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Abstract
Empirical evidence suggests that neural networks
with ReLU activations generalize better with over-
parameterization. However, there is currently no
theoretical analysis that explains this observation.
In this work, we provide theoretical and empir-
ical evidence that, in certain cases, overparame-
terized convolutional networks generalize better
than small networks because of an interplay be-
tween weight clustering and feature exploration
at initialization. We demonstrate this theoreti-
cally for a 3-layer convolutional neural network
with max-pooling, in a novel setting which ex-
tends the XOR problem. We show that this in-
terplay implies that with overparameterization,
gradient descent converges to global minima with
better generalization performance compared to
global minima of small networks. Empirically,
we demonstrate these phenomena for a 3-layer
convolutional neural network in the MNIST task.

1. Introduction
Most successful deep learning models use more parameters
than needed to achieve zero training error. This is typically
referred to as overparameterization. Indeed, it can be ar-
gued that overparameterization is one of the key techniques
that has led to the remarkable success of neural networks.
However, there is still no theoretical account for its effec-
tiveness.

One very intriguing observation in this context is that over-
parameterized networks with ReLU activations, which are
trained with gradient based methods, often exhibit better
generalization error than smaller networks (Neyshabur et al.,
2014; 2019; Novak et al., 2018). In particular, it often
happens that two networks, one with N1 neurons and one
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with N2 > N1 neurons achieve zero training error, but the
larger network has better test error. This somewhat counter-
intuitive observation suggests that first-order methods which
are trained on overparameterized networks have an induc-
tive bias towards solutions with better generalization perfor-
mance. Understanding this inductive bias is a necessary step
towards a full understanding of neural networks in practice.

Providing theoretical guarantees for overparameterizatied
networks is extremely challenging. To show a generaliza-
tion gap between smaller and larger models, one needs to
prove that large networks have better sample complexity
than smaller ones. However, current generalization bounds
that are based on complexity measures do not offer such
guarantees. Furthermore, analyzing the training dynamics
of non-linear neural networks is a major challenge even
for very simple learning tasks. It is thus natural to try and
analyze a simplified scenario, which ideally shares various
features with real-world settings.

In this work we follow this approach and show that a possi-
ble explanation for the success of overparameterization is a
combination of two effects: weight exploration and weight
clustering. Weight exploration refers to the fact that larger
models explore the set of possible weights more effectively
since they have more neurons in each layer. Weight cluster-
ing is an effect we demonstrate here, which refers to the fact
that weight vectors in the same layer tend to cluster around
a small number of prototypes.

To see informally how these effects act in the case of over-
parameterization, consider a binary classification problem
and a training set. The training set typically contains multi-
ple patterns that discriminate between the two classes. The
smaller network will find detectors (e.g., convolutional fil-
ters) for a subset of these patterns and reach zero training
error, but not generalize because it is missing some of the
patterns. This is a result of an under-exploration effect for
the small net. On the other hand, the larger net has better
exploration and will find more relevant detectors for classi-
fication. Furthermore, due to the clustering effect its weight
vectors will be close to a small set of prototypes. Therefore
the effective capacity of the overall model will be restricted,
leading to good generalization.

The contribution of Alon B. is part of Ph.D. thesis research
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Figure 1: Overparameterization improves generalization in the
XORD problem. The network in Eq. 2 is trained on data from the
XORD problem (see Sec. 4). The figure shows the test error as a
function of the number of channels k. The blue curve shows test
error when restricting to cases where training error was zero. It
can be seen that increasing the number of channels improves the
generalization performance. Experimental details are provided in
supplementary material.

.

The network we study here includes some key architec-
tural components used in modern machine learning models.
Specifically, it consists of a convolution layer with a ReLU
activation function, followed by a max-pooling operation,
and a fully-connected layer. This is a key component of
most machine-vision models, since it can be used to detect
patterns in an input image. We are also not aware of any
theoretical guarantees for a network of this structure.

For this architecture, we consider the problem of detecting
two dimensional binary patterns in a high dimensional input
vector. The patterns we focus on are the XOR combination
(i.e., (1, 1) or (−1,−1)). This problem is a high dimen-
sional extension of the XOR problem. We refer to it as the
“XOR Detection problem (XORD)”. One advantage of this
setting is that it nicely exhibits the phenomenon of overpa-
rameterization empirically, and is therefore a good test-bed
for understanding overparameterization. Fig. 1 shows the re-
sult of learning the XORD problem with the above network,
as a function of the number of channels. It can be seen that
increasing the number of channels improves test error.1

Motivated by these empirical observations, we present a
theoretical analysis of optimization and generalization in
the XORD problem. Under certain distributional assump-
tions, we will show that overparameterized networks enjoy a
combination of better exploration of features at initialization
and clustering of weights, leading to better generalization
for overparameterized networks.

conducted at Tel Aviv University.
1Note that a similar curve is observed when only considering

zero training error, implying that smaller networks are expressive
enough to fit the training data.

Importantly, we show empirically that our insights from the
XORD problem transfer to other settings. In particular, we
see a similar phenomenon when learning on the MNIST
data, where we verify that weights are clustered at conver-
gence and observe better exploration of weights for large
networks.

Finally, another contribution of our work is the first proof of
convergence of gradient descent in the classic XOR problem
with inputs in {±1}2. The proof is simple and conveys the
key insights of the analysis of the general XORD problem.
See Section 3 for further details.

2. Related Work
In recent years there have been many works on theoretical
aspects of deep learning. We will refer to those that are
most relevant to this work. First, we note that we are not
aware of any work that shows that generalization perfor-
mance provably improves with over-parameterization. This
distinguishes our work from all previous works.

Several works study convolutional networks with ReLU ac-
tivations and their properties (Du et al., 2018b;c; Brutzkus &
Globerson, 2017). All of these works consider convolutional
networks with a single channel. Recently, there have been
numerous works that provide guarantees for gradient-based
methods in general settings (Daniely, 2017; Li & Liang,
2018; Du et al., 2018c;a; Allen-Zhu et al., 2018). However,
their analysis holds for over-parameterized networks with
an extremely large number of neurons that is not used in
practice (e.g., the number of neurons is a very large poly-
nomial of certain problem parameters). Furthermore, we
consider a 3-layer convolutional network with max-pooling
which is not studied in these works. Several works (Ji &
Telgarsky, 2019; Gunasekar et al., 2018; Arora et al., 2019)
provide guarantees for gradient descent on linear networks.

Over-parameterization has also been studied for quadratic
activation functions (Soltanolkotabi et al., 2018; Du & Lee,
2018; Li et al., 2018). Brutzkus et al. (2018) provide
generalization guarantees for over-parameterized networks
with Leaky ReLU activations on linearly separable data.
Neyshabur et al. (2019) prove generalization bounds for
neural networks. However, it is not shown that networks
found by gradient based methods give low generalization
bounds.

3. Warm up: the XOR Problem
We begin by studying the simplest form of our model: the
classic XOR problem in two dimensions.2 We will show
that this problem illustrates the key phenomena that allow
overparameterized networks to perform better than smaller

2XOR is a specific case of XORD in Sec. 4 where d = 1.
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ones. Namely, exploration at initialization and clustering
during training. For the XOR problem, this will imply that
overparameterized networks have better optimization per-
formance. In later sections, we will show that the same
phenomena occur for higher dimensions in the XORD prob-
lem and imply better generalization of global minima for
overparameterized convolutional networks.

3.1. Problem Formulation

In the XOR problem, we are given a training set S =
{(xi, yi)}4i=1 ⊆ {±1}2 × {±1} consisting of points x1 =
(1, 1), x2 = (−1, 1), x3 = (−1,−1), x4 = (1,−1) with
labels y1 = 1, y2 = −1, y3 = 1 and y4 = −1, respectively.
Our goal is to learn the XOR function f∗ : {±1}2 → {±1},
such that f∗(xi) = yi for 1 ≤ i ≤ 4, with a neural network
and gradient descent.

Neural Architecture: For this task we consider the fol-
lowing two-layer fully connected network.

NW (x) =

k∑
i=1

[
σ
(
w(i) · x

)
− σ

(
u(i) · x

)]
(1)

where W ∈ R2k×2 is the weight matrix whose rows are
the w(i) vectors followed by the u(i) vectors, and σ(x) =
max{0, x} is the ReLU activation applied element-wise.
We note that f∗ can be implemented with this network for
k = 2 and this is the minimal k for which this is possible.
Thus we refer to k > 2 as the overparameterized case.

Training Algorithm: The parameters of the network
NW (x) are learned using gradient descent on the hinge loss
objective. We use a constant learning rate η =

cη
k , where

cη <
1
2 . The parameters NW are initialized as IID Gaus-

sians with zero mean and standard deviation σg ≤ cη
16k3/2

.
We consider the hinge-loss objective:

`(W ) =
∑

(x,y)∈S

max{1− yNW (x), 0}

where optimization is only over the first layer of the network.
We note that for k ≥ 2 any global minimum W of ` satisfies
`(W ) = 0 and sign(NW (xi)) = f∗(xi) for 1 ≤ i ≤ 4.

Notations: We will need the following notations. Let Wt

be the weight matrix at iteration t of gradient descent. For
1 ≤ i ≤ k, denote by w

(i)
t ∈ R2 the ith weight vector at

iteration t. Similarly we define u
(i)
t ∈ R2 to be the k + i

weight vector at iteration t. For each point xi ∈ S define
the following sets of neurons:

W+
t (i) =

{
j | w(j)

t · xi > 0
}

U+
t (i) =

{
j | u(j)

t · xi > 0
}

and for each iteration t, let ai(t) be the number of iterations
0 ≤ t′ ≤ t such that yiNWt′ (xi) < 1.

3.2. Over-parameterized Networks Optimize Well

In this section we assume that k > 16. The following lemma
shows that with high probability, for every training point,
overparameterized networks are initialized at directions that
have positive correlation with the training point. The proof
uses a standard measure concentration argument. We refer
to this as “exploration” as it lets the optimization procedure
explore these parts of weight space.

Lemma 3.1. Exploration at Initialization. With probabil-
ity at least 1− 8e−8, for all 1 ≤ i ≤ 4

k

2
− 2
√
k ≤

∣∣W+
0 (i)

∣∣ , ∣∣U+
0 (i)

∣∣ ≤ k

2
+ 2
√
k

Next, we show an example of the weight dynamics which
imply that the weights tend to cluster around a few direc-
tions. The proof uses the fact that with high probability the
initial weights have small norm and proceeds by induction
on t to show the dynamics.

Lemma 3.2. Clustering Dynamics. Let i ∈ {1, 3}. With
probability ≥ 1 −

√
8k√
πe8k

, for all t ≥ 0 and j ∈ W+
0 (i)

there exists a vector vt such that vt ·xi > 0, |vt · x2| < 2η

and w
(j)
t = ai(t)ηxi + vt.

The sequence {ai(t)}t≥0 is non-decreasing and it can be
shown that ai(0) = 1 with high probablity. Therefore, the
above lemma shows that for all j ∈ W+

0 (i), w(j)
t tends to

cluster around xi as t increases (as vt is bounded in the
direction orthogonal to xi and vt · xi > 0). Since with
probability 1, W+

0 (1) ∪W+
0 (3) = [k], the above lemma

characterizes the dynamics of all filters w(j)
t . In the supple-

mentary we show a similar result for the filters u(j)
t .

By applying both of the above lemmas, it can be shown that
for k > 16 gradient descent converges to a global minimum
with high probability and that the weights are clustered at
convergence.

Theorem 3.3. Convergence and Clustering. With proba-
bility≥ 1−

√
8k√
πe8k
−8e−8 after T > 1

cη

(
16
√
k√

k−4

)
iterations,

gradient descent converges to a global minimum WT . Fur-
thermore, for i ∈ {1, 3} and all j ∈ W+

0 (i), the angle

between w
(j)
T and xi is at most arccos

(
1−2cη
1+cη

)
. A similar

result holds for u(j)
T .

3.3. Small Network Fail to Optimize

In contrast to the case of large k, we show that for k = 2,
the initialization does not explore all directions, leading to
convergence to a suboptimal solution.
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(a) (b) (c) (d)

Figure 2: Overparameterization and optimization in the XOR problem. The vectors in blue are the vectors w(i)
t and in red are the vectors

u
(i)
t . (a) Exploration at initialization (t=0) for k = 50 (Lemma 3.1) (b) Clustering and convergence to global minimum for k = 50

(Lemma 3.2 and Theorem 3.3) (c) Non-sufficient exploration at initialization (t=0) for k = 2 (Theorem 3.4). (d) Convergence to local
minimum (Theorem 3.4).

Theorem 3.4. Insufficient Exploration at Initialization.
With probability at least 0.75, there exists i ∈ {1, 3} such
that W+

0 (i) = ∅ or i ∈ {2, 4} such that U+
0 (i) = ∅. As a

result, with probability ≥ 0.75, gradient descent converges
to a model which errs on at least one input pattern.

3.4. Experiments

In this section we empirically demonstrate the theoretical
results. We implemented the learning setting described in
Sec. 3.1 and conducted two experiments: one with k = 50
and one with k = 2 We note that for k = 2 the XOR func-
tion f∗ can be realized by the network in Eq. 1. Figure
2 shows the results. It can be seen that our theory nicely
predicts the behavior of gradient descent. For k = 50 we
see the effect of exploration at initialization and clustering
which imply convergence to a global minimum. In contrast,
the small network does not explore all directions at initial-
ization and therefore converges to a local minimum. This
is despite the fact that it has sufficient expressive power to
implement f∗.

4. The XORD Problem
In the previous section we analyzed the XOR problem, show-
ing that using a large number of channels allows gradient
descent to learn the XOR function. This allowed us to un-
derstand the effect of overparameterization on optimization.
However, it did not let us study generalization because in
the learning setting all four examples were given, so that
any model with zero training error also had zero test error.

In order to study the effect of overparameterization on gener-
alization we consider a more general setting, which we refer
to as the XOR Detection problem (XORD). As can be seen
in Fig. 1, in the XORD problem large networks generalize
better than smaller ones. This is despite the fact that small
networks can reach zero training error. Our goal is to under-
stand this phenomenon from a theoretical persepective.

In this section, we define the XORD problem. We begin with
some notations and definitions. We consider a classification
problem in the space {±1}2d, for d ≥ 1. Given a vector
x ∈ {±1}2d, we consider its partition into d sets of two
coordinates as follows x = (x1, ...,xd) where xi ∈ {±1}2.
We refer to each such xi as a pattern in x.

Neural Architecture: We consider learning with the fol-
lowing three-layer neural net model. The first layer is a
convolutional layer with non-overlapping filters and mul-
tiple channels, the second layer is max pooling and the
third layer is a fully connected layer with 2k hidden neu-
rons and weights fixed to values ±1. Formally, for an input
x = (x1, ...,xd) ∈ R2d where xi ∈ R2, the output of the
network is denoted by NW (x) and is given by:

k∑
i=1

[
max
j

{
σ
(
w(i) · xj

)}
−max

j

{
σ
(
u(i) · xj

)} ]
(2)

where notation is as in the XOR problem.

Remark 4.1. Because there are only 4 different patterns,
the network is limited in terms of the number of rules it can
implement. Specifically, it is easy to show that its VC dimen-
sion is at most 15 (see supplementary material). Despite
this limited expressive power, there is a generalization gap
between small and large networks in this setting, as can be
seen in Fig. 1, and in our analysis below.

Data Generating Distribution: Next we define the clas-
sification rule we will focus on. Define the four
two-dimensional binary patterns p1 = (1, 1),p2 =
(1,−1),p3 = (−1,−1),p4 = (−1, 1). Define Ppos =
{p1,p3} to be the set of positive patterns and Pneg =
{p2,p4} to be the set of negative patterns. Define the clas-
sification rule:

f∗(x) =

{
1 ∃i ∈ {1, . . . , d} : xi ∈ Ppos
−1 otherwise (3)
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Namely, f∗ detects whether a positive pattern appears in the
input. For d = 1, f∗ is the XOR classifier in Sec. 3.

Let D be a distribution over X × {±1} such that for all
(x, y) ∼ D we have y = f∗(x). We say that a point (x, y)
is positive if y = 1 and negative otherwise. Let D+ be the
marginal distribution over {±1}2d of positive points and
D− be the marginal distribution of negative points.

For each point x ∈ {±1}2d, define Px to be the set of
unique two-dimensional patterns that the point x contains,
namely Px = {i | ∃j,xj = pi}. In the following definition
we introduce the notion of diverse points, which will play a
key role in our analysis.

Definition 4.2 (Diverse Points). We say that a positive
point (x, 1) is diverse if Px = {1, 2, 3, 4}.3 We say that
a negative point (x,−1) is diverse if Px = {2, 4}.

For φ ∈ {−,+} define pφ to be the probability that x is
diverse with respect to Dφ. For example, if both D+ and
D− are uniform, then by the inclusion-exclusion principle
it follows that p+ = 1− 4·3d−6·2d+4

4d
and p− = 1− 1

2d−1 .

Learning Setup: Our analysis will focus on the problem
of learning f∗ from training data with the three layer neural
net model in Eq. 2. The learning algorithm will be gradient
descent, randomly initialized. As in any learning task in
practice, f∗ is unknown to the training algorithm. Our goal
is to analyze the performance of gradient descent when
given data that is labeled with f∗. We assume that we are
given a training set S = S+ ∪ S− ⊆ {±1}2d × {±1}
where S+ consists of m IID points drawn from D+ and S−
consists of m IID points drawn from D−.4

Importantly, we note that the function f∗ can be realized
by the above network with k = 2. Indeed, the network
NW with w(1) = 3p1, w(2) = 3p3, u(1) = p2, u(2) = p4

satisfies sign (NW (x)) = f∗(x) for all x ∈ {±1}2d. It can
be seen that for k = 1, f∗ cannot be realized. Therefore,
any k > 2 is an overparameterized setting.

Training Algorithm: We will use gradient descent to op-
timize the following hinge-loss function.

`(W ) =
1

m

∑
(xi,yi)∈S+:yi=1

max{γ −NW (xi), 0}

+
1

m

∑
(xi,yi)∈S−:yi=−1

max{1 +NW (xi), 0} (4)

3This definition only holds for d ≥ 4.
4For simplicity, we consider this setting of equal number of

positive and negative points in the training set.

for γ ≥ 1.5 We assume that gradient descent runs with
a constant learning rate η and the weights are randomly
initialized with IID Gaussian weights with mean 0 and stan-
dard deviation σg. Furthermore, only the weights of the
first layer, the convolutional filters, are trained.6 As in Sec-
tion 3, we will use the notations Wt, w

(i)
t , u(i)

t for the
weights at iteration t of gradient descent. At each iteration
(starting from t = 0), gradient descent performs the update
Wt+1 =Wt − η ∂`

∂W (Wt).

5. XORD on Decoy Sets
In Fig. 1 we showed that the XORD problem exhibits better
generalization for overparameterized models. Here we will
empirically show how this comes about due to the effects of
clustering and exploration. We compare two networks as in
Sec. 4. The first has k = 2 (i.e., four hidden neurons) and
the second has k = 100. As mentioned earlier, both these
nets can achieve zero test error on the XORD problem.

We consider a diverse training set, namely, one which con-
tains only diverse points. The set has 6 positive diverse
points and 6 negative diverse points. Each positive point
contains all the patterns {p1,p2,p3,p4} and each negative
point contains all the patterns {p2,p4}. Note that in order to
achieve zero training error on this set, a network needs only
to detect at least one of the patterns p1 or p3, and at least
one of the patterns p2 or p4. For example, a network with
k = 2 and filters w(1) = w(2) = 3p1, u(1) = u(2) = p2,
has zero train loss. However, this network will not general-
ize to non-diverse points, where only a subset of the patterns
appear. Thus we refer to it as a “decoy” training set.

Fig. 3 shows the results of training the k = 2 and k = 100
networks on the decoy training set. Both networks reach
zero training error. However, the larger network learns
the XORD function exactly, whereas the smaller network
does not, and will therefore misclassify certain data points.
As Fig. 3 clearly shows, the reason for the failure of the
smaller network is that at initialization there is insufficient
exploration of weight space. On the other hand, the larger
network both explores well at initialization, and converges
to clustered weights corresponding to all relevant patterns.

The above observations are for a training set that contains
only diverse points. However, there are other decoy training
sets which also contain non-diverse points (see supplemen-
tary for an example).

5In practice it is common to set γ to 1. In our analysis we will
need γ ≥ 8 to guarantee generalization. In the supplementary
material we show empirically, that for this task, setting γ to be
larger than 1 results in better test performance than setting γ = 1.

6Note that Hoffer et al. (2018) show that fixing the last layer to
±1 does not degrade performance in various tasks. This assump-
tion also appeared in Brutzkus et al. (2018); Li & Yuan (2017).
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(a) (b) (c) (d)

Figure 3: Overparameterization and generalization in the XORD problem. The vectors in blue are the vectors w(i)
t and in red are the

vectors u(i)
t . (a) Exploration at initialization (t=0) for k = 100 (b) Clustering and convergence to global minimum that recovers f∗ for

k = 100 (c) Non-sufficient exploration at initialization (t=0) for k = 2. (d) Convergence to global minimum with non-zero test error for
k = 2.

6. XORD Theoretical Analysis
In Sec. 5 we saw a case where overparameterized networks
generalize better than smaller ones. This was due to the fact
that the training set was a “decoy” in the sense that it could
be explained by a subset of the discriminative patterns. Due
to the under-exploration of weights in the smaller model
this led to zero training error but non-zero test error.

We proceed to formulate this intuition. Our theoretical
results will show that for diverse training sets, networks
with k ≥ 120 will converge with high probability to a
solution with zero training error that recovers f∗ (Sec. 6.1).
On the other hand, networks with k = 2 will converge with
constant probability to zero training error solutions which
do not recover f∗ (Sec. 6.2). Finally, we show that in a PAC
setting these results imply a sample complexity gap between
large and small networks (Sec. 6.3).

We assume that the training set consists of m positive di-
verse points and m negative diverse points. For the analysis,
without loss of generality, we can assume that the train-
ing set consists of one positive diverse point x+ and one
negative diverse point x−. This follows since the network
and its gradient have the same value for two different posi-
tive diverse points and two different negative diverse points.
Therefore, this holds for the loss function in Eq. 4 as well.

For the analysis, we need a few more definitions. Define the
following sets for each 1 ≤ i ≤ 4:

W+
t (i) =

{
j | argmax

1≤l≤4
w

(j)
t · pl = i

}
U+
t (i) =

{
j | argmax

1≤l≤4
u
(j)
t · pl = i

}

For each set of binary patterns A ⊆ {±1}2 define pA to be
the probability to sample a point x such that Px = A. Let
A1 = {2}, A2 = {4}, A3 = {2, 4, 1} and A4 = {2, 4, 3}.

The following quantity will be useful in our analysis:

p∗ = min
1≤i≤4

pAi (5)

Finally, we let a+(t) be the number of iterations 0 ≤ t′ ≤ t
such that NWt′ (x

+) < γ and c ≤ 10−10 be a negligible
constant.

6.1. Overparameterized Network

As in Sec. 3.2, we will show that both exploration at ini-
tialization and clustering will imply good performance of
overparameterized networks. Concretely, they will imply
convergence to a global minimum that recovers f∗. How-
ever, the analysis in XORD is significantly more involved.

We assume that k ≥ 120 and gradient descent runs with
parameters η =

cη
k where cη ≤ 1

410 , σg ≤ cη

16k
3
2

and γ ≥ 8.

In the analysis there are several instances of exploration and
clustering effects. Due to space limitations, here we will
show one such instance. In the following lemma we show
an example of exploration at initialization. The proof is a
direct application of a concentration bound.
Lemma 6.1. Exploration. With probability at least 1 −
4e−8, it holds that

∣∣∣∣W+
0 (1) ∪W+

0 (3)
∣∣− k

2

∣∣ ≤ 2
√
k.

Next, we characterize the dynamics of filters in W+
0 (1) ∪

W+
0 (3) for all t.

Lemma 6.2. Clustering Dynamics. Let i ∈ {1, 3}. With
probability ≥ 1 −

√
2k√
πe8k

, for all t ≥ 0 and j ∈ W+
0 (i)

there exists a vector vt such that vt · pi > 0, |vt · p2| < 2η

and w
(j)
t = a+(t)ηpi + vt.

We note that a+(t) is a non-decreasing sequence such that
a+(0) = 1 with high probability. Therefore, the above
lemma suggests that the weights in W+

0 (1) ∪W+
0 (3) tend

to get clustered as t increases.

By combining Lemma 6.1, Lemma 6.2 and other sim-
ilar lemmas given in the supplementary (for other sets
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W+
0 (i), U+

0 (i)), the following convergence theorem can
be shown. The proof consists of a careful and lengthy anal-
ysis of the dynamics of gradient descent and is given in the
supplementary.

Theorem 6.3. With probability at least
(
1− c− 16e−8

)
after running gradient descent for T ≥ 28(γ+1+8cη)

cη
iter-

ations, it converges to a global minimum which satisfies
sign (NWT

(x)) = f∗(x) for all x ∈ {±1}2d. Further-
more, for i ∈ {1, 3} and all j ∈W+

0 (i), the angle between

w
(j)
T and pi is at most arccos

(
γ−1−2cη
γ−1+cη

)
. 7

This result shows if the training set consists only of diverse
points, then with high probability over the initialization,
overparameterized networks converge to a global minimum
which realizes f∗ in a constant number of iterations.

6.2. Small Network

Next we consider the case of the small network k = 2,
and show that it has inferior generalization due to under-
exploration. We assume that gradient descent runs with
parameter values of η, σg and γ which are similar to the
previous section but in a slightly broader set of values (see
supplementary for details). The main result of this section
shows that with constant probability, gradient descent con-
verges to a global minimum that does not recover f∗.

Theorem 6.4. With probability at least (1− c) 33
48 , gradient

descent converges to a global minimum that does not recover
f∗. Furthermore, there exists 1 ≤ i ≤ 4 such that the global
minimum misclassifies all points x such that Px = Ai.

The proof follows due to an under-exploration effect. Con-
cretely, let w(1)

T , w(2)
T , u(1)

T and u
(2)
T be the filters of the

network at the iteration T in which gradient descent con-
verges to a global minimum (convergence occurs with high
constant probability). The proof shows that gradient descent
will not learn f∗ if one of the following conditions is met:
a) W+

T (1) = ∅. b) W+
T (3) = ∅. c) u

(1)
T · p2 > 0 and

u
(2)
T · p2 > 0. d) u(1)

T · p4 > 0 and u
(2)
T · p4 > 0. Then by

using a symmetry argument which is based on the symmetry
of the initialization and the training data it can be shown
that one of the above conditions is met with high constant
probability.

6.3. A Sample Complexity Gap

In the previous analysis we assumed that the training set
was diverse. Here we consider the standard PAC setting of
a distribution over inputs, and show that indeed overparam-
eterized models enjoy better generalization. Recall that the

7We do not provide clustering guarantees at global minimum
for other filters. However, we do characterize their dynamics
similar to Lemma 6.2.

sample complexity m(ε, δ) of a learning algorithm is the
minimal number of samples required for learning a model
with test error at most ε with confidence greater than 1− δ
(Shalev-Shwartz & Ben-David, 2014).

We are interested in the sample complexity of learning with
k ≥ 120 and k = 2. Denote these two functions bym1(ε, δ)
and m2(ε, δ). The following result states that there is a gap
between the sample complexity of the two models, where
the larger model in fact enjoys better complexity.

Theorem 6.5. Let D be a distribution with paramaters p+,
p− and p∗ (see Eq. 5). Let δ ≥ 1− p+p−(1− c− 16e−8)
and 0 ≤ ε < p∗. Then m1(ε, δ) ≤ 2 whereas m2(ε, δ) ≥
2 log( 48δ

33(1−c) )
log(p+p−)

. 8

The proof (see supplementary material) follows from Theo-
rem 6.3 and Theorem 6.4 and the fact that the probability to
sample a training set with only diverse points is (p+p−)m.

We will illustrate the guarantee of Theorem 6.5 with sev-
eral numerical examples. Assume that for the distribu-
tion D, the probability to sample a positive point is 1

2 and

p∗ = min
{

1−p+
4 , 1−p−4

}
(it is easy to construct such dis-

tributions). First, consider the case p+ = p− = 0.98 and
δ = 1− 0.982(1− c− 16e−8) ≤ 0.05. Here we get that for
any 0 ≤ ε < 0.005, m1(ε, δ) ≤ 2 whereas m2(ε, δ) ≥ 129.
Next, consider the case where p+ = p− = 0.92. It fol-
lows that for δ = 0.16 and any 0 ≤ ε < 0.02 it holds that
m1(ε, δ) ≤ 2 and m2(ε, δ) ≥ 17. In contrast, for suffi-
ciently small p+ and p− (e.g., when p+, p− ≤ 0.7), our
bound does not guarantee a generalization gap.

7. Experiments on MNIST
We next demonstrate how our theoretical insights from the
XORD problem are also manifest when learning a neural
net on the MNIST dataset. The network we use for learning
is quite similar to the one use for XORD. It is a three layer
network: the first layer is a convolution with 3 × 3 filters
and multiple channels (we vary the number of channels),
followed by 2× 2 max pooling and then a fully connected
layer. We use Adam (Kingma & Ba, 2014) for optimization.
In the supplementary we show empirical results for other
filter sizes. Further details of the experiments are given there.
Below we show how our two main theoretical insights for
XORD are clearly exhibited in the MNIST data.

8We note that this generalization gap holds for global minima
(0 train error). Therefore, the theorem can be read as follows.
For k ≥ 120, given 2 samples, with probability at least 1 − δ,
gradient descent converges to a global minimum with at most ε test
error. On the other hand, for k = 2 and given number of samples

less than
2 log

(
48δ

33(1−c)

)
log(p+p−)

, with probability greater than δ, gradient
descent converges to a global minimum with error greater than ε.
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(a) (b)

Figure 4: Clustering and Exploration in MNIST (a) Distribution of angle to closest center in trained and random networks. (b) The plot
shows the test error of the small network (4 channels) with standard training (red), the small network that uses clusters from the large
network (blue), and the large network (120 channels) with standard training (green). It can be seen that the large network is effectively
compressed without losing much accuracy.

We first check the clustering observation. Namely, that
optimization tends to converge to clusters of similar filters.
We train the three layer network described above with 120
channels on 6000 randomly sampled MNIST images. Then,
we normalize each filter of the trained network to have
unit norm. We then cluster all 120 9-dimensional vectors
using k-means to four clusters. Finally, for each filter we
calculate its angle with its closest cluster center. In the
second experiment we perform exactly the same procedure,
but with a network with randomly initialized weights.

Fig. 4a shows the results for this experiment. It can be
clearly seen that in the trained network, most of the 9-
dimensional filters have a relatively small angle with their
closest center. Furthermore, the distributions of angles to
closest center are significantly different in the case of trained
and random networks. This suggests that there is an in-
ductive bias towards solutions with clustered weights, as
predicted by the theory.

We next explore the effect of exploration. Namely, to what
degree do larger models explore useful regions in weight
space. The observation in our theoretical analysis is that
both small and large networks can find weights that arrive
at zero training error. But large networks will find a wider
variety of weights, which will also generalize better.

Here we propose to test this via the following setup: first
train a large network. Then cluster its weights into k clusters
and use the centers to initialize a smaller network with k fil-
ters. If these k filters generalize better than k filters learned
from random initialization, this would suggest that the larger
network indeed explored weight space more effectively.

To apply this idea to MNIST, We trained an “over-
parameterized” 3-layer network with 120 channels. We

clustered its filters with k-means into 4 clusters and used
the cluster centers as initialization for a small network with
4 channels. Then we trained only the fully connected layer
and the bias of the first layer in the small network. In
Fig. 4b we show that for various training set sizes, the
performance of the small network improves with the new
initialization and nearly matches the performance of the
over-parameterized network. This suggests that the large
network explored better features in the convolutional layer
than the smaller one.

8. Conclusions
In this paper we consider a simplified learning task on bi-
nary vectors to study generalization of overparameterized
networks. In this setting, we prove that clustering of weights
and exploration of the weight space imply better general-
ization performance for overparameterized networks. We
empirically verify our findings on the MNIST task.

In (Ji & Telgarsky, 2019), it is shown that for a linear net-
work trained with gradient descent, the weight matrices are
asymptotically of rank 1. It would be interesting to connect
this result with our clustering observation.

For future work, it would be interesting to consider more
complex classification tasks such as filters of higher dimen-
sion or non-binary data.
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