
Adversarial Examples from Computational Constraints

A. Proofs of properties of the SQ hard distribution

We start with the following lemma on Hermite polynomials:

Lemma A.1. For every k > 1, the distance between any roots of Hk−1(t) and Hk(t) is at least Ω(1/
√
k).

Proof. It is known that extrema of Hk are exactly zeros of Hk−1, which follows from H ′
k = 2kHk−1 and a lack of double

roots. Thus, it is enough to show that extrema and zeros of Hk are Ω(1/
√
k)-separated.

Consider the case where 0 ≤ u < v < w are such that Hk(u) = Hk(w) = 0, Hk is positive between u and w, and H ′
k(v) =

0. Let us show how to lower bound v − u. Denote Fk(t) = e−t2/2Hk(t). Clearly, Fk(u) = Fk(w) = 0 and Fk is positive

between u and w with a unique local maximum on [u,w], which we denote by v′. It is not hard to check that v′ ≤ v. Thus, it

is enough to lower bound v′ − u. It is known (see, e.g., (Szego, 1939)) that Fk satisfies the ODE Z ′′ + (2k + 1− t2)Z = 0.

By comparing with Z ′′ + (2k + 1)Z = 0, we can get that lower bound v − u ≥ v′ − u ≥ π
2
√
2k+1

= Ω(1/
√
k).

Now let us lower bound w − v. It is known (Szego, 1939) that Hk satisfies the ODE Z ′′ − 2tZ ′ + 2kZ = 0. By comparing

this ODE with Z ′′ − 2wZ ′ + 2kZ = 0, we get that w − v ≥
arctan

(√
2k−w2

w

)

√
2k−w2

≥ Ω(1/
√
k). The latter step is due to

w ≤
√
2k and that the lower bound on w − v is nonincreasing in w.

Other cases can be treated similarly.

Lemma 4.2. There exist two distributions DA and DB over R with everywhere positive p.d.f.’s A(t) and B(t) respectively

such that:

• DA and DB match N(0, 1) in the first m moments;

• There exist two subsets SA, SB ⊂ R such that the distance between SA and SB is at least Ω(1/
√
m), Px∼DA

[x ∈
SA] ≥ 1− e−Ω(m), and Px∼DB

[x ∈ SB ] ≥ 1− e−Ω(m);

• A,B ∈ C∞, and for every 0 ≤ l ≤ m+ 1 and t, one has: | dl

dtl
A(t)
G(t) |, | d

l

dtl
B(t)
G(t) | ≤ mO(l+1).

(See Figure 1 for the illustration.)

Proof. Let Hm(t) and Hm+1(t) be two consecutive (physicist’s) Hermite’s polynomials. It is a classic result in Gaussian

quadrature (see, e.g., (Szego, 1939)) that for every k, there exists a discrete distribution supported on the zeros of Hk(t/
√
2),

which matches N(0, 1) in the first 2k − 1 moments. Let D̃A denote such a distribution for Hm and D̃B the same for Hm+1.

By Lemma A.1, the distance between the supports of D̃A and D̃B is at least Ω(1/
√
m) and they both match N(0, 1) in the

first 2m− 1 ≥ m moments.

Now, we obtain the desired distributions DA and DB as follows. Fix a small δ > 0. The distribution DA is defined as√
1− δ · x+

√
δ · y, where x ∼ D̃A, y ∼ N(0, 1), and x and y are independent. The distribution DB is defined similarly,

but instead of D̃A we use D̃B . It is easy to check that DA and DB match the first m moments of N(0, 1). Now suppose

that δ = 1/m2. The second property follows from the supports of D̃A and D̃B being Ω(1/
√
m) separated and the standard

concentration inequalities; specifically, we take SA to be the Minkowski sum of the support of scaled down D̃A and the ball

of radius Θ(1/
√
m), and SB to be similar with D̃B instead of D̃A. Then the chance x ∼ DA is not in SA is at most the

chance y ∼ N(0, 1) has |
√
δy| > Ω(1/

√
m), which is e−Ω(m).

Now let us prove the bounds on dl

dtl
A(t)
G(t) , for the B(·) similar bounds follows exactly the same way.

Denote x1 < x2 < . . . < xm the roots of Hm(t).

One has:

A(t) =
1√
2πδ

m∑

i=1

pie
− (t−

√
2(1−δ)xi)

2

2δ ,
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where pi = Px∼D̃A
[x =

√
2xi]. Hence,

A(t)

G(t)
=

1√
δ

m∑

i=1

pie
− (t−

√
2(1−δ)xi)

2

2δ + t2

2

=
1√
δ

m∑

i=1

pie
− 1

2 ·
((

t·
√

1
δ
−1−

√
2
δ
·xi

)2
−2x2

i

)

.

=
1√
δ

m∑

i=1

pie
− 1

2 ·
(t·

√
1−δ−

√
2xi)

2

δ
+x2

i .

We have for every i the bound pie
x2
i = O(1) (Gil et al., 2018). Therefore, if Q(t) denotes the p.d.f. of N(0, δ/(1− δ)) we

have

sup
t

∣∣∣∣
dl

dtl
A(t)

G(t)

∣∣∣∣ ≤
1√
δ
·m ·O(1) ·

(
sup
t

∣∣∣∣
dl

dtl
Q(t)

∣∣∣∣
)

= m(l/δ)O(l+1) = mO(l+1).

Lemma 4.3. For every k ≤ dΩ(1), there exists such a family U with ε ≤ d−0.49 and |U| = 2d
Θ(1)

.

Proof. Let U and V be uniformly random k-dimensional subspaces of Rd. W.l.o.g. we can assume that U is spanned by

the first k standard basis vectors. Let V be spanned by an orthonormal basis v1, v2, . . . , vk such that each vi is distributed

uniformly on the unit sphere of Rd. Consider an ε′-net N of the unit sphere of U of size (1/ε′)O(k). For every u ∈ N
with probability at least 1− e−Ω(ε′2d) the absolute value of the dot product of u with a given vi is at most ε′. As a result,

with probability at least 1− (1/ε′)O(k)e−Ω(ε′2d), dot products between all elements of N and all vi are at most ε′ in the

absolute value. But this implies that the dot products between all the unit vectors of U and V are at most ε′
√
k. So, by

setting ε′ = ε/
√
k and by using the union bound, we get that we can set:

log |U| ≤ Ω(ε2d/k)−O(k(log k + log(1/ε))).

Thus, we can set ε = d−0.49, and k ≤ dσ for a sufficiently small positive σ, which yields |U| = 2d
Θ(1)

.

Lemma 4.4. There exist two sets SU,A, SU,B ⊂ R
d such that the distance between SU,A and SU,B is Ω(

√
k/m), and for

which Px∼DU,A
[x ∈ SU,A] ≥ 1− e−Ω(km) and Px∼DU,B

[x ∈ SU,B ] ≥ 1− e−Ω(km).

Proof. The sets are defined as follows:

SU,A = {x ∈ R
d | for at least 0.9-fraction of 1 ≤ i ≤ k, one has 〈x, ui〉 ∈ SA}

and

SU,B = {x ∈ R
d | for at least 0.9-fraction of 1 ≤ i ≤ k, one has 〈x, ui〉 ∈ SB}.

The points x ∈ SU,A and y ∈ SU,B are well-separated, since in at least a 0.8-fraction of 1 ≤ i ≤ k, both 〈x, ui〉 ∈ SA and

〈y, ui〉 ∈ SB . Since SA and SB are Ω(1/
√
m)-separated, we obtain the result.

The bounds on the probabilities follow from the respective bounds in Lemma 4.2 and standard Chernoff bounds.

B. SQ lower bound

B.1. SQ lower bound

Now let us show that if we set all the parameters appropriately, it is hard in the SQ model to learn a good classifier (robust

or otherwise) for distributions DU,A and DU,B defined above, where U ∈ U is an unknown subspace. The main idea is

to show that if the subspace U ∈ U is chosen uniformly at random, unless we perform more than 2d
Ω(1)

queries, we can

not tell apart DU,A or DU,B from the standard Gaussian N(0, Id) (and as a result, from each other). Intuitively, any since

query can only reliably distinguish DU,A from N(0, Id) for a tiny fraction of subspaces U ∈ U . The result then follows by a
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simple counting argument. To formalize the above intuition, we use an argument similar at a high-level to the one used

in (Diakonikolas et al., 2017).

Let D,D1, D2 be distributions over Rd with everywhere positive p.d.f.’s P (x), P1(x), and P2(x), respectively. Then, the

pairwise correlation of D1 and D2 w.r.t. D, denoted by χD(D1, D2), is defined as follows:

χD(D1, D2) =

∫

Rd

P1(x)P2(x)

P (x)
dx− 1.

In Section B.2, we show that for an appropriate setting of parameters (namely, when εmΘ(1)k ≤ d−Ω(1)), for every

U1, U2 ∈ U , one has:

χN(0,Id)(DU1,A, DU2,A) ≤
{
mO(k) if U1 = U2

mO(k) · d−Ω(m) otherwise

and

χN(0,Id)(DU1,B , DU2,B) ≤
{
mO(k) if U1 = U2

mO(k) · d−Ω(m) otherwise.

Then by repeating the proof of Lemma 3.3 from (Feldman et al., 2013), we get that if the number of queries is significantly

smaller than:
|U| · (τ2 −mO(k)d−Ω(m))

mO(k)
,

then with high probability over a random subspace U ∈ U , all the queries asked can be answered as if both DU,A and DU,B

were N(0, Id). As a result, we cannot distinguish them from N(0, Id) and, as a result, between each other.

Suppose that m log d > Ck logm for a sufficiently large constant C, so that the mO(k)d−Ω(m) term is less than d−Ω(m) <
m−Ω(k). Then we can set the precision τ to m−Θ(k) and still be unable to distinguish DU,A from DU,B from |U|m−O(k) =

2d
Ω(1)

m−O(k) queries. If mO(k) ≤ 2d
σ

for a sufficiently small positive σ > 0, this gives the desired lower bound of 2d
Ω(1)

on the number of SQ queries the algorithm must ask.

B.2. Upper bounding pairwise correlations

In this section, we show how to upper bound χN(0,Id)(DU1,A, DU2,A); upper bounding χN(0,Id)(DU1,B , DU2,B) is exactly

the same. Denote a(t) = A(t)
G(t) − 1, where G(t) is the p.d.f. of a standard Gaussian. By Lemma 4.2, one has Et∼N(0,1)[t

l ·
a(t)] = 0 for all l ∈ {1, 2, . . . ,m}.

We assume that mCεk ≤ d−Ω(1) for a sufficiently large constant C to be determined later. Since by Lemma 4.3 we can take

ε = d−0.49, the required inequality holds as long as m and k are at most small powers of d.

First, suppose that U1 = U2 = U . Suppose that u1, u2, . . . , ud is an orthonormal basis of Rd such that u1, u2, . . . , uk is a

fixed basis of U . Then,

χN(0,1)d(DU,A, DU,A) =

∫

Rd

AU (x)
2

∏d
i=1 G(〈x, ui〉)

dx− 1

=

∫

Rd

k∏

i=1

(1 + a(〈x, ui〉))2 ·
d∏

i=1

G(〈x, ui〉) dx− 1

= Ex∼N(0,Id)

[
k∏

i=1

(1 + a(〈x, ui〉))2
]
− 1

=

k∏

i=1

Ex∼N(0,Id)

[
(1 + a(〈x, ui〉))2

]
− 1

≤ mO(k),

where the fourth step is due to the independence of 〈x, ui〉 (which is implied by orthogonality of ui), and the fifth step

follows from Lemma 4.2.
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Now suppose that U1 6= U2. Suppose that u1, u2, . . . , ud is an orthonormal basis of Rd such that u1, u2, . . . , uk is a fixed

basis of U1, and, similarly, v1, v2, . . . , vd is an orthonormal basis of Rd such that v1, v2, . . . , vk is a fixed basis of U2. Now,

χN(0,Id)(DU1,A, DU2,A) =

∫
AU1

(x)AU2
(x)

∏d
i=1 G(xi)

dx− 1

= Ex∼N(0,Id)

[
k∏

i=1

(
1 + a(〈x, ui〉)

)
·

k∏

i=1

(
1 + a(〈x, vi〉)

)]
− 1

=
∑

S,T⊆[k]

Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

a(〈x, vi〉)
]
− 1

=
∑

S,T⊆[k]:
S,T 6=∅

Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

a(〈x, vi〉)
]
, (2)

where the last step follows from the fact that if S = ∅ and T 6= ∅, then the expression factorizes due to the independence of

〈x, vi〉, and we also use that Et∼N(0,1)[a(t)] = 0. The case S 6= ∅ and T = ∅ is similar.

Now let us fix non-empty S, T ⊆ [k]. W.l.o.g., suppose that |S| ≥ |T |. Denote ṽi = vi − projU1
vi. Since U1, U2 ∈ U and

U1 6= U2, we have ‖ṽi − vi‖2 ≤ ε. One has for every 1 ≤ i ≤ k by a Taylor expansion that

a(〈x, vi〉) =
m∑

l=0

a(l)(〈x, ṽi〉) ·
〈x, vi − ṽi〉l

l!
+ a(m+1)(θi) ·

〈x, vi − ṽi〉m+1

(m+ 1)!
, (3)

for some θi = θi(x) that lies between 〈x, ṽi〉 and 〈x, vi〉.
Lemma B.1. Suppose |S| ≥ |T |. For every l : T → {0, 1, . . . ,m}, one has:

Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

(
a(l(i))(〈x, ṽi〉) ·

〈x, vi − ṽi〉l(i)
l(i)!

)]
= 0.

Proof. Since vi − ṽi ∈ U1, we can write vi − ṽi =
∑k

j=1 αijuj . One has:

Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

(
a(l(i))(〈x, ṽi〉) ·

〈x, vi − ṽi〉l(i)
l(i)!

)]

= Ex∼N(0,Id)



∏

i∈S

a(〈x, ui〉) ·
∏

i∈T


a(l(i))(〈x, ṽi〉) ·

(∑k
j=1 αij〈x, uj〉

)l(i)

l(i)!







= Ex∼N(0,Id)



∏

i∈S

a(〈x, ui〉) ·
∏

i∈T


a(l(i))(〈x, ṽi〉) ·

1

l(i)!
·

∑

βij :
∑

k
j=1 βij=l(i)

(
l(i)

βi1 . . . βik

) k∏

j=1

(αij〈x, uj〉)βij







=
∑

βij

∀i:∑k
j=1 βij=l(i)

(
∏

i∈T

(
l(i)

βi1...βik

)

l(i)!

)
· Ex∼N(0,Id)


∏

i∈S

a(〈x, ui〉) ·
∏

i∈T


a(l(i))(〈x, ṽi〉) ·

k∏

j=1

(αij〈x, uj〉)βij




 .

Now let us fix partitions βij and show that:

Ex∼N(0,Id)


∏

i∈S

a(〈x, ui〉) ·
∏

i∈T


a(l(i))(〈x, ṽi〉) ·

k∏

j=1

(αij〈x, uj〉)βij




 = 0. (4)
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Since
∑

ij βij =
∑

i l(i) ≤ |T | ·m, there exists j∗ ∈ S such that:
∑

i βij∗ ≤ |T |·m
|S| ≤ m. Since 〈x, uj∗〉 is independent

from the remaining dot products, we can factor from (4) the expression

Ex∼N(0,Id)[a(〈x, uj∗〉)〈x, uj∗〉l] (5)

with l ≤ m. But since 〈x, uj∗〉 is distributed as N(0, 1), one has that (5) is equal to zero due to Lemma 4.2.

Let us continue upper bounding (2). For i ∈ T and 0 ≤ j ≤ m+ 1, denote:

γij =

{
vi − ṽi, if j ≤ m,

θi, if j = m+ 1.

One has:

Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

a(〈x, vi〉)
]

=
∑

l : T→{0,1,...,m+1}
Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

a(l(i))(γi,l(i)) ·
〈x, vi − ṽi〉l(i)

l(i)!

]

=
∑

l : T→{0,1,...,m+1}
l−1(m+1) 6=∅

Ex∼N(0,Id)

[
∏

i∈S

a(〈x, ui〉) ·
∏

i∈T

a(l(i))(γi,l(i)) ·
〈x, vi − ṽi〉l(i)

l(i)!

]

≤
∑

l : T→{0,1,...,m+1}
l−1(m+1) 6=∅

(sup
t

|a(t)|)|S| ·
(
∏

i∈T

supt |al(i)(t)|
l(i)!

)
· Ex∼N(0,Id)

[
∏

i∈T

‖projU1
x‖l(i)2 · ‖vi − ṽi‖l(i)2

]

≤
∑

l : T→{0,1,...,m+1}
l−1(m+1) 6=∅

mO(|S|) ·
(
∏

i∈T

mO(l(i)) · εl(i)
l(i)!

)
· Ey∼N(0,Ik)

[
‖y‖

∑
i∈T l(i)

2

]

≤
∑

l : T→{0,1,...,m+1}
l−1(m+1) 6=∅

mO(|S|+∑
i∈T l(i)) · ε

∑
i∈T l(i) ·

(
k +

∑
i∈T l(i)

)∑
i∈T l(i)

∏
i∈T l(i)!

≤
∑

l : T→{0,1,...,m+1}
l−1(m+1) 6=∅

mO(k)d−Ω(
∑

i∈T l(i))
∏

i∈T l(i)!

≤ mO(k) · d−Ω(m), (6)

where the first step follows from (3), the second step follows from Lemma B.1, the third step follows from Cauchy–Schwartz,

the fourth step follows from Lemma 4.2 and from the bound ‖vi − ṽi‖2 ≤ ε, the fifth step follows from the inequality

Ey∼N(0,Ik)[‖y‖s2] ≤ (k+ s)s, the sixth step follows from (εmΘ(1)k) = d−Ω(1) and from
∑

i∈T l(i) ≤ O(mk), and the last

step follows from dropping the denominators, the sum having at most (m+2)|T | = mO(k) terms, and that
∑

i l(i) ≥ m+1.

Plugging (6) into (2), we get the result.

B.3. Setting parameters

We obtain a Ω(
√
k/m)-robust classifier, and the precision of statistical queries can be as high as mO(k) · d−Ω(m). Thus, for

0 < γ < 1/10, we can set m = dΘ(γ) and k ≪ m log d
logm . As a result we get robustness Ω(

√
k/m) = Ω(

√
log d/ logm) =

Ω(
√
1/γ), and the precision of statistical queries can be as good as 2−dΩ(γ)

.
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C. Bound on covering number of generative models

Lemma C.1. Let gw be a ℓ-layer neural network architecture with at most d activations in each layer and Lipschitz

nonlinearities such as ReLUs. Then

‖gw(x)− gw′(x)‖2 ≤ ‖w − w′‖1 · ‖x‖2 · (dB)ℓ

Proof. By the triangle inequality, it suffices to consider w and w′ that differ in a single coordinate. Suppose this coordinate

is in layer i. Since each layer’s weight matrix wi has ‖wi‖ ≤ ‖wi‖F ≤ dB, and the initial layer has activation ‖x‖2, the ℓ2
norm of the activations in the ith layer is at most ‖x‖2(dB)i. Therefore the change in activation in layer i+ 1 is at most

‖w − w′‖1 · ‖x‖2(dB)i, and the change in the last layer is at most ‖w − w′‖1 · ‖x‖2(dB)ℓ−1.

Lemma 3.7. Let gw be an ℓ-layer neural network architecture with at most d activations in each layer and Lipschitz

nonlinearities such as ReLUs. Consider any family of distribution pairs D such that for each D ∈ D, and each i ∈ {0, 1},

there exists some w ∈ [−B,B]m with W∞(Di, D(gw)) ≤ ε. Then

log (NW∞,TV(D, ε+ δ, δ)) ≤ O(mℓ log(dB/δ)).

Proof. First, consider any w ∈ [−B,B]m and x ∈ R
k, and let w′ differ from w in a single weight.

For some parameter α > 0, we consider the net Ñ = {D(gw) | w ∈ [−B,B]m ∩ αZm}. Our cover of D will be N ×N .

This has size (1 + 2B
α )2m, which is sufficiently small as long as α = (dB/δ)−O(ℓ).

It suffices to show for each D ∈ D and i ∈ {0, 1} that Di ∈ Uε+δ,δ(D̃) for some D̃ ∈ Ñ . Let w∗ be the w for which

W1(Di, D(gw)) ≤ ε and ŵ be the nearest w in our cover, so ‖ŵ − w∗‖∞ ≤ α. Then for any x ∈ R
k with ‖x‖2 ≤

√
k/δ,

‖gŵ(x)− gw∗(x)‖2 ≤ δ

by Lemma C.1 and our chosen α. Since ‖x‖2 ≤
√
k/δ with probability much higher than 1− δ, this implies D(gw∗) ∈

Uδ,δ(D(gŵ)). The triangle inequality then gives Di ∈ Uε+δ,δ(D(gŵ)) as desired.
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