

t (3) satisfies j1 ∈ U+
t+1(2) ∪ U+

t+1(4). By all these observations, we have

∑
j∈(U+

t+1(2)∪U
+
t+1(4))

⋂
(U+

t (1)∪U+
t (3))

[
max

{
σ
(
u
(j)
t+1 · x

+
1

)
, ..., σ

(
u
(j)
t+1 · x

+
d

)}]
−

∑
j∈U+

t (1)∪U+
t (3)

[
max

{
σ
(
u
(j)
t · x+

1

)
, ..., σ

(
u
(j)
t+1 · x

+
d

)}]
≥ 0 (7)

By Eq. 6 and Eq. 7, it follows that, Z+
t+1 + P+

t+1 ≥ Z+
t+1 ≥ Z+

t + P+
t + η

∣∣U+
t (2) ∪ U+

t (4)
∣∣. By

induction we have Z+
t+b + P+

t+b ≥ Z+
t + P+

t +
∑b−1
i=0 η

∣∣U+
t+i(2) ∪ U+

t+i(4)
∣∣. By Lemma E.7 for any

1 ≤ i ≤ b− 1 we have
∣∣U+
t+i(2) ∪ U+

t+i(4)
∣∣ = {1, ..., k}. Therefore, Z+

t+b +P+
t+b ≥ Z

+
t +P+

t + (b− 1)cη.

Now, assume that j ∈W+
T (l) for l ∈ {2, 4}. Then w

(j)
T+1 = w

(j)
T − ηpl. Thus either

max
{
σ
(
w

(j)
T+1 · x

+
1

)
, ..., σ

(
w

(j)
T+1 · x

+
d

)}
−max

{
σ
(
w

(j)
T · x

+
1

)
, ..., σ

(
w

(j)
T · x

+
d

)}
= −η

in the case that j ∈W+
T+1(l), or

max
{
σ
(
w

(j)
T+1 · x

+
1

)
, ..., σ

(
w

(j)
T+1 · x

+
d

)}
≤ η

if j /∈W+
T+1(l).

Applying these observations b times, we see that Y +
T+b − Y

+
T is at most η

∣∣W+
T+b(2) ∪W+

T+b(4)
∣∣ =

η
∣∣W+

0 (2) ∪W+
0 (4)

∣∣ where the equality follows by Lemma E.5. By Lemma E.10, we have S+
T+b = S+

T .
Hence, we can conclude that

NWT+b
(x+)−NWT

(x+) = S+
T+b +R+

T+b − P
+
T+b − S

−
T −R

+
T + P+

T

= Y +
T+b − Z

+
T+b − P

+
T+b − Y

+
T + Z+

T + P+
T

≤ −(b− 1)cη + η
∣∣W+

0 (2) ∪W+
0 (4)

∣∣
Lemma E.12. Assume that NWt

(x+) < γ and −NWt
(x−) ≥ 1 for T ≤ t < T + b where b ≥ 1. Then

−NWT+b
(x−) ≤ −NWT

(x−)− bη
∣∣W+

0 (2) ∪W+
0 (4)

∣∣+ cη.

Proof. Define

Y −t =
∑

j∈W+
t (2)∪W+

t (4)

[
max

{
σ
(
w(i) · x+

1

)
, ..., σ

(
w(i) · x+

d

)}]
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and

Z−t =

k∑
j=1

[
max

{
σ
(
u(j) · x+

1

)
, ..., σ

(
u(j) · x+

d

)}]
First note that by Lemma E.5 we have W+

t+1(2) ∪ W+
t+1(4) = W+

t (2) ∪ W+
t (4). Next, for any

l ∈ {2, 4} and j ∈W+
t (l) we have w

(j)
t+1 = w

(j)
t + ηpl. Therefore,

Y −T+b ≥ Y
−
T + bη

∣∣W+
T (2) ∪W+

T (4)
∣∣ = Y −T + bη

∣∣W+
0 (2) ∪W+

0 (4)
∣∣

where the second equality follows by Lemma E.5.

Assume that j ∈ U+
T (l) for l ∈ {1, 3}. Then u

(j)
T+1 = u

(j)
T − ηpl and

max
{
σ
(
u
(j)
T+1 · x

−
1

)
, ..., σ

(
u
(j)
T+1 · x

−
d

)}
−max

{
σ
(
u
(j)
T · x

−
1

)
, ..., σ

(
u
(j)
T · x

−
d

)}
= 0 (8)

To see this, note that by Lemma E.7 and Lemma E.6 it holds that u
(j)
T = u

(j)
0 + aT ηpl where

aT ∈ {−1, 0}. Hence, u
(j)
T+1 = u

(j)
0 +aT+1ηpl where aT+1 ∈ {−1, 0}. Since

∣∣∣u(j)
0 · p2

∣∣∣ < √
2η
4 it follows

that u
(j)
T+1 · p2 = u

(j)
T · p2 = u

(j)
0 · p2 and thus Eq. 8 holds.

Now assume that j ∈ U+
T (l) for l ∈ {2, 4}. Then

max
{
σ
(
u
(j)
T+1 · x

−
1

)
, ..., σ

(
u
(j)
T+1 · x

−
d

)}
−max

{
σ
(
u
(j)
T · x

−
1

)
, ..., σ

(
u
(j)
T · x

−
d

)}
= −η

if l ∈ {2, 4} and j ∈ U+
T+1(l), or

max
{
σ
(
u
(j)
T+1 · x

−
1

)
, ..., σ

(
u
(j)
T+1 · x

−
d

)}
≤ η

if l ∈ {2, 4} and j /∈ U+
T+1(l).

Applying these observations b times, we see that Z−T+b − Z
−
T is at most η

∣∣U+
T+b(2) ∪ U+

T+b(4)
∣∣.

Furthermore, for j ∈W+
T (l), l ∈ {1, 3}, it holds that w

(j)
T+1 = w

(j)
T + ηpl. Therefore

max
{
σ
(
w

(j)
T+1 · x

−
1

)
, ..., σ

(
w

(j)
T+1 · x

−
d

)}
= max

{
σ
(
w

(j)
T · x

−
1

)
, ..., σ

(
w

(j)
T · x

−
d

)}
and since W+

T+1(1) ∪W+
T+1(3) = W+

T (1) ∪W+
T (3) by Lemma E.5, we get S−T+b = S−T . Hence, we can

conclude that

−NWT+b
(x−) +NWT

(x−) = −S−T+b − Y
−
T+b + Z−T+b + S−T + Y −T − Z

−
T

≤ −bη
∣∣W+

0 (2) ∪W+
0 (4)

∣∣+ η
∣∣U+
T+b(2) ∪ U+

T+b(4)
∣∣

≤ −bη
∣∣W+

0 (2) ∪W+
0 (4)

∣∣+ cη

Lemma E.13. For all t, NWt
(x+) ≤ γ + 3cη, −NWt

(x−) ≤ 1 + 3cη and S+
t ≤ γ + 1 + 8cη.

Proof. The claim holds for t = 0. Consider an iteration T . If NWT
(x+) < γ then NWT+1

(x+) ≤
NWT

(x+) + 2ηk ≤ γ + 2cη. Now assume that NWt
(x+) ≥ γ for T ≤ t ≤ T + b and NWT−1

(x+) < γ.
By Lemma E.11, it holds that NWT+b

(x+) ≤ NWT
(x+) + ηk ≤ NWT

(x+) + cη ≤ γ + 3cη, where the
last inequality follows from the previous observation. Hence, NWt

(x+) ≤ γ + 3cη for all t.
The proof of the second claim follows similarly. It holds that−NWT+1

(x−) < 1+2cη if−NWT
(x−) <

1. Otherwise if −NWt(x
−) ≥ 1 for T ≤ t ≤ T + b and −NWT−1

(x−) < 1 then −NWT+b
(x−) ≤ 1 + 3cη

by Lemma E.12.
The third claim holds by the following identities and bounds NWT

(x+)−NWT
(x−) = S+

T −P
+
T +

P−T − S
−
T , P−T ≥ 0,

∣∣P+
T

∣∣ ≤ cη,
∣∣S−T ∣∣ ≤ cη and NWT

(x+) − NWT
(x−) ≤ γ + 1 + 6cη by the previous

claims.
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E.0.6 Optimization

We are now ready to prove a global optimality guarantee for gradient descent.

Proposition E.14. Let k > 16 and γ ≥ 1. With probabaility at least 1 −
√
8k√
πe8k

− 4e−8, after

T =
7(γ+1+8cη)

( k2−2
√
k)η

iterations, gradient descent converges to a global minimum.

Proof. First note that with probability at least 1−
√
8k√
πe8k
−4e−8 the claims of Lemma E.2 and Lemma

E.3 hold. Now, if gradient descent has not reached a global minimum at iteration t then either
NWt

(x+) < γ or −NWt
(x−) < 1. If −NWt

(x+) < γ then by Lemma E.10 it holds that

S+
t+1 ≥ S

+
t + η

∣∣W+
0 (1) ∪W+

0 (3)
∣∣ ≥ S+

t +

(
k

2
− 2
√
k

)
η (9)

where the last inequality follows by Lemma E.2.
If NWt(x

+) ≥ γ and −NWt(x
−) < 1 we have S+

t+1 = S+
t by Lemma E.10. However, by Lemma

E.11, it follows that after 5 consecutive iterations t < t′ < t + 6 in which NWt′ (x
+) ≥ γ and

−NWt′ (x
−) < 1, we have NWt+6

(x+) < γ. To see this, first note that for all t, NWt
(x+) ≤ γ+ 3cη by

Lemma E.13. Then, by Lemma E.11 we have

NWt+6(x+) ≤ NWt(x
+)− 5cη + η

∣∣W+
0 (2) ∪W+

0 (4)
∣∣

≤ γ + 3cη − 5cη + cη

< γ

where the second inequality follows by Lemma E.2 and the last inequality by the assumption on k.

Assume by contradiction that GD has not converged to a global minimum after T =
7(γ+1+8cη)

( k2−2
√
k)η

iterations. Then, by the above observations, and the fact that S+
0 > 0 with probability 1, we have

S+
T ≥ S

+
0 +

(
k

2
− 2
√
k

)
η
T

7

> γ + 1 + 8cη

However, this contradicts Lemma E.13.

E.0.7 Generalization on Positive Class

We will first need the following three lemmas.

Lemma E.15. With probability at least 1− 4e−8, it holds that∣∣∣∣∣∣W+
0 (1)

∣∣− k

4

∣∣∣∣ ≤ 2
√
k

and ∣∣∣∣∣∣W+
0 (3)

∣∣− k

4

∣∣∣∣ ≤ 2
√
k

Proof. The proof is similar to the proof of Lemma E.2.

Lemma E.16. Assume that gradient descent converged to a global minimum at iteration T . Then
there exists an iteration T2 < T for which S+

t ≥ γ + 1 − 3cη for all t ≥ T2 and for all t < T2,
−NWt

(x−) < 1.

Proof. Assume that for all 0 ≤ t ≤ T1 it holds that NWt
(x+) < γ and −NWt

(x−) < 1. By continuing
the calculation of Lemma E.4 we have the following:

15



1. For i ∈ {1, 3}, l ∈ {2, 4}, j ∈W+
0 (i)∩W−0 (l), it holds that w

(j)
T1

= w
(j)
0 +T1ηpi− 1

2 (1−(−1)T1)ηpl
.

2. For i ∈ {2, 4} and j ∈W+
0 (i), it holds that w

(j)
T1

= w
(j)
0 .

3. For i ∈ {1, 3}, l ∈ {2, 4}, j ∈ U+
0 (i) ∩ U−0 (l), it holds that u

(j)
T1

= u
(j)
0 − ηpi + ηpl.

4. For i ∈ {2, 4} and j ∈ U+
0 (i), it holds that u

(j)
T1

= u
(j)
0 .

Therefore, there exists an iteration T1 such that NWT1
(x+) ≥ γ and −NWT1

(x−) < 1 and for all
t < T1, NWt(x

+) < γ and−NWt(x
−) < 1. Let T2 ≤ T be the first iteration such that−NWT2

(x−) ≥ 1.
We claim that for all T1 ≤ t ≤ T2 we have NWT1

(x+) ≥ γ − 2cη. It suffices to show that for all
T1 ≤ t < T2 the following holds:

1. If NWt(x
+) ≥ γ then NWt+1(x+) ≥ γ − 2cη.

2. If NWt(x
+) < γ then NWt+1(x+) ≥ NWt(x

+).

The first claim follows since at any iteration NWt
(x+) can decrease by at most 2ηk = 2cη. For

the second claim, let t′ < t be the latest iteration such that NWt′ (x
+) ≥ γ. Then at iteration t′

it holds that −NWt′ (x
−) < 1 and NWt′ (x

+) ≥ γ. Therefore, for all i ∈ {1, 3}, l ∈ {2, 4} and

j ∈ U+
0 (i) ∩ U+

0 (l) it holds that u
(j)
t′+1 = u

(j)
t′ + ηpl. Hence, by Lemma E.6 and Lemma E.7 it holds

that U+
t′+1(1) ∪ U+

t′+1(3) = ∅. Therefore, by the gradient update in Eq. 3, for all 1 ≤ j ≤ k, and all

t′ < t′′ ≤ t we have u
(j)
t′′+1 = u

(j)
t′′ , which implies that NWt′′+1

(x+) ≥ NWt′′ (x
+). For t′′ = t we get

NWt+1
(x+) ≥ NWt

(x+).
The above argument shows that NWT2

(x+) ≥ γ − 2cη and −NWT2
(x−) ≥ 1. Since NWT2

(x+) −
NWT2

(x−) = S+
T2
− P+

T2
+ P−T2

− S−T2
, P−T2

, S−T2
≥ 0 and

∣∣P−T2

∣∣ ≤ cη it follows that S+
T2
≥ γ + 1 − 3cη.

Finally, by Lemma E.10 we have S+
t ≥ γ + 1− 3cη for all t ≥ T2.

Lemma E.17. Let

X+
t =

∑
j∈W+

t (2)∪W+
t (4)

[
max

{
σ
(
w(j) · x+

1

)
, ..., σ

(
w(j) · x+

d

)}]
and

Y +
t =

∑
j∈U+

t (2)∪U+
t (4)

[
max

{
σ
(
u(j) · x+

1

)
, ..., σ

(
u(j) · x+

d

)}]
Assume that k ≥ 64 and gradient descent converged to a global minimum at iteration T . Then,
X+
T ≤ 34cη and Y +

T ≤ 1 + 38cη.

Proof. Notice that by the gradient update in Eq. 2 and Lemma E.3, X+
t can be strictly larger

than max
{
X+
t−1, η

∣∣W+
t (2) ∪W+

t (4)
∣∣} only if NWt−1

(x+) < γ and −NWt−1
(x−) ≥ 1. Further-

more, in this case X+
t −X+

t−1 = η
∣∣W+

t (2) ∪W+
t (4)

∣∣. By Lemma E.10, S+
t increases in this case by

η
∣∣W+

t (1) ∪W+
t (3)

∣∣. We know by Lemma E.16 that there exists T2 < T such that S+
T2
≥ γ + 1− 3cη

and that NWt
(x+) < γ and −NWt

(x−) ≥ 1 only for t > T2. Since S+
t ≤ γ+1+8cη for all t by Lemma

E.13, there can only be at most
11cη

η|W+
T (1)∪W+

T (3)| iterations in which NWt(x
+) < γ and −NWt(x

−) ≥ 1.

It follows that

X+
t ≤ η

∣∣W+
T (2) ∪W+

T (4)
∣∣+

11cηη
∣∣W+

T (2) ∪W+
T (4)

∣∣
η
∣∣W+

T (1) ∪W+
T (3)

∣∣
≤ cη + 11cη

(
k
2 + 2

√
k
)

(
k
2 − 2

√
k
)

≤ 34cη
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where the second inequality follows by Lemma E.2 and the third inequality by the assumption on k.
At convergence we have NWT

(x−) = S−T + X+
T − Y

+
T − P

−
T ≥ −1 − 3cη by Lemma E.13 (recall

that R−t = R+
t = X+

t − Y +
t ). Furthermore, P−T ≥ 0 and by Lemma E.8 we have S−T ≤ cη. Therefore,

we get Y +
T ≤ 1 + 38cη.

We are now ready to prove the main result of this section.

Proposition E.18. Define β(γ) =
γ−40 1

4 cη
39cη+1 . Assume that γ ≥ 2 and k ≥ 64

(
β(γ)+1
β(γ)−1

)2
. Then with

probability at least 1−
√
8k√
πe8k
− 8e−8, gradient descent converges to a global minimum which classifies

all positive points correctly.

Proof. With probability at least 1−
√
128k
√
πe

k
2
−8e−8 Proposition E.14, and Lemma E.15 hold. It suffices to

show generalization on positive points. Assume that gradient descent converged to a global minimum
at iteration T . Let (z, 1) be a positive point. Then there exists zi ∈ {(1, 1), (−1,−1)}. Assume
without loss of generality that zi = (−1,−1) = p3. Define

X+
t (i) =

∑
j∈W+

T (i)

[
max

{
σ
(
w(j) · x+

1

)
, ..., σ

(
w(j) · x+

d

)}]

Y +
t (i) =

∑
j∈U+

T (i)

[
max

{
σ
(
u(j) · x+

1

)
, ..., σ

(
u(j) · x+

d

)}]
for i ∈ [4].

Notice that

NWT
(x+) = X+

T (1) +X+
T (3)− P+

T +R+
T

= X+
T (1) +X+

T (3)− P+
T +R−T

= X+
T (1) +X+

T (3)− P+
T +NWT

(x−)− S−T + P−T

Since NWT
(x+) ≥ γ, −NWT

(x−) ≥ 1,
∣∣P−T ∣∣ ≤ cη by Lemma E.8 and P+

T , S
−
T ≥ 0 , we obtain

X+
T (1) +X+

T (3) ≥ γ + 1− cη (10)

Furthermore, by Lemma E.9 we have

X+
T (1)−X+

0 (1)∣∣W+
T (1)

∣∣ =
X+
T (3)−X+

0 (3)∣∣W+
T (3)

∣∣ (11)

and by Lemma E.15,
k
4 − 2

√
k

k
4 + 2

√
k
≤
∣∣W+

T (1)
∣∣∣∣W+

T (3)
∣∣ ≤ k

4 + 2
√
k

k
4 − 2

√
k

(12)

Let α(k) =
k
4+2
√
k

k
4−2
√
k

. By Lemma E.3 we have
∣∣X+

0 (1)
∣∣ ≤ ηk

4 ≤
cη
4 . Combining this fact with Eq. 11

and Eq. 12 we get

X+
T (1) ≤ α(k)X+

T (3) +X+
0 (1) ≤ α(k)X+

T (3) +
cη
4

which implies together with Eq. 10 that X+
T (3) ≥ γ+1− 5cη

4

1+α(k) . Therefore,

NWT
(z) ≥ X+

T (3)− P+
T − Y

+
T (2)− Y +

T (4)

≥
γ + 1− 5cη

4

1 + α(k)
− cη − 1− 3(8cη)− 14cη

=
γ + 1− 5cη

4

1 + α(k)
− 39cη − 1 > 0 (13)
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where the first inequality is true because

k∑
j=1

[
max

{
σ
(
u(j) · z1

)
, ..., σ

(
u(j) · zd

)}]
≤

k∑
j=1

[
max

{
σ
(
u(j) · x+

1

)
, ..., σ

(
u(j) · x+

d

)}]
(14)

= P+
T + Y +

T (2) + Y +
T (4) (15)

The second inequality in Eq. 13 follows since P+
T ≤ cη and by appyling Lemma E.17. Finally, the last

inequality in Eq. 13 follows by the assumption on k. 3 Hence, z is classified correctly.

E.0.8 Generalization on Negative Class

We will need the following lemmas.

Lemma E.19. With probability at least 1− 8e−8, it holds that∣∣∣∣∣∣U+
0 (2)

∣∣− k

4

∣∣∣∣ ≤ 2
√
k

∣∣∣∣∣∣U+
0 (4)

∣∣− k

4

∣∣∣∣ ≤ 2
√
k∣∣∣∣∣∣(U+

0 (1) ∪ U+
0 (3)

)
∩ U−0 (2)

∣∣− k

4

∣∣∣∣ ≤ 2
√
k∣∣∣∣∣∣(U+

0 (1) ∪ U+
0 (3)

)
∩ U−0 (4)

∣∣− k

4

∣∣∣∣ ≤ 2
√
k

Proof. The proof is similar to the proof of Lemma E.2 and follows from the fact that

P
[
j ∈ U+

0 (2)
]

= P
[
j ∈ U+

0 (4)
]

= P
[
j ∈

(
U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (2)

]
= P

[
j ∈

(
U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4)

]
=

1

4

Lemma E.20. Let

X−t =
∑

j∈U+
0 (2)

[
max

{
σ
(
u
(j)
t · x−1

)
, ..., σ

(
u
(j)
t · x−d

)}]
and

Y −t =
∑

j∈U+
0 (4)

[
max

{
σ
(
u
(j)
t · x−1

)
, ..., σ

(
u
(j)
t · x−d

)}]

Then for all t, there exists X,Y ≥ 0 such that |X| ≤ η
∣∣U+

0 (2)
∣∣, |Y | ≤ η ∣∣U+

0 (4)
∣∣ and

X−t −X
|U+

0 (2)| =
Y −t −Y
|U+

0 (4)| .

Proof. First, we will prove that for all t there exists at ∈ Z such that for j1 ∈ U−0 (2) and j2 ∈ U−0 (4)

it holds that u
(j1)
t = u

(j1)
0 + atηp2 and u

(j2)
t = u

(j2)
0 − atηp2. 4 We will prove this by induction on t.

3The inequality
γ+1− 5cη

4
1+α(k)

− 39cη − 1 > 0 is equivalent to α(k) < β(γ) which is equivalent to k > 64
(
β(γ)+1
β(γ)−1

)2
.

4Recall that by Lemma E.6 we know that U+
0 (2) ∪ U+

0 (4) ⊆ U+
t (2) ∪ U+

t (4).
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For t = 0 this clearly holds. Assume it holds for an iteration t. Let j1 ∈ U−0 (2) and j2 ∈ U−0 (4). By

the induction hypothesis, there exists aT ∈ Z such that u
(j1)
t = u

(j1)
0 +atηp2 and u

(j2)
t = u

(j2)
0 −atηp2.

Since for all 1 ≤ j ≤ k it holds that
∣∣∣u(j)

0 · p2

∣∣∣ < √
2η
4 , it follows that either U−0 (2) ⊆ U−t (2) and

U−0 (4) ⊆ U−t (4) or U−0 (2) ⊆ U−t (4) and U−0 (4) ⊆ U−t (2). In either case, by Eq. 3, we have the
following update at iteration t+ 1:

u
(j1)
t+1 = u

(j1)
t + aηp2

and
u
(j2)
t+1 = u

(j2)
t − aηp2

where a ∈ {−1, 0, 1}. Hence, u
(j1)
t+1 = u

(j1)
0 +(at+a)ηp2 and u

(j2)
t = u

(j2)
0 −(at+a)ηp2. This concludes

the proof by induction.
Now, consider an iteration t, j1 ∈ U+

0 (2), j2 ∈ U+
0 (4) and the integer at defined above. If at ≥ 0

then

max
{
σ
(
u
(j1)
t · x−1

)
, ..., σ

(
u
(j1)
t · x−d

)}
−max

{
σ
(
u
(j1)
0 · x−1

)
, ..., σ

(
u
(j1)
0 · x−d

)}
= ηat

and

max
{
σ
(
u
(j2)
t · x−1

)
, ..., σ

(
u
(j2)
t · x−d

)}
−max

{
σ
(
u
(j2)
0 · x−1

)
, ..., σ

(
u
(j2)
0 · x−d

)}
= ηat

Define X = X−0 and Y = Y −0 then |X| ≤ η
∣∣U−0 (2)

∣∣, |Y | ≤ η ∣∣U−0 (4)
∣∣ and

X−t −X∣∣U−0 (2)
∣∣ =

∣∣U−0 (2)
∣∣ ηat∣∣U−0 (2)
∣∣ = ηat =

∣∣U−0 (4)
∣∣ ηat∣∣U−0 (4)
∣∣ =

Y −t − Y∣∣U−0 (4)
∣∣

which proves the claim in the case that at ≥ 0.
If at < 0 it holds that

max
{
σ
(
u
(j1)
t · x−1

)
, ..., σ

(
u
(j1)
t · x−d

)}
−max

{
σ
((

u
(j1)
0 − p2

)
· x−1

)
, ..., σ

((
u
(j1)
0 − p2

)
· x−d

)}
= η(−at − 1)

and

max
{
σ
(
u
(j2)
t · x−1

)
, ..., σ

(
u
(j2)
t · x−d

)}
−max

{
σ
((

u
(j2)
0 + p2

)
· x−1

)
, ..., σ

((
u
(j2)
0 + p2

)
· x−d

)}
= η(−at − 1)

Define

X =
∑

j∈U+
0 (2)

[
max

{
σ
((

u
(j)
0 − p2

)
· x−1

)
, ..., σ

((
u
(j)
0 − p2

)
· x−d

)}]
and

Y =
∑

j∈U+
0 (4)

[
max

{
σ
((

u
(j)
0 + p2

)
· x−1

)
, ..., σ

((
u
(j)
0 + p2

)
· x−d

)}]
Since for all 1 ≤ j ≤ k it holds that

∣∣∣u(j)
0 · p2

∣∣∣ < √
2η
4 , we have |X| ≤ η

∣∣U−0 (2)
∣∣, |Y | ≤ η

∣∣U−0 (4)
∣∣.

Furthermore,

X−t −X∣∣U−0 (2)
∣∣ =

∣∣U−0 (2)
∣∣ η(−at − 1)∣∣U−0 (2)

∣∣ = η(−at − 1) =

∣∣U−0 (4)
∣∣ η(−at − 1)∣∣U−0 (4)

∣∣ =
Y −t − Y∣∣U−0 (4)

∣∣
which concludes the proof.
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Lemma E.21. Let

X−t =
∑

j∈(U+
0 (1)∪U+

0 (3))∩U−0 (2)

[
max

{
σ
(
u
(j)
t · x−1

)
, ..., σ

(
u
(j)
t · x−d

)}]
and

Y −t =
∑

j∈(U+
0 (1)∪U+

0 (3))∩U−0 (4)

[
max

{
σ
(
u
(j)
t · x−1

)
, ..., σ

(
u
(j)
t · x−d

)}]
Then for all t,

X−t −X
−
0

|(U+
0 (1)∪U+

0 (3))∩U−0 (2)| =
Y −t −Y

−
t

|(U+
0 (1)∪U+

0 (3))∩U−0 (4)| .

Proof. We will first prove that for all t there exists an integer at ≥ 0 such that for j1 ∈
(
U+
0 (1) ∪ U+

0 (3)
)
∩

U−0 (2) and j2 ∈
(
U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4) it holds that u

(j1)
t · p2 = u

(j1)
0 · p2 + ηat and u

(j2)
t · p4 =

u
(j2)
0 · p4 + ηat. We will prove this by induction on t.

For t = 0 this clearly holds. Assume it holds for an iteration t. Let j1 ∈
(
U+
0 (1) ∪ U+

0 (3)
)
∩U−0 (2)

and j2 ∈
(
U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4). By the induction hypothesis, there exists an integer at ≥ 0 such

that u
(j1)
t · p2 = u

(j1)
0 · p2 + ηat and u

(j2)
t · p4 = u

(j2)
0 · p4 + ηat. Since for all 1 ≤ j ≤ k it holds that∣∣∣u(j)

0 · p1

∣∣∣ < √
2η
4 , it follows that if at ≥ 1 we have the following update at iteration T + 1:

u
(j1)
t+1 = u

(j1)
t + aηp2

and
u
(j2)
t+1 = u

(j2)
t + aηp4

where a ∈ {−1, 0, 1}. Hence, u
(j1)
t+1 · p2 = u

(j1)
0 · p2 + η(at + a) and u

(j2)
t+1 · p4 = u

(j2)
0 · p4 + η(at + a).

Otherwise, if at = 0 then

u
(j1)
t+1 = u

(j1)
t + aηp2 + b1p1

and
u
(j2)
t+1 = u

(j2)
t + aηp4 + b2p1

such that a ∈ {0, 1} and b1, b2 ∈ {−1, 0, 1}. Hence, u
(j1)
t+1 · p2 = u

(j1)
0 · p2 + η(at + a) and u

(j2)
t+1 · p4 =

u
(j2)
0 · p4 + η(at + a). This concludes the proof by induction.

Now, consider an iteration t, j1 ∈
(
U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (2) and j2 ∈

(
U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4)

and the integer at defined above. We have,

max
{
σ
(
u
(j1)
t · x−1

)
, ..., σ

(
u
(j1)
t · x−d

)}
−max

{
σ
(
u
(j1)
0 · x−1

)
, ..., σ

(
u
(j1)
0 · x−d

)}
= ηat

and

max
{
σ
(
u
(j2)
t · x−1

)
, ..., σ

(
u
(j2)
t · x−d

)}
−max

{
σ
(
u
(j2)
0 · x−1

)
, ..., σ

(
u
(j2)
0 · x−d

)}
= ηat

It follows that

X−t −X−0∣∣(U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (2)

∣∣ =

∣∣(U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (2)

∣∣ ηat∣∣(U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (2)

∣∣
= ηat

=

∣∣(U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4)

∣∣ ηat∣∣(U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4)

∣∣
=

Y −t − Y −0∣∣(U+
0 (1) ∪ U+

0 (3)
)
∩ U−0 (4)

∣∣
which concludes the proof.
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We are now ready to prove the main result of this section.

Proposition E.22. Define β =
1−36 1

4 cη
35cη

. Assume that k > 64
(
β+1
β−1

)2
. Then with probability at least

1−
√
8k√
πe8k
− 8e−8, gradient descent converges to a global minimum which classifies all negative points

correctly.

Proof. With probability at least 1−
√
8k√
πe8k
−16e−8 Proposition E.14 and Lemma E.19 hold. It suffices to

show generalization on negative points. Assume that gradient descent converged to a global minimum
at iteration T . Let (z,−1) be a negative point. Assume without loss of generality that zi = p2 for
all 1 ≤ i ≤ d. Define the following sums for l ∈ {2, 4},

X−t =
∑

j∈W+
t (2)∪W+

t (4)

[
max

{
σ
(
w(j) · x−1

)
, ..., σ

(
w(j) · x−d

)}]

Y −t (l) =
∑

j∈U+
0 (l)

[
max

{
σ
(
u
(j)
t · x−1

)
, ..., σ

(
u
(j)
t · x−d

)}]
Z−t (l) =

∑
j∈(U+

0 (1)∪U+
0 (3))∩U−0 (l)

[
max

{
σ
(
u(j) · x−1

)
, ..., σ

(
u(j) · x−d

)}]
First, we notice that

NWT
(x−) = S−T +X−T − Y

−
T (2)− Y −T (4)− Z−T (2)− Z−T (4)

X−T , S
−
T ≥ 0

and
NWT

(x−) ≤ −1

imply that
Y −T (2) + Y −T (4) + Z−T (2) + Z−T (4) ≥ 1 (16)

We note that by the analysis in Lemma E.19, it holds that for any t, j1 ∈ U+
0 (2) and j2 ∈ U+

0 (4),
either j1 ∈ U+

t (2) and j2 ∈ U+
t (4), or j1 ∈ U+

t (4) and j2 ∈ U+
t (2). We assume without loss of

generality that j1 ∈ U+
T (2) and j2 ∈ U+

T (4). It follows that in this case NWT
(z) ≤ S−T +X−T −Z

−
T (2)−

Y −T (2). 5Otherwise we would replace Y −T (2) with Y −T (4) and vice versa and continue with the same
proof.

Let α(k) =
k
4+2
√
k

k
4−2
√
k

. By Lemma E.21 and Lemma E.19

Z−T (4) ≤ α(k)Z−T (2) + Z−0 (2) ≤ α(k)Z−T (2) +
cη
4

and by Lemma E.20 and Lemma E.19 there exists Y ≤ cη such that:

Y −T (4) ≤ α(k)Y −T (2) + Y ≤ α(k)Y −T (2) + cη

Plugging these inequalities in Eq. 16 we get:

α(k)Z−T (2) +
cη
4

+ α(k)Y −T (2) + cη + Y −T (2) + Z−T (2) ≥ 1

which implies that

Y −T (2) + Z−T (2) ≥
1− 5cη

4

α(k) + 1

5The fact that we can omit the term −Z−T (4) from the latter inequality follows from Lemma E.7.
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By Lemma E.17 we have X−T ≤ 34cη. Hence, by using the inequality S−T ≤ cη we conclude that

NWT
(z) ≤ S−T +X−T − Z

−
T (2)− Y −T (2) ≤ 35cη −

1− 5cη
4

α(k) + 1
< 0

where the last inequality holds for k > 64
(
β+1
β−1

)2
. 6 Therefore, z is classified correctly.

E.0.9 Finishing the Proof

First, for k ≥ 120, with probability at least 1 −
√
8k√
πe8k

− 16e−8, Proposition E.14, Lemma E.15 and

Lemma E.19 hold. Also, for the bound on T , note that in this case
28(γ+1+8cη)

cη
≥ 7(γ+1+8cη)

( k2−2
√
k)η

. Define

β1 =
γ−40 1

4 cη
39cη+1 and β2 =

1−36 1
4 cη

35cη
and let β = max{β1, β2}. For γ ≥ 8 and cη ≤ 1

410 it holds that

64
(
β+1
β−1

)2
< 120. By Proposition E.18 and Proposition E.22, it follows that for k ≥ 120 gradient

descent converges to a global minimum which classifies all points correctly.
We will now prove the clustering effect at a global minimum. By Lemma E.16 it holds that

S+
T ≥ γ + 1− 3cη ≥ γ − 1. Therefore, by Lemma E.5 it follows that

2η(a+(T ) + 1)
∣∣W+

0 (1) ∪W+
0 (3)

∣∣ ≥ S+
T ≥ γ − 1

and thus a+(T ) ≥ γ−1
2cη
− 1. Therefore, for any j ∈W+

0 (i) such that i ∈ {1, 3}, the cosine of the angle

between w
(j)
T and pi is at least

(w
(j)
0 + a+(T )ηp1 + αtip2) · p1√

2(‖w(j)
0 ‖+

√
2a+(T )η +

√
2η)
≥ 2a+(T )

2a1(T ) + 3
≥ γ − 1− 2cη

γ − 1 + cη

where we used the triangle inequality and Lemma E.5. The claim follows for j ∈W+
0 (1)∪W+

0 (3).

F Proof of Theorem 6.4

Theorem F.1. (Theorem 6.4 restated) Assume that gradient descent runs with parameaters η =
cη
k

where cη ≤ 1
41 , σg ≤ cη

16k
3
2

and γ ≥ 1. Then, with probability at least (1− c) 33
48 , gradient descent

converges to a global minimum that does not recover f∗. Furthermore, there exists 1 ≤ i ≤ 4 such
that the global minimum misclassifies all points x such that Px = Ai.

We refer to Eq. 9 in the proof of Proposition E.14. To show convergence and provide convergence
rates of gradient descent, the proof uses Lemma E.2. However, to only show convergence, it suffices
to bound the probability that W+

0 (1) ∪W+
0 (3) 6= ∅ and that the initialization satisfies Lemma E.3.

Given that Lemma E.3 holds (with probability at least 1−
√

8
π e
−32), then W+

0 (1)∪W+
0 (3) 6= ∅ holds

with probability 3
4 .

By the argument above, with probability at least
(

1−
√

8
π e
−32
)

3
4 , Lemma E.3 holds with k = 2

and W+
0 (1)∪W+

0 (3) 6= ∅ which implies that gradient descent converges to a global minimum. For the
rest of the proof we will condition on the corresponding event. Let T be the iteration in which gradient
descent converges to a global minimum. Note that T is a random variable. Denote the network at
iteration T by N . For all z ∈ R2d denote

N(z) =

2∑
j=1

[
max

{
σ
(
w(j) · z1

)
, ..., σ

(
w(j) · zd

)}
−max

{
σ
(
u(j) · z1

)
, ..., σ

(
u(j) · zd

)}]
6It holds that 35cη −

1− 5cη
4

α(k)+1
< 0 if and only if α(k) < β which holds if and only if k > 64

(
β+1
β−1

)2
.
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Let E denote the event for which at least one of the following holds:

1. W+
T (1) = ∅.

2. W+
T (3) = ∅.

3. u(1) · p2 > 0 and u(2) · p2 > 0.

4. u(1) · p4 > 0 and u(2) · p4 > 0.

Our proof will proceed as follows. We will first show that if E occurs then gradient descent does
not learn f∗, i.e., the network N does not satisfy sign (N(x)) = f∗(x) for all x ∈ {±1}2d. Then, we
will show that P [E] ≥ 11

12 . This will conclude the proof.
Assume that one of the first two items in the definition of the event E occurs. Without loss of

generality assume that W+
T (1) = ∅ and recall that x− denotes a negative vector which only contains

the patterns p2,p4 and let z+ ∈ R2d be a positive vector which only contains the patterns p1,p2,p4.
By the assumption W+

T (1) = ∅ and the fact that p1 = −p3 it follows that for all j = 1, 2,

max
{
σ
(
w(j) · z+

1

)
, ..., σ

(
w(j) · z+

d

)}
= max

{
σ
(
w(j) · x−1

)
, ..., σ

(
w(j) · x−d

)}
Furthermore, since z+ contains more distinct patterns than x−, it follows that for all j = 1, 2,

max
{
σ
(
u(j) · z+

1

)
, ..., σ

(
u(j) · z+

d

)}
≥ max

{
σ
(
u(j) · x−1

)
, ..., σ

(
u(j) · x−d

)}
Hence, N(z+) ≤ N(x−). Since at a global minimum N(x−) ≤ −1, we have N(z+) ≤ −1 and z2

is not classified correctly.
Now assume without loss of generality that the third item in the definition of E occurs. Let z−

be the negative vector with all of its patterns equal to p4. It is clear that N(z−) ≥ 0 and therefore
z− is not classified correctly. This concludes the first part of the proof. We will now proceed to show
that P [E] ≥ 11

12 .
Denote by Ai the event that item i in the definition of E occurs and for an event A denote by Ac

its complement. Thus Ec = ∩4i=1A
c
i and P [Ec] = P [Ac3 ∩Ac4 | Ac1 ∩Ac2]P [Ac1 ∩Ac2].

We will first calculate P [Ac1 ∩Ac2]. By Lemma E.5, we know that for i ∈ {1, 3}, W+
0 (i) = W+

T (i).
Therefore, it suffices to calculate the probabilty that W+

0 (1) 6= ∅ and W+
0 (3) 6= ∅, provided that

W+
0 (1) ∪ W+

0 (3) 6= ∅. Without conditioning on W+
0 (1) ∪ W+

0 (3) 6= ∅, for each 1 ≤ i ≤ 4 and
1 ≤ j ≤ 2 the event that j ∈ W+

0 (i) holds with probability 1
4 . Since the initializations of the filters

are independent, we have P [Ac1 ∩Ac2] = 1
6 . 7

We will show that P [Ac3 ∩Ac4 | Ac1 ∩Ac2] = 1
2 by a symmetry argument. This will finish the

proof of the theorem. For the proof, it will be more convenient to denote the matrix of weights at

iteration t as a tuple of 4 vectors, i.e., Wt =
(
w

(1)
0 ,w

(2)
0 ,u

(1)
0 ,u

(2)
0

)
. Consider two initializations

W
(1)
0 =

(
w

(1)
0 ,w

(2)
0 ,u

(1)
0 ,u

(2)
0

)
and W

(2)
0 =

(
w

(1)
0 ,w

(2)
0 ,−u(1)

0 ,u
(2)
0

)
and let W

(1)
t and W

(2)
t be the

corresponding weight values at iteration t. We will prove the following lemma:

Lemma F.2. For all t ≥ 0, if W
(1)
t =

(
w

(1)
t ,w

(2)
t ,u

(1)
t ,u

(2)
t

)
then W

(2)
t =

(
w

(1)
t ,w

(2)
t ,−u(1)

t ,u
(2)
t

)
.

Proof. We will show this by induction on t. 8This holds by definition for t = 0. Assume it holds

for an iteration t. Denote W
(2)
t+1 = (z1, z2,v1,v2). We need to show that z1 = w

(1)
t+1, z2 = w

(2)
t+1,

v1 = −u(1)
t+1 and v2 = u

(2)
t+1. By the induction hypothesis it holds that N

W
(1)
t

(x+) = N
W

(2)
t

(x+) and

N
W

(1)
t

(x−) = N
W

(2)
t

(x−). This follows since for diverse points (either positive or negative), negating

7Note that this holds after conditioning on the corresponding event of Lemma E.3.
8Recall that we condition on the event corresponding to Lemma E.3. By negating a weight vector we still satisfy

the bounds in the lemma and therefore the claim that will follow will hold under this conditioning.
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a neuron does not change the function value. Thus, according to Eq. 2 and Eq. 3 we have z1 = w
(1)
t+1,

z2 = w
(2)
t+1 and v2 = u

(2)
t+1. We are left to show that v1 = −u(1)

t+1. This follows from Eq. 3 and the
following facts:

1. p3 = −p1.

2. p2 = −p4.

3. arg max1≤l≤4 u · pl = 1 if and only if arg max1≤l≤4−u · pl = 3.

4. arg max1≤l≤4 u · pl = 2 if and only if arg max1≤l≤4−u · pl = 4.

5. arg maxl∈{2,4} u · pl = 2 if and only if arg maxl∈{2,4}−u · pl = 4.

To see this, we will illustrate this through one case, the other cases are similar. Assume, for example,

that arg max1≤l≤4 u
(1)
t · pl = 3 and arg maxl∈{2,4} u

(1)
t · pl = 2 and assume without loss of generality

that N
W

(1)
t

(x+) = N
W

(2)
t

(x+) < γ and N
W

(1)
t

(x−) = N
W

(2)
t

(x−) > −1. Then, by Eq. 3, u
(1)
t+1 =

u
(1)
t −p3 +p2. By the induction hypothesis and the above facts it follows that v1 = −u(1)

t −p1 +p4 =

−u(1)
t + p3 − p2 = −u(1)

t+1. This concludes the proof.

Consider an initialization of gradient descent where w
(1)
0 and w

(2)
0 are fixed and the event that we

conditioned on in the beginning of the proof and Ac1 ∩Ac2 hold. Define the set B1 to be the set of all

pair of vectors (v1,v2) such that if u
(1)
0 = v1 and u

(1)
0 = v2 then at iteration T , u(1) · p2 > 0 and

u(2) · p2 > 0. Note that this definition implicitly implies that this initialization satisfies the condition
in Lemma E.3 and leads to a global minimum. Similarly, let B2 be the set of all pair of vectors

(v1,v2) such that if u
(1)
0 = v1 and u

(1)
0 = v2 then at iteration T , u(1) · p4 > 0 and u(2) · p2 > 0.

First, if (v1,v2) ∈ B1 then (−v1,v2) satisfies the conditions of Lemma E.3. Second, by Lemma F.2,
it follows that if (v1,v2) ∈ B1 then initializating with (−v1,v2), leads to the same values of NWt

(x+)
and NWt(x

−) in all iterations 0 ≤ t ≤ T . Therefore, initializing with (−v1,v2) leads to a convergence
to a global minimum with the same value of T as the initialization with (v1,v2). Furthermore, if

(v1,v2) ∈ B1, then by Lemma F.2, initializing with u
(1)
0 = −v1 and u

(1)
0 = v2 results in u(1) · p2 < 0

and u(2) · p2 > 0. It follows that (v1,v2) ∈ B1 if and only if (−v1,v2) ∈ B2.

For l1, l2 ∈ {2, 4} define Pl1,l2 = P
[
u(1) · pl1 > 0 ∧ u(2) · pl2 > 0 | Ac1 ∩Ac2,w

(1)
0 ,w

(2)
0

]
Then, by

symmetry of the initialization and the latter arguments it follows that P2,2 = P4,2.
By similar arguments we can obtain the equalities P2,2 = P4,2 = P4,4 = P2,4.
Since all of these four probabilities sum to 1, each is equal to 1

4 . 9Taking expectations of these

probabilities with respect to the values of w
(1)
0 and w

(2)
0 (given that Lemma E.3 and Ac1 ∩ Ac2 hold)

and using the law of total expectation, we conclude that

P [Ac3 ∩Ac4 | Ac1 ∩Ac2] = P
[
u(1) · p4 > 0 ∧ u(2) · p2 > 0 | Ac1 ∩Ac2

]
+ P

[
u(1) · p2 > 0 ∧ u(2) · p4 > 0 | Ac1 ∩Ac2

]
=

1

2

Finally, let Z1 be the set of positive points which contain only the patterns p1, p2, p4, Z2 be the
set of positive points which contain only the patterns p3, p2, p4. Let Z3 be the set which contains
the negative point with all patterns equal to p2 and Z4 be the set which contains the negative point
with all patterns equal to p4. By the proof of the previous section, if the event E holds, then there
exists 1 ≤ i ≤ 4, such that gradient descent converges to a solution at iteration T which errs on all of
the points in Zi. Therefore, its test error will be at least p∗ (recall Eq. 5).

9Note that the probablity that u(i) · pj = 0 is 0 for all possible i and j.
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(a) (b)

Figure 3: Clustering and Exploration in MNIST with 4x4 filters (a) Distribution of angle to closest center
in trained and random networks. (b) The plot shows the test error of the small network (4 channels) with
standard training (red), the small network that uses clusters from the large network (blue), and the large
network (120 channels) with standard training (green).

G Proof of Theorem 6.5

Let δ ≥ 1 − p+p−(1 − c − 16e−8). By Theorem 6.3, given 2 samples, one positive and one negative,
with probability at least 1 − δ ≤ p+p−(1 − c − 16e−8), gradient descent will converge to a global
minimum that has 0 test error. Therefore, for all ε ≥ 0, m(ε, δ) ≤ 2. On the other hand, by Theorem

6.4, if m <
2 log( 48δ

33(1−c) )
log(p+p−)

then with probability greater than

(p+p−)
log( 48δ

33(1−c) )
log(p+p−) (1− c)33

48
= δ

gradient descent converges to a global minimum with test error at least p∗. It follows that for 0 ≤
ε < p∗, m(ε, δ) ≥

2 log( 48δ
33(1−c) )

log(p+p−)
.

H Experiments for Section 7

We first provide several details on the experiments in Section 7. We trained the overparamaterized
network with 120 channels once for each training set size and recorded the clustered weights. We
used Adam for optimization and batch size which is one-tenth of the size of the training set. We used
learning rate=0.01 and standard deviation of 0.05 for initialization with truncated normal weights. For
the small network with random initialization we used the same optimization method and batch sizes
but tried 6 different pairs of values for learning rate and standard deviation: (0.01,0.01), (0.01,0.05),
(0.05,0.05), (0.05, 0.01), (0.1,0.5) and (0.1,0.1). For each pair and training set size we trained 20 times
and averaged the results. The curve is the best test accuracy we got among all learning rate and
standard deviation pairs.

For the small network with cluster initialization we experimented with the same setup as the
small network with random initializatoin but only experimented with learning rate 0.01 and standard
deviation 0.05. The curve is an average of 20 runs for each training set size.

We also experimented with other filter sizes in similar setups. Figure 3 shows the results for 4x4
filters and clustering from 120 filters to 4 filters (with 2000 training points). Figure 4 shows the results
for 7x7 filters and clustering from 120 filters to 4 filters (with 2000 training points).
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(a) (b)

Figure 4: Clustering and Exploration in MNIST with 7x7 filters (a) Distribution of angle to closest center
in trained and random networks. (b) The plot shows the test error of the small network (4 channels) with
standard training (red), the small network that uses clusters from the large network (blue), and the large
network (120 channels) with standard training (green).
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