
Appendix: Rates of Convergence for Sparse Variational Gaussian Process
Regression

A. Proof Of Lemma 1
Titsias [2014] proves the tighter upper bound,
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Since Qff is symmetric positive semidefinite, Qn is positive
definite with eigenvalues bounded below by σ2

n. Write,
Qn = UΛUT, where U is unitary and Λ is a diagonal
matrix with non-increasing diagonal entries γ1 ≥ γ2 ≥
. . . ≥ γN ≥ σ2

n.

We can rewrite the second term (ignoring the factor of one
half) in Equation 1 as,
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The last inequality comes from noting that the fraction in
the sum attains a maximum when γi is minimized. Since
σ2
n is a lower bound on the smallest eigenvalue of Qn, we

have,
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Lemma 1 follows.

B. KL Divergence Gaussian Distributions
B.1. KL divergence between multivariate Gaussian

distributions

We make use of the formula for KL divergences between
multivariate Gaussian distributions in our proof of Lemma
2, and the univariate case in Proposition 1.

Recall the KL divergence from p1 ∼ N (m1,S1) to p2 ∼
N (m2,S2) both of dimension N is given by
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The inequality is a special case of Jensen’s inequality.

B.2. Proof of Upper Bound in Lemma 2

In the main text we showed,

Ey
[
KL
(
Q‖P̂

)]
=

t

2σ2
n

+

∫
N (y; 0,Kn)

× log

(
N (y; 0,Kn)

N (y; 0,Qn)

)
dy

In order to complete the proof, we need to show that the
second term on the right hand side is bounded above by
t/(2σ2

n). Using Equation 2:
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The inequality follows from noting the log determinant term
is negative, as Kn � Qn (i.e. Kn−Qn is positive definite).
Simplifying the last term,
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The first inequality uses that for positive semi-definite sym-
metric matrices Tr(AB) ≤ Tr(A)λ1(B) which is a special
case of Hölder’s inequality for Schatten norms. The final
line uses that the largest eigenvalue of Q−1n is bounded
above by σ−2n . Using this in Equation 3 finishes the proof.
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B.3. Proof of Proposition 1

Defining ε = 2KL(q‖p),
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Applying the lower bound x− log(x)− 1 ≥ (x− 1)2/2−
(x− 1)3/3,

ε ≥ (x− 1)2/2− (x− 1)3/3.

A bound on |x − 1| that holds for all ε can then be found
with the cubic formula. Under the assumption that ε < 1

5 ,
we have x− log(x) < 1.2 which implies x ∈ [0.493, 1.77].
For x in this range, we have
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So,
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From Equation 4 and x− log x > 1,
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Using our bound on the ratio of the variances completes the
proof of Proposition 1.

C. Covariances for Interdomain Features
We compute the covariances for eigenvector and eigenfunc-
tion inducing features.

C.1. Eigenvector inducing features

Recall we have defined eigenvector inducing features by,
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We now recognize this expression as w(m)TKffw(k). Using
the defining property of eigenvectors as well as orthonor-
mality,

cov(um, uk) = λk(Kff )δm,k.
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This is the ith entry of the matrix vector product
Kffw(m) = λm(Kff )w
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i .

C.2. Eigenfunction inducing features

Recall we have defined eigenfunction inducing features by,

um =

∫
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Then,
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The expectation and integration may be interchanged by Fu-
bini’s theorem, as both integrals converge absolutely since
p(x) is a probability density, the φm(x) are in L2(X )p ⊂
L1(X )p and k is bounded.

We may then apply the eigenfunction property to the inner
integral and orthonormality of eigenfunctions to the result
yielding,

cov(um, uk) = λk

∫
φk(x)φm(x)p(x)dx = λkδm,k.

With similar considerations,

cov(um, f(xi)) = E
[∫

φm(x)f(x)f(xi)p(x)dx

]
=

∫
φm(x)E[f(x)f(xi)]p(x)dx

= λmφm(xi).



Appendix:Rates of Convergence for Sparse Variational Gaussian Process Regression

Algorithm 1 MCMC algorithm for sampling ε k-DPP (A)
Input: Training inputs X = {xi}Ni=1, number of points
to choose, M , kernel k.
Returns: A sample of M inducing points drawn propor-
tional to the determinant of KZ,Z

Initialize M columns greedily in an iterative fashion call
this set S0.
for r < R do

Sample i uniformly from Sr and j uniformly from
X \ Sr. Define T = S \ {i} ∪ {j},
Compute pi→j := 1

2 min{1, det(KT )/det(KSr
)}

With probability pi→j Sr+1 = T otherwise, Sr+1 = S
end for
Return: SR

D. Discrete k-DPPs
D.1. Proof of Corollary 1 from Lemma 3
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The first inequality follows from Lemma 3. The second
uses the triangle inequality replace t(Z) with a bound on its
maximum. The final line uses one of the definitions of total
variation distance for discrete random variables.

D.2. Sampling Approximate k-DPPs

Belabbas & Wolfe [2009] proposed using the Metropolis
method for approximate sampling from a k-DPP. Several
recent works have shown that a natural Metropolis algorithm
on k-DPPs mixes quickly. In particular, Anari et al. [2016]
considers the following algorithm:

Theorem 1 (Anari et al. [2016], Theorem 2). Let A denote
algorithm 1. Let νR denote the distribution induced by
R steps of A. Let R(ε) denote the minimum R such that
‖µ − νR‖TV < ε, where µ is a k-DPP on some kernel
matrix Kff . Then
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ε
.

Taking ε to be any fixed inverse power of N, (i.e. ε = N−γ ,

will make the second termO(NM log(N)),while by taking
γ large (e.g. greater than 2), we can make 2Nvε small.

The total cost of the algorithm is determined by the cost of
the greedy initialization, plus R(ε) times the per iteration
cost of the algorithm. A naive implementation of the greedy
initialization requiresO(NM4) time andO(NM) memory,
simply by computing the determinant of each of the N −m
possible ways to extend the current subset (faster implemen-
tations are possible, but this suffices for our purposes). We
assume that this is implemented in such a way that at the
end of the initialization we have access to det(KS0) and a
Cholesky factorization S0 = L0L0

T.

We take as an inductive hypothesis that at iteration r of the
algorithm, we know det(KSr ) and a Cholesky factorization,
KSr

= LrL
T
r. We then need to show we can compute a

Cholesky factorization and determinant of KT in O(M2).
Given the Cholesky factorization of T, det(KT ) can be
computed O(M) as it is the product of the square of the
diagonal elements. It therefore remains to consider the
calculation of LT , a Cholesky factor of KT .

The computation of LT proceeds in two steps: first we
compute LS\i using LS .
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update to a Cholesky factorization, and can be performed
using standard methods in O(M2).

We now need to extend a Cholesky factorization from S \ i
to T, which involves adding a row.
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[
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]
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proof of the per iteration cost.

E. Proof of Corollaries
E.1. Corollary 2

From Theorem 3, with probability 1− δ and this choice of ε
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Take M = (3+γ) log(N)+logD
log(B−1) . If M ≥ N the KL-

divergence is zero and we are done. Otherwise,C(M+1) <
N2
∑∞
i=M+1 λi. By the geometric series formula,

∞∑
i=M+1

λi = v

√
2a√
A

BM

1−B

Now, BM = N−3−γD−1, so

∞∑
i=M+1

λi = δN−3−γ ,
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n
< N−1−γ . Using this in eq. 5 completes

the proof.

E.2. Corollary 3

It is sufficient to consider the case of isotropic kernels and in-
put distributions.1 From [Seeger et al., 2008] in the isotropic
case (i.e. Bi = Bj =: B for all i, j ≤ D),
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.

Define M̃ = M +D− 1, to be the number of features used
for inference.
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In the second line, we use that B < 1, so Bs
1/D

obtains its
minimum on the interval s ∈ [s′, s′+1] at the right endpoint
(i.e. monotonicity). We now define α = − log(B). So,
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In the second line we made the substitution t = αs1/D, so
ds = α−DDtD−1. We now recognize,∫ ∞

t=αM1/D

e−ttD−1dt

1For the general case, the eigenvalues can be bounded above
by constant times the eigenvalues of an operator with an isotropic
kernel with all lengthscales equal to the shortest kernel lengthscale
and the input density standard deviation set to the largest standard
deviation of any one-dimensional marginal of p(x).

as an incomplete gamma function, Γ(D,αM1/D). From
Gradshteyn & Ryzhik [2014, 8.352],
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As M grows as a function of N and D is fixed, for N large
D ≤ αM1/D. This implies that that the largest term in the
sum on the right hand side is the final term, so
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For any fixed D, for this choice of M for any ε > 0 for N
large,

I = O
(
N−γ

′+ε
)
.

By choosing γ′ > 3 + ε′, for some fixed ε′ > 0 the proof is
complete, using a similar argument as the one used in the
proof of the previous corollary.

Note that using the bound proven in Theorem 2 (the tight-
est of our bounds) the exponential scaling in dimension
is unavoidable. If both k and p(x) are isotropic, then the
eigenvalue ( 2a

A )DBm appears
(
m+D−1
D−1

)
times. This fol-

lows from noting that this is the number of ways to write
m as a sum of D non-negative integers. Using an iden-
tity and standard lower bound for binomial coefficients∑K
i=1

(
m+D−1
D−1

)
=
(
K+D
D

)
≥
(
K+D
D

)D
> C(D)KD. for

some constant depending on D,C(D). Using Theorem 2 we
need to choose M such that λM = O(1/N). This means
choosing K � log(N) in the sum above, leading to at
least α logD(N) features being needed for some constant
α. The constant in this lower bound decays rapidly with



Appendix:Rates of Convergence for Sparse Variational Gaussian Process Regression

D, while the constant in the upper bound does not. Better
understanding this gap is important for understanding the
performance of sparse Gaussian process approximations in
high dimensions.

If the data actually lies on a lower dimensional manifold, we
conjecture the scaling depends mainly on the dimensionality
of the manifold. In particular, if the manifold is linear and
axis-aligned, then the kernel matrix only depends on dis-
tances along the manifold (not in the space it is embedded
in) so the eigenvalues will not be effected by the higher di-
mensional embedding. We conjecture that similar properties
are exhibited when the data manifold is nonlinear.

F. Smoothness and Sacks-Ylivasker
Conditions

In many instances the precise eigenvalues of the covariance
operator are not available, but the asymptotic properties
are well understood. A notable example is when the data
is distributed uniformly on the unit interval. If the kernel
satisfies the Sacks-Ylivasker condtions of order r:

• k(x, x′) is r-times continuously differentiable on
[0, 1]2 Moreover, k(x, x′) has continuous partial
derivatives up to order r+2 times on (0, 1)2∩(x > x′)
and (0, 1)2∩ (x < x′). These partial derivatives can be
continuously extended to the closure of both regions.

• Let L denote k(r,r)(x, x′), L+ denote the restriction
of L to the upper triangle and L− the restriction to the
lower triangle, then L(1,0)

+ < L
(1,0)
− on the diagonal

x = x′.

• L(2,0)
+ (s, ·) is an element of the RKHS associated to L

and has norm bounded independent of s.

Notably, Matérn half integer kernels of order r + 1/2 meet
the S-Y condition of order r. See [Ritter et al., 1995] for a
more detailed explanation of these conditions and extensions
to the multivariate case.
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