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Abstract
Optimization of machine learning models is com-
monly performed through stochastic gradient up-
dates on randomly ordered training examples.
This practice means that each fraction of an epoch
comprises an independent random sample of the
training data that may not preserve informative
structure present in the full data. We hypothe-
size that the training can be more effective with
self-similar arrangements that potentially allow
each epoch to provide benefits of multiple ones.
We study this for “matrix factorization” – the
common task of learning metric embeddings of
entities such as queries, videos, or words from
example pairwise associations. We construct ar-
rangements that preserve the weighted Jaccard
similarities of rows and columns and experimen-
tally observe training acceleration of 3%-37% on
synthetic and recommendation datasets. Princi-
pled arrangements of training examples emerge
as a novel and potentially powerful enhancement
to SGD that merits further exploration.

1. Introduction
Large scale machine learning models are commonly trained
on data of the form of associations between entities. The
goals are to obtain a model that generalizes (supports infer-
ence of associations not present in the input data) or obtain
metric representations of entities that capture their associ-
ations and can be used as in downstream tasks. Prevalent
examples are images and their labels (Deng et al., 2009),
similar image pairs (Schroff et al., 2015), text documents
and occurring terms (Berry et al., 1995; Dumais, 1995; Deer-
wester et al., 1990), users and watched or rated videos (Ko-
ren et al., 2009), pairs of co-occurring words (Mikolov et al.,
2013), and pairs of nodes in a graph that co-occur in short
random walks (Perozzi et al., 2014). This setting is fairly
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broad: entities can be of one or multiple types and example
associations used for training can be raw or preprocessed
by reweighing raw frequencies (Salton & Buckley, 1988;
Deerwester et al., 1990; Mikolov et al., 2013; Pennington
et al., 2014) or adding negative examples when the raw data
includes only positive ones (Koren et al., 2009; Mikolov
et al., 2013).

The optimization objective of the model parameters has
the general form of a sum over example associations. In
modern applications the number of terms can be huge and
the de facto method is stochastic gradient descent (SGD)
(Robbins & Siegmund, 1971; Koren, 2008; Salakhutdinov
et al., 2007; Gemulla et al., 2011; Mikolov et al., 2013).
With SGD, gradient updates computed over stochastically-
selected minibatches of training examples are performed
over multiple epochs. The extensive practice and theory
of SGD optimization introduced numerous tunable hyper-
parameters and extensions aimed to improve quality and
efficiency. These include tuning the learning rate also per-
parameter (Duchi et al., 2011) and altering the distribution
of training examples by gradient magnitudes (Alain et al.,
2015; Zhao & Zhang, 2015), cluster structure (Fu & Zhang,
2017), and diversity criteria (Zhang et al., 2017). Another
popular method, Curriculum Learning (Bengio et al., 2009),
alters the distribution of examples (from easy to hard) in the
course of training. In this work we motivate and explore
the potential benefits of tuning the arrangement of training
examples – a novel optimization method that is combinable
with those mentioned above.

The baseline practice, which we refer to as independent ar-
rangements, forms the training order by drawing examples
(or minibatches of examples) independently at random ac-
cording to prescribed probabilities (that may correspond to
the frequency of the association in the training set). This i.i.d
practice is supported by optimization theory as it bounds
the variance of stochastic gradient updates. Independent
arrangements, however, have a potential drawback: Infor-
mative structure that is present in the full data is not recov-
erable from the independent random samples that comprise
fractional epochs. We demonstrate this point for a com-
mon “matrix factorization” task where the data is pairwise
associations such as users watches of videos for recommen-
dation tasks (Koren et al., 2009) and term co-occurrences
for word embeddings (Mikolov et al., 2013). The rows and
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columns represent entities and entries are example associ-
ations (viewers × videos or word × word). In such data
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Figure 1. Two rows (A and B), where entries in red are positive
and equal. The Jaccard similarity is J(A,B) = 1/2 (5 common
positive columns out of 10 that are positive for at least one). A
fraction of an epoch includes a random sample from each row.
With independent arrangements the 4 samples from each row are
unlikely to align on the common columns resulting in empirical
Jaccard similarity of 0. With our coordinated arrangement the
samples align and the empirical Jaccard similarity is 1/2.

(see Figure 1), the similarity of two rows (or columns) is
indicative of the similarity of the corresponding entities that
our model is out to capture. For example, two videos with
overlapping sets of viewers are likely to be similar. While
the target similarity we seek is typically more complex and
in particular reflects higher order relations (sets of similar
but not overlapping viewers), this “first order” similarity
is nonetheless indicative. In a random sample of matrix
entries, however, two similar rows will have dissimilar sam-
ples: The expected empirical weighted Jaccard similarity
on the sample is much lower than the respective similarity
in the data, and this happens even at the extreme where
the sample is a large fraction of the full data (say half an
epoch) and we are considering two identical rows (!). For
our training this means that fractions of epochs rapidly lose
this important information that is present in the full dataset.
We hypothesize that this may impact the effectiveness of
training: An arrangement that is more “self-similar” in the
sense that information is preserved to a higher extent in frac-
tional epochs may allow a single epoch to provide benefits
of multiple ones and for the training to converge faster.

We approach this by designing coordinated arrangements
that preserve in expectation in fractional epochs the
weighted Jaccard similarities of rows and columns. Our
design is inspired by the theory of coordinated weighted
sampling (Kish & Scott, 1971; Brewer et al., 1972; Cohen
et al., 2009; Cohen, 2014) which are related to MinHash
sketches (Cohen, 1997; Broder, 2000). In coordinated sam-
pling the goal is to select samples of entries of vectors that
can provide more accurate estimates of relations between
the vectors than independent samples. In our application
here we will construct arrangements of examples where
subsequences look like coordinated samples.

We specify our coordinated arrangements by a distribution
on randomized subsets of example associations which we
refer to as microbatches. Our training sequence consists of
independent microbatches and thus retains the traditional
advantages of i.i.d training at the coarser microbatch level.

Note that our microbatches are designed so that the proba-
bility that each example is placed in a microbatch is equal
to its prespecified baseline marginal probability. Therefore,
the only difference between coordinated and independent
arrangements is in the ordering.

In some applications or training regimes smaller micro-
batches, which allow for more independence, can be more
effective. Our coordinated microbatches are optimized in
size to preserve expected similarities. Microbatch sizes can
be naively decreased by random partitions – but this break
down the similarity approximation and more so for similar
pairs, which are exactly the ones for which the benefits of
preserving similarities are larger. We show how Locality
Sensitive Hashing (LSH) maps can be used to decrease mi-
crobatch sizes in a targeted way that compromises more
the less similar pairs. We explore LSH maps that leverage
coarse available proxies of entity similarity: The weighted
Jaccard similarity of the row and column vectors or angular
similarity of an embedding obtained by a weaker model.

We design efficient generators of coordinated and LSH-
refined microbatches and study the effectiveness of different
arrangements through experiments on synthetic stochastic
block matrices and on recommendation data sets. We use
the popular Skip Gram with Negative Sampling (SGNS)
loss objective (Mikolov et al., 2013). We observe consistent
training gain of 12-37% on blocks and of 3%-12% on our
real data sets when using coordinated arrangements.

The paper is organized as follows. Section 2 presents neces-
sary background on the loss objective we use in our experi-
ments and working with minibatches with one-sided gradi-
ent updates and selection of negative examples. In Section 3
we present our coordinated microbatches and in Section 4
we establish their properties. Our LSH refinements are pre-
sented in Section 5 and our experimental results are reported
in Sections 6 and 7. We conclude in Section 8.

2. Preliminaries
Our data has the form of associations between a focus entity
from a set F and a context entity from a set C. The focus
and context entities can be of different types (users and
videos) or two roles of the same type or even of the same
set (as in word embeddings). We use κij as the association
strength between focus i and context j. In practice, the
association strength can be derived from frequencies in the
raw data or from an associated value (for example, numeric
rating or watch time).

An embedding is a set of vectors f i, cj ∈ <d that is trained
to minimize a loss objective that encourages f i and cj to
be “closer” when κij is larger. Examples of positive associ-
ations (i, j) are drawn with probability proportional to κij .
Random associations are then used as negative examples
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(Hu et al., 2008) that provide an “antigravity” effect that pre-
vents all embeddings from collapsing into the same vector.
The weight

nij := λ‖κ·j‖1‖κi·‖1/‖κ‖1 (1)

of a negative example (i, j) is proportional to the product of
its column sum ‖κ·j‖1 by its row sum ‖κi·‖1. The hyperpa-
rameter λ specifies a ratio of negative to positive examples.

Our design applies to objectives of the general form

L :=
∑
ij

κijL+(f i, cj) +
∑
ij

nijL−(f i, cj) (2)

and can also accomodate hidden parameters as in (Bromley
et al., 1994; Chopra et al., 2005). For concreteness, we
focus here on Skip Gram with Negative Sampling (SGNS)
(Mikolov et al., 2013). The SGNS objective is designed to
maximize the log likelihood of these examples. The prob-
ability of positive and negative examples are respectively
modeled using

pij = σ(f i · cj) =
1

1 + exp(−f i · cj)

1− pij = σ(−f i · cj) =
1

1 + exp(f i · cj)
.

The likelihood function, which we seek to maximize, can
then be expressed as Πij p

κij

ij Πij(1− pij)nij . We equiva-
lently can minimize the negated log likelihood that turns the
objective into a sum of the form (2):

L := −
∑
ij

κij log pij −
∑
ij

nij log(1− pij) .

(using L+(f i, cj) := − log σ(f i · cj) and L−(f i, cj) :=
− log σ(−f i · cj).)

The optimization is performed by random initialization
of the embedding vectors followed by stochastic gradient
updates. The stochastic gradients are computed for mini-
batches of examples that include b positive examples, where
(i, j) appears with frequency κij/‖κ‖1 and a set of bλ neg-
ative examples.

2.1. One-sided updates

We work with one-sided updates, where each minibatch
updates only its focus or only its context embedding vectors,
and accordingly say that minibatches are designated for
focus or context updates. One-sided updates are used with
alternating minimization (Csiszar & Tusnády, 1984) and
decomposition-coordination approaches (Cohen, 1980). For
our purposes, one-sided updates facilitate our coordinated
arrangements (intuitively, because we need to separately
preserve column and row similarities) and also allow for

precise minibatch-level matching of each positive update of
a parameter with a corresponding set of negative updates as
a means to control variance.

Our minibatches are constructed from a set P of b positive
examples and matched negatives. Our marginal probabilities
of positive and negative examples (see Eq. 1) are equiva-
lent to pairing each positive example (i, j) (with marginal
probability κij/‖κ‖1) with (i) λ negative examples of the
form (i, j′) where j′ is a random context entities (selected
proportionally to the column sum ‖κ·j′‖/‖κ‖1 and (ii) λ
negative examples of the form (i′, j) where i′ are random
focus entities i′ (selected proportionally to their row sums
‖κi′·‖1/‖κ‖1). With one-sided updates, we pair each posi-
tive example (i, j) ∈ P with λ negative examples selected
according to the respective designation. To form a focus-
updating minibatch, we generate a random set of λ context
vectors C ′. For each positive example (i, j) ∈ P we gen-
erate λ negative examples (i, j′) for j′ ∈ C ′. The focus
embedding f i is updated to be closer to cj but at the same
time repealed (in expectation) fromC ′ context vectors. With
learning rate η, the combined update to f i due to positive
example (i, j) and matched negatives is

∆f i = −η∇f i

L+(f i, cj) +
∑
j′∈C′

L−(f i, cj′)

 .

Symmetrically, to form a context-updating minibatch we
draw a random set of focus vectors F ′ and generate
respective negative examples. Each positive example
(i, j) ∈ P yields an update of context vector cj by ∆cj =

−η∇cj

(
L+(f i, cj) +

∑
i′∈F ′ L−(f i′ , cj)

)
. All updates are

combined and applied at the end of the minibatch.

3. Arrangement Schemes
Arrangement schemes determine how examples are orga-
nized. At the core of each scheme is a distribution B over
subsets of positive examples which we call microbatches.
Our microbatch distributions have the property that the
marginal probability of each example (i, j) is always equal
to κij/‖κ‖1 but subset probabilities vary across schemes.
Moreover, within a scheme we may have different distribu-
tions Bf for focus and Bc for context designations.

Minibatches formation for focus updates is specified in Al-
gorithm 1 (the construction for context updates is symmet-
ric). The input is a microbatch distribution Bf , minibatch
size parameter b, and a parameter λ that determines the ratio
of negative to positive training examples. We draw indepen-
dent microbatches until we have a total of b or more positive
examples and then select negative examples as described
above. When training, we alternate between focus and con-
text updating minibatches to maintain balance between the
total number of examples processed with each designation.



Self-Similar Epochs

Algorithm 1: Minibatch construction (Focus updates)
Input: Bf , b, λ // Microbatch distribution,

size, negative sampling
P,N ← ∅
repeat X ∼ Bf ; P ← P ∪X
until |P | ≥ b
C′ ← λ contexts selected iid by column weights
foreach example pair (i, j) ∈ P do

foreach j′ ∈ C′ do
N ← N ∪ {(i, j′)}

return P ∪N

The baseline independent arrangement method (IND) can
be placed in this framework using microbatches that consist
of a single positive example (i, j) selected with probability
κij/‖κ‖1 (see Algorithm 2). Our coordinated microbatches
(COO) have different distributions for focus and context
updates. Algorithm 3 generates focus microbatches (the
generator for context designation is symmetric). These
microbatches have the form of a set of positive examples
with a shared context. In the instructive special case of κ
with all-equal positive entries focus microbatches include all
positive entries in some column and context microbatches
include all positive entries in a raw.

We preprocess κ so that we can efficiently draw j with
probability ‖κ·j‖∞/

∑
h ‖κ·h‖∞ and construct an index

that for context j and value T efficiently returns all entries i
with κij ≥ T . The preprocessing is linear in the sparsity of
κ and with it the microbatch generator amounts to drawing
a context j (anO(1) operation), u ∼ U [0, 1] and then query
the index with j and T = u‖κ·j‖∞. The preprocessing
cost for microbatch generation is often dominated by the
preprocessing done to generate κ from raw data.

Algorithm 2: IND microbatches
Input: κ
Choose (i, j) with probability κij/‖κ‖1;
return {(i, j)}

Algorithm 3: COO microbatches (Focus updates)
Input: κ
// Preprocessing:
foreach context j do

Mj ← maxi κij // Maximum entry for
context j

Index column j so that we can return for each t ∈ (0, 1],
P (j, t) := {i | κij ≥ tMj}.

// Microbatch draw:

Choose a context j with probability Mj∑
h Mh

Draw u ∼ U [0, 1]

return {(i, j) | i ∈ P (j, u)}

4. Properties of COO Arrangements
We establish that COO arrangements produce the same
marginal distribution on training examples as the baseline
IND arrangements. We then highlight two properties of co-
ordinated arrangements that are beneficial to accelerating
convergence: A micro-level property that makes gradient
updates more effective by moving embedding vectors of sim-
ilar entities closer and a macro-level property of preserving
expected similarity in fractions of epochs.

Marginal distribution We show that the frequency of
each example (i, j) to occur in a COO microbatch is the
same in both designations and ∝ κij .
Lemma 4.1. The inclusion probability of a positive exam-
ple (i, j) in a coordinated microbatch with focus designa-
tion (Algorithm 3) is κij/

∑
h ‖κ·h‖∞, where the notation

‖κ·h‖∞ is the maximum entry in column h. Respectively,
the inclusion probability of (i, j) in a microbatch with con-
text designation is κij/

∑
h ‖κh·‖∞, where ‖κh·‖∞ is the

maximum entry at row h.

Proof. Consider focus updates (apply a symmetric argu-
ment for context updates). The example (i, j) is se-
lected when first context j is selected, which happens
with probability ‖κ·j‖∞/

∑
h ‖κ·h‖∞ and then we have

u ≤ κij/‖κ·j‖∞ for independent u ∼ U [0, 1], which hap-
pens with probability κij/‖κ·j‖∞. Combining, the proba-
bility that (i, j) is selected is the product of the probabilities
of these two events which is κij/

∑
h ‖κ·h‖∞.

Our arrangements consist of both focus and context micro-
batches that balance the total number of examples in each
designation. Therefore, each example appears in the same
frequency with each designation.

Alignment of corresponding examples We establish
that our COO microbatches maximize the co-placement prob-
ability of corresponding pairs of examples (examples with
shared context or focus) and discuss why this is helpful in
accelerating training.

Lemma 4.2. If a focus-designation COO microbatch in-
cludes an example (i, j) and κij ≤ κi′j then it also includes
the example (i′, j). Symmetrically with context-designation,
(i, j) being included and κij ≤ κij′ implies that (i, j′) is
also included.

We show that aligned updates on corresponding ex-
amples are helpful in bringing the embedding vectors
closer. A pair of entities with higher Jaccard similar-
ity has more corresponding examples and benefit more
from alignment. Interestingly, the benefit is there even
when embedding vectors are random (as is the case
early in training). In particular, the SGNS loss term
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for a positive example is L+(f , c) = − log σ(f , c) =

− log
(

1
1+exp(−f ·c)

)
. The gradient with respect to f is

∇f (L+(f , c)) = −c 1
1+exp(f ·c) and the respective update

of f ′ ← f + η 1
1+exp(f ·c)c clearly increases cossim(f , c).

Figure 2. Expected in-
crease in cossim(f1,f2) as
a function of dimension for
f i ∼ N d after gradient
update to same random
context c ∼ N d

Consider two focus enti-
ties 1, 2 and corresponding
examples (1, j) and (2, j).
When the two examples are
in the same focus-updating
minibatch (where cj is
fixed) both cossim(f1, c) and
cossim(f2, c) increase but a
desirable side effect is that
in expectation cossim(f1,f2)
increases as well. The up-
dates are aligned also with
full gradients but not with
IND arrangements that on

average place corresponding examples half an epoch apart.
Figure 2 shows the expected increase in cosine similarity
E
[
cossim(f ′1,f

′
2)− cossim(f1,f2)

]
as a function of the

dimension for example learning rates η = 0.02, 0.05 when
the vectors f1, f2, and c are independently drawn from a
product distribution N (0, 1)d of independent Gaussians.

Preservation of Jaccard similarities We establish that
COO arrangements preserve in expectation Jaccard similar-
ities of pairs of rows and columns. The weighted Jaccard
similarity of two vectors v and u is defined as

J(v,u) =

∑
i min{vi, ui}∑
i max{vi, ui}

. (3)

Lemma 4.3. Consider a set of focus updating microbatches
and let Xij be the random variable that is the multiplicity of
example (i, j). Then for any two rows i, i′, the expectation
of the empirical weighted Jaccard similarity on X (when
defined) is equal to the weighted Jaccard similarity on κ:

E

J(Xi·, Xi′·) |
∑
j

max{Xi′,j , Xi,j} > 0

 = J(κi,·, κi′,·)

A symmetric claim holds for context updating microbatches.

Proof. We consider a single microbatch and its contribu-
tions to the numerator and denominator of the empirical
similarity J(Xi·, Xi′·). From Lemma 4.2, the possible con-
tributions are (0, 0), (0, 1) or (1, 1). Therefore, J(Xi·, Xi′·)
(if defined) is simply the average of the contributions
to the numerator over microbatches that contributed
to the denominator. The expectation of J(Xi·, Xi′·)
(when defined) is therefore equal to the probability of a

contribution to the numerator in a single microbatch given
that there was a contribution to the denominator. If the
shared context in the microbatch is j, the probability of con-
tribution to the denominator is max{κi′,j , κi,j}/‖κ·j‖∞
and to the numerator is min{κi′,j , κi,j}/‖κ·j‖∞. The
probability over the random draw of context j of a
contribution to the denominator and numerator re-
spectively is

∑
j max{κi′,j , κi,j}/

∑
j ‖κ·j‖∞ and∑

j min{κi′,j , κi,j}/
∑
j ‖κ·j‖∞. Since a contribution

to the numerator is made only if there was one to
the denominator, the expectation we seek is the ratio
J(κi,·, κi′,·).

5. Refinement using LSH Maps
We provide methods to partition our COO microbatches so
that they are smaller and of higher quality in the sense that a
larger fraction of corresponding example pairs are between
entities with higher similarity. To do this we use locality
sensitive hashing (LSH) to compute randomized maps of
entities to keys. Each map is represented by a vector s of
keys for entities such that similar entities are more likely to
obtain the same key. We use these maps to refine our basic
microbatches by partitioning them according to keys.

Ideally, our LSH modules would correspond to the target
similarity, but this creates a chicken-and-egg problem. In-
stead, we can use LSH modules that are available at the start
of training and provide some proxy of the target similarity.
For example, a partially trained or a weaker and cheaper to
train model. We consider two concrete LSH modules based
on Jaccard and on Angular LSH. The modules generate
maps for either focus or context entities which are applied
according to the microbatch designation. We will specify
the map generation for focus entities, as maps for context
entities can be symmetrically obtained by reversing roles.

Our Jaccard LSH module is outlined in Algorithm 4. The
probability that two focus entities i and i′ are mapped to
the same key (that is, si = si′) is equal to the weighted
Jaccard similarity of their association vectors κi· and κi′·
(For context updates the map is according to the vectors
κ·j):

Lemma 5.1. (Cohen et al., 2009)

Pr[si = si′ ] = J(κij , κi′j)

Our angular LSH module is outlined in Algorithm 5. Here
we input an explicit “coarse” embedding f̃ i, c̃j that we
expect to be lower quality proxy of our target one. Each
LSH map is obtained by drawing a random vector and then
mapping each entity i to the sign of a projection of f̃ i on the
random vector. The probability that two focus entities have
the same key depends on the angle between their coarse
embedding vectors:
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Lemma 5.2. (Goemans & Williamson, 1995)

Pr[si = si′ ] = 1− 1

π
cos−1 cossim(f̃ i, f̃ i′) ,

where cossim(v,u) := v·u
‖v‖2‖u‖2 is the cosine of the angle

between the two vectors.

Multiple LSH maps can be applied to decrease microbatch
sizes and increase the similarity level of entities placed in the
same microbatch: With r independent maps the probability
that two entities are microbatched together is Pr[si = si′ ]

r –
thus the probability decreases faster when similarity is lower.
The number of LSH maps we apply can be set statically or
adaptively to obtain microbatches that are at most a certain
size (usually the minibatch size). For efficiency, we precom-
pute a small number of LSH maps in the preprocessing step
and randomly draw from that set. The computation of each
map is linear in the sparsity of κ.

Algorithm 4: Jaccard LSH map: Focus
foreach context j do // i.i.d Exp distributed

Draw uj ∼ Exp[1]

foreach focus i do // assign LSH bucket key
si ← arg minj uj/κij

return s

Algorithm 5: Angular LSH map: Focus

Input: {f̃ i} // coarse d dimensional
embedding

Draw r ∼ Sd // Random vector from the unit
sphere

foreach focus i do // assign LSH bucket key
si ← sign(r · f̃ i)

return s

6. Arrangement Methods Experiments
We trained embeddings with different arrangement methods:
The baseline independent arrangements (IND) as in Algo-
rithm 2, coordinated arrangements (COO) as in Algorithm 3,
and some (COO+LSH) arrangements with Jaccard LSH.
We also experimented with tunable arrangements (MIX) that
start with COO (which reaps much of its benefit earlier in
training) and switch to COO+LSH or to IND. Finally, as
another baseline we also trained using the more standard
IND with two-sided updates. The results were similar or
slightly inferior to one-sided IND.

6.1. Stochastic blocks data

We generated data sets using the stochastic blocks model
(Condon & Karp, 2001). This synthetic data allowed us to
explore the effectiveness of different arrangement methods

as we vary the number and size of blocks. The simplicity
and symmetry of this data (parameters, entities, and associa-
tions) allowed us to compare different arrangement methods
while factoring out optimizations and methods geared for
asymmetric data such as per-parameter learning rates or al-
terting the distribution of examples. The blocks data binary
similarity allowed us to explore the limits of LSH refine-
ments by refining COO microbatches according to ground
truth similarity (partitioning COO microbatches by block
membership) (COO+OPTLSH).

The parameters for the generative model are the dimensions
n × n of the matrix, the number of (equal size) blocks B,
the number of interactions r, and the in-block probability p.
The rows and columns are partitioned to consecutive groups
of n/B, where the ith part of rows and ith part of columns
are considered to belong to the same block. We generate
the matrix by initializing the associations to be κij = 0. We
then draw r interactions independently as follows. We select
a row index i ∈ [n] uniformly at random. With probability
p, we select (uniformly at random) a column j ∈ [m] that
is in the same block as i and otherwise (with probability
1− p) we select a column j ∈ [n] that is outside the block
of i. We then increment κij . The final κij is the number of
times (i, j) was drawn. In our experiments we set n = 104,
r = 107,p = 0.7 and B ∈ {10, 20, 50, 100}.

6.2. Implementation and methodology

We implemented our methods in Python using the Ten-
sorFlow library (Abadi & et al., 2015). We used the
word embedding implementation of (Mikolov et al., 2013;
word2vec.py) except that we used our methods to specify
minibatches. The implementation included a default bias pa-
rameter associated with context embeddings and we trained
embeddings with and without the bias parameter. The rel-
ative performance of arrangement methods was the same
but the overall performance was significantly better when
the bias parameter was used. We therefore report results
with bias parameters. We used a fixed learning rate to fa-
cilitate a more accurate comparison of methods and trained
with η = 0.005 to η = 0.15. We observed similar relative
performance and report results with η = 0.02. We worked
with minibatch size parameter values b ∈ {4, 64, 256} (re-
call that b is the number of positive examples and λ = 10
negative examples are matched with each positive example),
and embeddings dimension d ∈ {5, 10, 25, 50, 100}.

6.3. Quality measures

We use two measures of the quality of an embedding with
respect to the blocks ground truth. The first is the cosine
gap which measures average quality and is defined as the
difference in the average cosine similarity between positive
examples and negative examples. We generate a sampled
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Figure 3. Cosine gap (top) and Precision at k = 10 (bottom) with COO and IND arrangements and COO+OPTLSH refinements in the
course of training (d = 50, b = 64) for stochastic blocks with B ∈ {10, 20, 50, 100} (left to right).

set T+ of same-block pairs (i, j) as positive test examples
and a sampled set T_ of pairs that are not in the same block
as negative test examples and compute

1

|T+|
∑

(i,j)∈T+

cossim(f i, cj)−
1

|T−|
∑

(i,j)∈T−

cossim(f i, cj) .

(4)
We expect a good embedding to have high cosine similar-
ity for same-block pairs and low cosine similarity for out
of block pairs. The second measure we use, precision at
k, is focused on the quality of the top predictions and is
appropriate for recommendation tasks. For each sampled
representative entity we compute the entities with top k co-
sine similarity and consider the average fraction of that set
that are in the same block.

#blocks 0.75 0.95 0.99
B peak %gain ×109 %gain ×109 %gain ×109

Cosine Gap Quality
10 1.09 31.07 1.58 24.80 1.89 19.06 2.17
20 1.03 29.56 1.40 23.74 1.72 18.13 1.97
50 1.00 25.52 1.22 20.46 1.55 14.73 1.80

100 0.99 20.66 1.09 15.27 1.40 12.11 1.64
Precision at k = 10 Quality

10 1.00 43.64 1.12 37.70 1.24 37.41 1.38
20 1.00 40.80 1.03 36.16 1.14 33.47 1.23
50 1.00 33.89 0.92 31.37 1.04 25.35 1.09

100 1.00 26.67 0.84 23.37 0.94 20.00 1.02

Table 1. Training gain of COO with respect to IND baseline for
stochastic blocks (d = 50, b = 64). Peak is maximum quality for
COO. We report the training for IND to reach 75% , 95%, and 99%
of peak with respective percent reduction in training with COO.

6.4. Stochastic blocks results

Our results were consistent for different dimensions and
minibatch sizes and we report representative results for
d = 50 and b = 64 and for the methods COO, IND, and
the reference method COO+OPTLSH. Results for the co-

sine gap quality measure and for the precision (at k = 10)
are reported in Figure 3 and Table 1. The figures show the
increase in quality in the course of training for the different
methods . The x-axis in these plots shows the amount of
training in terms of the total number of gradient updates
performed. The tables report the amount of additional train-
ing needed for IND to obtain the performance of COO. We
observe that across all block sizes B and for the two quality
measures, COO arrangement resulted in significantly faster
convergence than the IND arrangements. The gains were
larger with larger blocks. Much of the gain of COO arrange-
ments over IND was realized earlier in training and then
maintained. The COO+OPTLSH method provided only
very modest improvement over COO and only for larger
blocks. This improvement bounds that possible by any
COO+LSH method on this data and indeed COO+LSH re-
sults (not shown) were between COO and COO+OPTLSH.

6.5. Recommendation data sets and results

We performed experiments on two recommendation data
sets, MOVIELENS1M and AMAZON. The MOVIELENS1M
dataset (Movielen1M) contains 106 reviews by 6 × 103

users of 4 × 103 movies. The AMAZON dataset (SNAP)
contains 5 × 105 fine food reviews of 2.5 × 105 users on
7.5×103 food items. Provided review scores were [1-5] and
we preprocessed the matrix by taking κij to be 1 for review
score that is at least 3 and 0 otherwise. We then reweighed
entries in the MOVIELENS1M dataset by dividing the value
by the sum of its row and column to the power of 0.75. This
is standard processing that retains only positive ratings and
reweighs to prevent domination of frequent entities.

We created a test set T+ of positive examples by sampling
20% of the non zero entries with probabilities proportional
to κij . The remaining examples were used for training. As



Self-Similar Epochs

Figure 4. Precision at k = 10 (left) and cosine gap (right) in the
course of training with different arrangement methods on MOVIE-
LENS1M(top) and AMAZON(bottom) datasets. (d = 50, b = 64).
The vertical lines indicate the switch point of MIX (from COO to
IND).

0.75× peak 0.95× peak 0.99× peak
%gain ×109 %gain ×109 %gain ×109

AMAZON cosine gap: Gain over IND (peak=0.35)
Mix@4.5M 9.8 1.56 10.29 3.12 12.55 3.94
Coo 9.48 1.56 7.35 3.12 0 3.94

MOVIELENS1M cosine gap: Gain over IND (peak=0.40)
Mix@0.25M 11.94 0.68 7.45 0.82 6.08 0.92
Coo 11.94 0.68 4.97 0.82 6.08 0.92

AMAZON precision: Gain over IND (peak=0.44)
Mix@4.5M 10.76 1.80 3.00 3.40 4.05 4.53

MOVIELENS1M precision: Gain over IND (peak=0.37)
Mix@0.25M 10.24 0.85 4.31 1.66 3.24 2.05

Table 2. AMAZON and MOVIELENS1M, cosine gap and precision,
training gain over IND baseline (b = 64, d = 50).

negative test examples T− we used random zero entries.
We measured quality using the cosine gap and precision
at k = 10 over users with at least 20 nonzero entries. We
used 5 random splits of the data to test and training sets
and 10 runs per split. The results are reported in Figure 4
and Table 2. We show performance for COO and IND ar-
rangements and also for a MIX method that started out with
COO arrangements and switched to IND arrangements at
a point determined by a hyperparameter search. The MIX
method was often the best performer. We observe consistent
gains of 3%-12% that indicate that arrangement tuning is an
effective tool also on these more complex real-life data sets.

7. Example Selection Experiments
In this section we empirically explore the qualities of the
information contained in fractions of epochs when using
COO and IND arrangements. We select a small set of train-
ing examples that corresponds to a fractional epochs with
different arrangements and then train to convergence using

Figure 5. Training with selected examples (fractional epoch with
IND and COO arrangements). Stochastic blocks datasets and mini-
batch size parameter b = 4. Left to right: (T = 5, B = 10);
(T = 5, B = 100), (T = 20, B = 10), (T = 20, B = 100).

multiple epochs on only the selected examples. We sampled
T = 5, 10, 15, 20 examples from each row (for focus up-
dates) and symmetrically from each column (for context up-
dates) of the association matrix. To emulate a fractional IND
arrangement, we select T independent examples from each
row i by selecting a column j with probability κij/‖κi·‖1.
To emulate a fractional COO arrangement we repeat the fol-
lowing T times. We draw uj ∼ Exp[1] for each column and
select for each row i the column arg maxj κij/uj . Clearly
the marginal distribution of both selections is the same: The
probability that column j is selected for row i is equal to
κij/‖κi·‖1. Symmetric schemes apply to columns.

We trained embeddings (with no bias parameter and using
IND arrangements) on these small subsets of examples us-
ing identical setups. Updates were according to minibatch
designation: Row samples used for updating row embed-
dings and column samples for updating column embeddings.
Representative results are reported in Figure 5. We observe
that COO selection consistently results in faster early train-
ing than IND selection but sometimes reaches a lower peak.
We explain the faster early training by the COO selection
preserving short-range similarities (based on first-hop re-
lations) and the lower peak by lost “long-range” structure
(that reflects longer-range relations as those captured by
longer random walks and metrics such as personalized page
rank). Our COO arrangements which use the complete set
of examples retain both the short-range benefits of COO
selections and the long-range benefits of IND selections.

8. Conclusion
We demonstrated that SGD can be accelerated with princi-
pled arrangements of training examples that are mindful of
the “information flow” through gradient updates.
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