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A. Batch and more general normalization on general objective functions
Here we consider the generalized versions of batch normalization on general problems, including but not limited to deep
neural networks. Consider a smooth loss function J0(w1, ..., wm) and its normalized version J(�1, ..., �m, w1, ..., wm),

J(�1, ..., �m, w1, ..., wm) = J0

�
�1

w1
kw1kS1

, ..., �m
wm

kwmkSm

�
, wi 6= 0, i = 1, ..., m. (18)

Here the normalizing matrices Si, i = 1, ..., m, are assumed to be positive definite and Si does not depend on wi and �i
(it could depend on wj or �j , j < i). For neural networks, choosing Si = I as the identity matrix, one gets the weight
normalization (Salimans & Kingma, 2016). Choosing Si as the covariance matrix ⌃i of ith layer output zi, one gets batch
normalization. When the covariance matrix is degenerate, one can set Si = ⌃i + S0 with S0 being small but positive
definite, e.g. S0 = 0.001I .

It is obvious that the normalization changes the landscape of the original loss function J0, such as introducing new stationary
points which are not stationary points of J0. However, we will show the newly introduced stationary points are strict saddle
points and hence can be avoid by many optimization schemes (Lee et al., 2016; Panageas & Piliouras, 2017).

A.1. Normalization only introduces strict saddles

Let us begin with a simple case where m = 1 in Eq. (18), i.e. J(�, w; S) = J0

�
� w

kwkS

�
. In this case, the gradients of J are

@J
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= rJ0
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� w
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�T w

kwkS
, (19)
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�
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The stationary points (�, w) of J can be grouped into two parts:

(1) w̃ := �w

kwkS

is a stationary point of J0. In this case, � = ±kw̃kS .

(2) w̃ is not a stationary point of J0. In this case, � = 0, wT
rJ0(w̃) = 0.

The stationary points in (2) are ones introduced by normalization, giving the Hessian matrix
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Since rJ0(w̃) 6= 0, the rank of A1 is 2. In fact, the nonzero eigenvalues of A1 are:

a ±
p

a2 + 4kbk2

2
,

where a = w
T (r2

J0)w
kwk2

S

, b = 1
kwk2

S

rJ0. Therefore A1 has a negative eigenvalue, and (�, w) is a strict saddle point.

Let us now consider the case of m > 1. The normalization-introduced stationary points satisfy �i = 0, wT

i
rJ0(w̃i) = 0.

The Hessian matrix A at these points always has negative eigenvalues because it has a principal minor like A1 in Eq. (21).
Thus we have the following lemma:

Lemma A.1. If (�1, ..., �m, w1, ..., wm) is a stationary point of J but ( �1w

kw1kS1
, ..., �mwm

kwmkSm

) is not a stationary point of J0,

then (�1, ..., �m, w1, ..., wm) is a strict saddle point of J .
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A.2. Scaling property and increasing norm of wi

When using gradient descent to minimize the loss function (18), we need to specify the numerical parameters including the
initial values of �i and wi, which denoted by �0 and W0 respectively, and the step size for them, denoted by "� and ". For
simplicity, we use the same "� for all �i and the same " for wi. Due to the fact that the scale of wi does not effect the loss,
we immediately have the scaling properties on the set of numerical parameters, or a configuration {�0, W0, "� , "}.
Definition A.2 (Equivalent configuration). Two configurations, {�0, W0, "� , "} and {�0

0, W
0
0, "

0
�
, "0

}, are said to be equiva-

lent if for iterates {�k, Wk}, {�0
k
, W 0

k
} following these configurations respectively, there is an invertible linear transforma-

tion T and a nonzero constant t such that W 0
k

= TWk, �0
k

= t�k for all k.

It is easy to check the gradient descent on normalized loss function (18) has the following scaling property.
Proposition A.3 (Scaling property). For any r 6= 0, the configurations {�0, W0, "� , "} and {�0, rW0, "� , r2"} are

equivalent.

Proof. Gradient descent gives the following iteration:

�i,k+1 = �i,k � "�
@J

@�i

(�k, Wk), (22)

wi,k+1 = wi,k � " @J

@wi

(�k, Wk). (23)

It is easy to check that @J

@(rwi)
= 1

r

@J

@wi

, rwi,k+1 = rwi,k � r2" @J

@(rwi)
(�k, Wk). Let �i = �0

i
, w0

i
= rwi, "0

�
= "� , "0 = r2",

then we immediately have the equivalence result.

Another consequence of the invariance of loss functions with respect to the scale of wi is the orthogonality between wi and
@J

@wi

. In fact, we have 0 = @l

@kwik = wi

kwik ·
@J

@wi

. As a consequence, we have the following property.

Proposition A.4 (Increaing norm of wi). For any configuration {�0, W0, "� , "}, the norm of each wi is incresing during

gradient descent iteration.

Proof. According to the orthogonality between wi and @J

@wi

, we have

kwi,k+1k
2 = kwi,kk

2 + "2
�� @J

@wi,k

��2
� kwi,kk

2, (24)

which finishes the proof.

A.3. Convergence for arbitrary step size

As a consequence of scaling property and the increasing-norm property, we have the following convergence result, which
says that convergence for small learning rates implies convergence for arbitrary learning rates for weights.
Theorem A.5 (Convergence of the gradient descent on (18)). If there are two positive constants, "⇤

�
, "⇤

, such that the

gradient descent on J converges for any initial value �0, W0 such that kwi,0k = 1 and step size "� < "⇤
�
, " < "⇤

, then the

gradient of wi converges for arbitrary step size " > 0 and "� < "⇤
�

.

Proof. Firstly, the norm of each wi,k must converge for any step size " > 0 and "� < "⇤
�

. In fact, if wi,k is not bounded,
then there is a k = K such that "

kwi,Kk2 < "⇤. Then using the scaling property, one has a configuration contradicts the
assumptions.

Secondly, the gradients of wi, @J

@wi,k

, converges to zero. According to Eq. (24), we have,

kwi,1k
2 = kwi,0k

2 + "2
1X

k=0

�� @J

@wi,k

��2
< 1 (25)

from which it follows by using
P

k

1
k

= 1 that

lim inf
k!1

k
�� @J

@wi,k

��2
= 0. (26)
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B. Proof of Theorems on OLS problem
B.1. Gradients and the Hessian matrix

The objective function in OLS problem (6) has an equivalent form:

J(a, w) = 1
2 (u �

a

�
w)TH(u �

a

�
w) = 1

2kuk
2
H
�

w
T
g

�
a + 1

2a2, (27)

where u = H�1g.

The gradients are:

@J

@a
= �

1
�
(wTHu �

a

�
wTHw) = �

1
�
wT g + a, (28)
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�3 (wTHu �
a

�
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a

�
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�3 (wT g)Hw. (29)

The Hessian matrix is
 

@
2
J

@a2
@
2
J

@a@w

@
2
J

@w@a

@
2
J

@w2

!
=

✓
1 AT

21

A21 A22

◆
(30)

where

A22 = a

�3 (wT g)
h
H + 1

wT g

�
(Hw)gT + g(Hw)T

�
�

3
�2 (Hw)(Hw)T

i
, (31)

A21 = �
1
�

�
g �

1
�2 (wT g)Hw

�
. (32)

The objective function J(a, w) has saddle points, {(a⇤, w⇤)|a⇤ = 0, w⇤T g = 0}. The Hessian matrix at those saddle points
has at least one negative eigenvalue, i.e. the saddle points are strict. In fact, the eigenvalues at the saddle point (a⇤, w⇤) aren

1
2 (1 ±

q
1 + 4 kgk2

w⇤THw⇤ ), 0, ..., 0
o

which contains d � 2 repeated zero, a positive and a negative eigenvalue.

On the other hand, the nontrivial critical points satisfies the relations,

a⇤ = ±

p

uTHu, w⇤//u, (33)

where the sign of a⇤ depends on the direction of u, w⇤, i.e. sign(a⇤) = sign(uTw⇤). It is easy to check that the nontrivial
critical points are global minimizers. The Hessian matrix at those minimizers is diag

�
1, kuk2

kw⇤k2 H⇤� where the matrix H⇤ is

H⇤ = H �
Huu

T
H

uTHu
(34)

which is positive semi-definite and has a zero eigenvalue with eigenvector u, i.e. H⇤u = 0. The following lemma, similar to
the well-known Cauchy interlacing theorem, gives an estimate of eigenvalues of H⇤.

Lemma B.1. If H is positive definite and H⇤
is defined as H⇤ = H �

Huu
T
H

uTHu
, then the eigenvalues of H and H⇤

satisfy

the following inequalities:

0 = �1(H
⇤) < �1(H)  �2(H

⇤)  �2(H)  ...  �d(H
⇤)  �d(H). (35)

Here �i(H) means the i-th smallest eigenvalue of H .

Proof. (1) According to the definition, we have H⇤u = 0, and for any x 2 Rd,

xTH⇤x = xTHx �
(xT

Hu)2

uTHu
2 [0, xTHx], (36)

which implies H⇤ is positive semi-definite, and �i(H⇤) � �1(H⇤) = 0. Furthermore, we have the following equality:

xTH⇤x = min
t2R

kx � tuk2
H

. (37)
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(2) We will prove �i(H⇤)  �i(H) for all i, 1  i  d. In fact, using the Min-Max Theorem, we have

�i(H
⇤) = min

dimV =i

max
x2V

x
T
H

⇤
x

kxk2  min
dimV =i

max
x2V

x
T
Hx

kxk2 = �i(H).

(3) We will prove �i(H⇤) � �i�1(H) for all i, 2  i  d. In fact, using the Max-Min Theorem, we have

�i(H
⇤) = max

dimV =n�i+1
min
x2V

x
T
H

⇤
x

kxk2 = max
dimV =n�i+1,u?V

min
x2V

min
t2R

kx�tuk2
H

kxk2

� max
dimV =n�i+1,u?V

min
x2V

min
t2R

kx�tuk2
H

kx�tuk2

= max
dimV =n�i+1

min
y2span{V,u}

kyk2
H

kyk2 , y = x � tu

� max
dimV =n�(i�1)+1

min
y2V

y
T
Hy

kyk2 = �i�1(H),

where we have used the fact that x ? u, kx � tuk2 = kxk2 + t2kuk2
� kxk2.

There are several corollaries related to the spectral property of H⇤. We first give some definitions. Since H⇤ is positive
semi-definite, we can define the H⇤-seminorm.

Definition B.2. The H⇤
-seminorm of a vector x is defined as kxkH⇤ := xTH⇤x. kxkH⇤ = 0 if and only if x is parallel to

u.

Definition B.3. The pseudo-condition number of H⇤
is defined as ⇤(H⇤) := �d(H⇤)

�2(H⇤) .

Definition B.4. For any real number ", the pseudo-spectral radius of the matrix I � "H⇤
is defined as ⇢⇤(I � "H⇤) :=

max
2id

|1 � "�i(H⇤)|.

The following corollaries are direct consequences of Lemma B.1, hence we omit the proofs.

Corollary B.5. The pseudo-condition number of H⇤
is less than or equal to the condition number of H :

⇤(H⇤) := �d(H⇤)
�2(H⇤) 

�d(H)
�1(H) =: (H), (38)

where the equality holds if and only if u ? span{v1, vd}, vi is the eigenvector of H corresponding to the eigenvalue �i(H).

Corollary B.6. For any vector x 2 Rd
and any real number ", we have k(I � "H⇤)xkH⇤  ⇢⇤(I � "H⇤)kxkH⇤ .

Corollary B.7. For any positive number " > 0, we have

⇢⇤(I � "H⇤)  ⇢(I � "H), (39)

where the inequality is strict if uT vi 6= 0 for i = 1, d.

It is obvious that the inequality in Eq. (38) and Eq. (39) is strict for almost all u with respect to the Lebesgue measure.
Particularly, if the spectral gap �2(H) � �1(H) or �d(H) � �d�1(H) is large, the condition number ⇤(H⇤) could be
much smaller than (H).

B.2. Scaling property

The dynamical system defined in Eq. (7)-(8) is completely determined by a set of configurations {H, u, a0, w0, "a, "}. It is
easy to check the system has the following scaling property:

Lemma B.8 (Scaling property). Suppose µ 6= 0, � 6= 0, r 6= 0, QTQ = I , then

(1) The configurations {µQTHQ, �p
µ
Qu, �a0, �Qw0, "a, "} and {H, u, a0, w0, "a, "} are equivalent.

(2) The configurations {H, u, a0, w0, "a, "} and {H, u, a0, rw0, "a, r2"} are equivalent.
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B.3. Proof of Theorem 3.3

Recall the BNGD iterations

ak+1 = ak + "a
⇣

w
T

k
g

�k

� ak

⌘
,

wk+1 = wk + " ak

�k

⇣
g �

w
T

k
g

�
2
k

Hwk

⌘
.

The scaling property simplify our analysis by allowing us to set, for example, kuk = 1 and kw0k = 1. In the rest of this
section, we only set kuk = 1.

For the step size of a, it is easy to check that ak tends to infinity with "a > 2 and initial value a0 = 1, w0 = u. Hence we
only consider 0 < "a < 2, which make the iteration of ak bounded by some constant Ca.

Lemma B.9 (Boundedness of ak). If the step size 0 < "a < 2, then the sequence ak is bounded for any " > 0 and any

initial value (a0, w0).

Proof. Define ↵k := w
T

k
g

�k

, which is bounded by |↵k| 

p

uTHu =: C, then

ak+1 = (1 � "a)ak + "a↵k

= (1 � "a)
k+1a0 + (1 � "a)

k"a↵0 + ... + (1 � "a)"a↵k�1 + "a↵k.

Since |1 � "a| < 1, we have |ak+1|  |a0| + 2C
P

k

i=0 |1 � "a|i  |a0| + 2C 1
1�|1�"a| .

According to the iterations (40), we have

u �
w

T

k
g

�
2
k

wk+1 =
⇣
I � " ak

�k

w
T

k
g

�
2
k

H
⌘⇣

u �
w

T

k
g

�
2
k

wk

⌘
. (40)

Define

ek := u �
w

T

k
g

�
2
k

wk, (41)

qk := uTHu �
(wT

k
g)2

�
2
k

= kekk
2
H

� 0, (42)

"̂k := " ak

�k

w
T

k
g

�
2
k

, (43)

and using the property w
T
g

�
2
k

= argmin
t

ku � twkH , and the property of H-norm, we have

qk+1 

���
���u �

w
T

k
g

�
2
k

wk+1

���
���
2

H

= k(I � "̂kH)ekk
2
H

 ⇢(I � "̂kH)2qk. (44)

Therefore we have the following lemma to make sure the iteration converge:

Lemma B.10. Let 0 < "a < 2. If there are two positive numbers "�
and "̂+

, and the effective step size "̂k satisfies

0 < "
�

kwkk2  "̂k  "̂+ < 2
�max

(45)

for all k large enough, then the iterations (40) converge to a minimizer.

Proof. Without loss of generality, we assume "
�

kwkk2 < 1
�max

and the inequality (45) is satisfied for all k � 0. We will prove
kwkk converges and the direction of wk converges to the direction of u.
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(1) Since kwkk is always increasing, we only need to prove it is bounded. We have,

kwk+1k
2 = kwkk

2 + "2 a
2
k

�
2
k

kHekk
2 (46)

= kw0k
2 + "2

kX

i=0

a
2
i

�
2
i

kHeik
2 (47)

 kw0k
2 + "2�max

kX

i=0

a
2
i

�
2
i

qi (48)

 kw0k
2 + "2 �maxC

2
a

�min

kX

i=0

qi

kwik2 . (49)

The inequality in last lines are based on the fact that kHeik2
 �maxkeik2

H
, and |ak| are bounded by a constant Ca. Next,

we will prove
P1

i=0
qi

kwik2 < 1, which implies kwkk are bounded.

According to the estimate Eq. (44), we have

qk+1  max
i

{|1 � "̂+�i|
2, |1 �

"
�
�i

kwkk2 |
2
}qk (50)

 max{1 � �+, 1 �
"
�
�min

kwkk2 }qk, (51)

where 1 � �+ = maxi{|1 � "̂+�i|
2
} 2 (0, 1). Using the definition of qk, we have

qk � qk+1 �
min{�+kw0k2

,"
�
�min}

kwkk2 qk =: Cqk

kwkk2 � 0. (52)

Since qk is bounded in [0, uTHu], summing both side of the inequality, we get the bound of the infinite series
P
k

qk

kwkk2 

u
T
Hu

C
< 1.

(2) Since kwkk is bounded, we denote "̂� := "
�

kw1k2 , and define ⇢ := max
i

{|1 � "̂±�i|} 2 (0, 1), then the inequality (44)

implies qk+1  ⇢2qk. As a consequence, qk tends to zero, which implies the direction of wk converges to the direction of u.

(3) The convergence of ak is a consequence of wk converging.

Since ak is bounded, we assume |ak| < C̃a

p

uTHu, C̃a � 1, and define "0 := 1
2C̃a�max

. The following lemma gives the
convergence for small step size.

Lemma B.11. If the initial values (a0, w0) satisfies a0wT

0 g > 0, and step size satisfies "a 2 (0, 1], "/kw0k
2 < "0, then the

sequence (ak, wk) converges to a global minimizer.

Remark 1: If we set a0 = 0, then we have w1 = w0, a1 = "a
w

T

0 g

�0
, hence a1wT

1 g > 0 provided wT

0 g 6= 0.

Remark 2: For the case of "a 2 (1, 2), if the initial value satisfies an additional condition 0 < |a0|  "a
|wT

0 g|
�0

, then we
have (ak, wk) converging to a global minimizer as well.

Proof. Without loss of generality, we only consider the case of a0 > 0, wT

0 g > 0, kw0k � 1.

(1) We will prove ak > 0, wT

k
g > 0 for all k. Denote yk := wT

k
g, � = kgk

4 .

On the one hand, if ak > 0, 0 < yk < 2�, then

yk+1 � yk + " ak

�k

kgk2

2 � yk. (53)
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On the other hand, when ak > 0, yk > 0, " < "0, we have

yk+1 � "akkgk2

�k

+ yk
⇣
1 � " ak

�
2
k

p
gTHg

⌘
�

1
2yk, (54)

ak+1 � min{ak, yk/�k}. (55)

As a consequence, we have ak > 0, yk � �y := min{y0, �} for all k by induction.

(2) We will prove the effective step size "̂k satisfies the condition in Lemma B.10.

Since ak is bounded, " < "0, we have

"̂k := " ak

�k

w
T

k
g

�
2
k


"C̃a�max

�minkwkk2  "C̃a =: "̂+ < 1
2�max

, (56)

and

qk+1  (1 � "̂k�min)2qk  (1 � "̂k�min)qk < qk. (57)

which implies w
T

k+1g

�k+1
�

w
T

k
g

�k

�
w

T

0 g

�0
. Furthermore, we have ak � min{a0,

w
T

0 g

�0
}, and there is a positive constant "� > 0

such that

"̂k � " ak

�maxkwkk2
w

T

k
g

�k

�
"
�

kwkk2 . (58)

(3) Employing the Lemma B.10, we conclude that (ak, wk) converges to a global minimizer.

Lemma B.12. If step size satisfies "a 2 (0, 1], "/kw0k
2 < "0, then the sequence (ak, wk) converges.

Proof. Thanks to Lemma B.11, we only need to consider the case of akwT

k
g  0 for all k, and we will prove the iteration

converges to a saddle point in this case. Since the case of ak = 0 or wT

k
g = 0 is trivial, we assume akwT

k
g < 0 below. More

specifically , we will prove |ak+1| < r|ak| for some constant r 2 (0, 1), which implies convergence to a saddle point.

(1) If ak and ak+1 have a same sign, hence different sign with wT

k
g, then we have |ak+1| = |1 � "akak|� "a|wT

k
g|/�k 

|1 � "akak|.

(2) If ak and ak+1 have different signs, then we have

|wT

k
g|

|ak�k|  " 1
�
2
k

⇣
kgk2

�
w

T

k
g

�
2
k

gTHwk

⌘
 2"�max < 1. (59)

Consequently, we get

|ak+1|
|ak| = "a

|wT

k
g|

|ak�k| � (1 � "a)  2""a�max � (1 � "a) < "a  1. (60)

(3) Setting r := max(|1 � "a|, 2""a�max � (1 � "a)), we finish the proof.

To simplify our proofs for Theorem 3.3, we give two lemmas which are obvious but useful.

Lemma B.13. If positive series fk, hk satisfy fk+1  rfk + hk, r 2 (0, 1) and lim
k!1

hk = 0, then lim
k!1

fk = 0.

Proof. It is obvious, because the series bk defined by bk+1 = rbk + hk, b0 > 0, tends to zeros.

Lemma B.14 (Separation property). For �0 small enough, the set S := {w|y2q < �0, kwk � 1} is composed by two

separated parts: S1 and S2, dist(S1, S2) > 0, where in the set S1 one has y2 < �1, q > �2, and in S2 one has

q < �2, y2 > �1 for some �1 > 0, �2 > 0. Here y := wT g, q := uTHu �
(wT

Hu)2

wTHw
= uTHu �

y
2

wTHw
.

Proof. The proof is based on H being positive. The geometric meaning is illustrated in Figure 5.

Corollary B.15. If lim
k!1

kwk+1 � wkk = 0, and lim
k!1

(wT

k
g)2qk = 0, then either lim

k!1
(wT

k
g)2 = 0 or lim

k!1
qk = 0.
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Figure 5. The geometric meaning of the separation property

Proof. Denote yk := wT

k
g. According to the separation property (Lemma B.14), we can chose a �0 > 0 small enough such

that the separated parts of the set S := {w|y2q < �0, kwk � 1}, S1 and S2, have dist(S1, S2) > 0.

Because y2
k
qk tends to zero, we have wk belongs to S for k large enough, for instance k > k1. On the other hand, because

kwk+1 � wkk tends to zero, we have kwk+1 � wkk < dist(S1, S2) for k large enough, for instance k > k2. Then consider
k > k3 := max(k1, k2), we have all wk belongs to the same part S1 or S2.

If wk 2 S1, (qk > �2), for all k > k3, then we have lim
k!1

(wT

k
g)2 = 0.

On the other hand, if wk 2 S2, (y2
k

> �1), for all k > k3, then we have lim
k!1

qk = 0.

Theorem B.16. Let "a 2 (0, 1] and " > 0. The sequence (ak, wk) converges for any initial value (a0, w0).

Proof. We will prove kwkk converges, and then prove (ak, wk) converges as well.

(1) We prove that kwkk is bounded and hence converges.

In fact, according to the Lemma B.12, once kwkk
2
� "/"0 for some k, the rest of the iteration will converge, hence kwkk is

bounded.

(2) We prove lim
k!1

kwk+1 � wkk = 0, and lim
k!1

(wT

k
g)2qk = 0.

The convergence of kwkk implies
P

k
a2
k
qk is summable. As a consequence,

lim
k!1

a2
k
pk = 0, lim

k!1
akek = 0, (61)

and lim
k!1

kwk+1 � wkk = 0. In fact, we have

kwk+1 � wkk
2 = "2 a

2
k

�2 kHekk
2


�max"
2

�
2
min

a2
k
qk ! 0. (62)

Consider the iteration of series |ak � wT

k
g/�k|,

���ak+1 �
w

T

k+1g

�k+1

��� 
���ak+1 �

w
T

k+1g

�k

���+
���w

T

k+1g

�k

�
w

T

k+1g

�k+1

���

 (1 � "a)
���ak �

w
T

k
g

�k

���+ " |akg
T
Hek|

�
2
k

+
|wT

k+1g|
(�k�k+1)

|�k+1 � �k|

 (1 � "a)
���ak �

w
T

k
g

�k

���+ "kgkHkakekkH

�
2
k

+
|wT

k+1g|
(�k�k+1)

"�max

�k

kakekkH

 (1 � "a)
���ak �

w
T

k
g

�k

���+ 2CkakekkH . (63)
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The constant C in Eq. (63) can be chosen as C = "�maxkukH

�minkw0k2 . Since kakekkH tends to zero, we can use Lemma B.13 to get
lim
k!1

|ak � wT

k
g/�k| = 0. Combine the equation (61), then we have lim

k!1
(wT

k
g)2pk = 0.

(3) According to the Corollary B.15, we have either lim
k!1

y2
k

= 0, or lim
k!1

qk = 0. In the former case, the iteration of

(ak, wk) converges to a saddle point. However, in the latter case, (ak, wk) converges to a global minimizer. In both cases we
have (ak, wk) converges.

To finish the proof of Theorem 3.3, we have to demonstrate the special case of "a = 1 where the set of initial values such
that BN iteration converges to saddle points is of Lebeguse measure zero. We leave this demonstration in next section where
we consider the case of "a � 1.

B.4. Impossibility of converging to strict saddle points

In this section, we will prove the set of initial values such that BN iteration converges to saddle points is of Lebesgue measure
zero, as long as "a � 1. The tools in our proof is similar to the analysis of gradient descent on non-convex objectives (Lee
et al., 2016; Panageas & Piliouras, 2017). In addition, we used the real analytic property of the BN loss function (27).

For brevity, here we denote x := (a, w) and let "a = ", then the BN iteration can be rewritten as

xn+1 = T (xn) := xn � "rJ(xn).

Lemma B.17. If A ⇢ T (Rd/{0}) is a measure zero set, then the preimage T�1(A) is of measure zero as well.

Proof. Since T is smooth enough, according to Theorem 3 of Ponomarev (1987), we only need to prove the Jacobian of
T (x) is nonzero for almost all x 2 Rd. In other words, the set {x : det(I � "r2J(x)) = 0} is of measure zero. This is true
because the function det(I � "r2J(x)) is a real analytic function of x 2 Rd/{0}. (Details of properties of real analytic
functions can be found in Krantz & Parks (2002)).

Lemma B.18. Let f : X ! R be twice continuously differentiable in an open set X ⇢ Rd
and x⇤

2 X be a stationary

point of f . If " > 0, det(I � "r2f(x⇤)) 6= 0 and the matrix r
2f(x⇤) has at least a negative eigenvalue, then there exist a

neighborhood U of x⇤
such that the following set B has measure zero,

B := {x0 2 U : xn+1 = xn � "rf(xn) 2 U, 8n � 0}. (64)

Proof. The detailed proof is similar to Lee et al. (2016); Panageas & Piliouras (2017).

Define the transform function as F (x) := x � "rf(x). Since det(I � "r2f(x⇤)) 6= 0, according to the inverse function
theorem, there exist a neighborhood U of x⇤ such that T has differentiable inverse. Hence T is a local C1 diffeomorphism,
which allow us to use the central-stable manifold theorem (Shub, 2013). The negative eigenvalues of r2f(x⇤) indicates
�max(I � "r2f(x⇤)) > 1 and the dimension of the unstable manifold is at least one, which implies the set B is on a lower
dimension manifold hence B is of measure zero.

Lemma B.19. If "a = " � 1, then the set of initial values such that BN iteration converges to saddle points is of Lebeguse

measure zero.

Proof. We will prove this argument using Lemma B.17 and Lemma B.18. Denote the saddle points set as W := {(a⇤, w⇤) :
a⇤ = 0, w⇤T g = 0}. The basic point is that the saddle point x⇤ := (a⇤, w⇤) of the BN loss function (27) has eigenvaluesn

1
2 (1 ±

q
1 + 4 kgk2

w⇤THw⇤ ), 0, ..., 0
o

of the Hessian matrix.

(1) For each saddle point x⇤ := (a⇤, w⇤) of BN loss function, " � 1 is enough to allow us to use Lemma B.18. Hence there
exist a neighborhood Ux⇤ of x⇤ such that the following set Bx⇤ is of measure zero,

Bx⇤ := {x0 2 Ux⇤ : xn 2 Ux⇤ , 8n � 1}. (65)
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(2) The neighborhoods Ux⇤ of all x⇤
2 W forms a cover of W , hence, according to Lindelöf’s open cover lemma, there are

countable neighborhoods {Ui : i = 1, 2, ...} cover W , i.e. U := [iUi ◆ W . As a consequence, the following set A0 is of
measure zero,

A0 := [iBi = [i{x0 2 Ui : xn 2 Ui, 8n � 1}. (66)

(3) Define Am+1 := T�1(Am) = {x 2 Rd : T (x) 2 Am}, m � 0. According to Lemma B.17, we have all Am and
[mAm are of measure zero.

(4) Since each initial value x0 such that the iteration converges to a saddle point must be contained in some set Am, we
finish the proof.

Combine the results of Lemma B.19, scaling property 3.2 and the convergence theorem B.16, we have the following theorem
directly.
Theorem B.20. If "a = 1, " � 0, then the BN iteration (7)-(8) converges to global minimizers for almost all initial values.

B.5. Convergence rate

In section B.3, we encountered the following estimate for ek = u �
w

T

k
g

�
2
k

wk

kek+1kH  ⇢(I � "̂kH)kekkH . (67)

We can improve the convergence rate of the above if H⇤ has better spectral property. This is the content of Theorem 3.4 and
the following lemma proves this.
Lemma B.21. The following inequality holds,

(1 � �k)kek+1kH 

⇣
⇢⇤(I � "̂kH

⇤) + �k
⌘
kekkH , (68)

where �k := �max"|ak|
�
2
k

kekkH .

Proof. The case of wT

k
g = 0 is trivial, hence we assume wT

k
g 6= 0 in the following proof. Rewrite the iteration on wk as the

following equality,

u �
w

T

k
g

�
2
k

wk+1 = (I � "̂kH)ek = (I � "̂kH
⇤)ek � "̂k

⇣
1 �

(wT

k
g)2

uTHu�
2
k

⌘
Hu. (69)

Then we will use the properties of H⇤-seminorm to prove our argument.

(1) Estimate the H⇤-seminorm on the right hand of Eq. (69).

krightkH⇤  k(I � "̂kH
⇤)ekkH⇤ + |"̂k|

⇣
1 �

(wT

k
g)2

uTHu�
2
k

⌘
kHukH⇤ (70)

 ⇢⇤(I � "̂kH
⇤)kekkH⇤ + �max|"̂k|p

uTHu
kekk

2
H

(71)

= ⇢⇤(I � "̂kH
⇤) |wT

k
g|p

uTHu�k

kekkH + �max"|akw
T

k
g|p

uTHu�
3
k

kekk
2
H

(72)

= |wT

k
g|p

uTHu�k

⇣
⇢⇤(I � "̂kH

⇤) + �k
⌘
kekkH . (73)

(2) Estimate the H⇤-seminorm on the left hand of equation (69). Using the H-norm on the iteration of wk, we have

�k+1 = kwk + " ak

�k

HekkH � �k � "�max|ak|
�k

kekkH . (74)

Consequently, we have

kleftkH⇤ = |wT

k
g|p

uTHu�k

�k+1

�k

kek+1kH �
|wT

k
g|p

uTHu�k

(1 � �k)kek+1kH . (75)

(3) Combining (1) and (2), we finish the proof.
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Then we give the proof of Theorem 3.4.

Proof of Theorem 3.4. Firstly, the Lemma B.21 implies the second part of Theorem 3.4 which is the special case of
�k < � < 1.

Secondly, if "̂ < "⇤
max

, then ⇢⇤(I � "̂H⇤) < 1. Since (ak, wk) converges to a minimizer, �k must converge to zero and the
coefficient ⇢

⇤(I�"̂kH
⇤)+�k

(1��k) must less than a number ⇢̂ 2 (0, 1) when k is large enough which results in the linear convergence
of kekkH .

Now, we turn to the convergence of the loss function which can be rewritten as Jk = 1
2kẽkk

2
H

with ẽk = u �
ak

�k

wk. There
is an useful equality between kẽkk2

H
and kekk2

H
:

kẽkk
2
H

= kekk
2
H

+
⇣
ak �

w
T

k
g

�k

⌘2
. (76)

Recalling the inequality (63) and the boundedness of ak, we have a constant C0 such that
���ak+1 �

w
T

k+1g

�k+1

���  |1 � "a|
���ak �

w
T

k
g

�k

���+ C0kekkH , (77)

which indicates that we can use the convergence of ek to estimate the convergence of the loss value Jk. In fact we have the
following lemma.
Lemma B.22. If kekkH  C⇢k for some constant C and ⇢ 2 (0, 1), "a 2 (0, 1], then we have

kẽkk
2
H

 C2⇢2k +
⇣
C1(1 � "a)

k + C2k�k

⌘2
, (78)

where � = max(⇢, 1 � "a), C1 = |a0 � wT

0 g/�0| and C2 = CC0.

Proof. According to the inequality (77), we have

���ak �
w

T

k
g

�k

���  C1(1 � "a)
k + C2

k�1X

i=0

(1 � "a)
i⇢k�i

 C1(1 � "a)
k + C2k�k. (79)

Put it in the Eq. (76), then we finish the proof.

B.6. Estimating the effective step size

Firstly, we consider the limit of effective step size "̂. When the iteration converges to a minimizer (a⇤, w⇤), the value
of "̂ is "̂ = "

kw⇤k2 . Without loss generality, we assume that wk always has different direction with u during the whole
course of the iterations. In fact, if wk has the same direction with u for some k, then the iteration of wk is trivial, i.e.
wk = wk+1 = wk+2 = ..., and the effective step size can be any positive number. However, this case is rare. More precisely,
we have the following lemma:
Lemma B.23. The set of initial values (a0, w0) such that (ak, wk) converges to a minimizer (a⇤, w⇤) with effective learning

rate "̂ := lim
k!1

"̂k > "⇤
max

and det(I � "̂H⇤) 6= 0 is of measure zero.

Proof. The proof is similar to the proof of Lemma B.20. The key point is that the matrix I � "̂H⇤ at this minimizer is
non-degenerate and has an eigenvalue with its absolute value large than 1, hence there is a local unstable manifold with
dimension greater than one.

Now we consider the effective learning rate "̂k and give the proof of Proposition 3.5.

According to Lemma B.11, the effective step size "̂k has same order with "

kwkk2 provided a0wT

0 g > 0, "/||w0|| < "0. In
fact, we have

C1"

kwkk2 := a0w
T

0 g

�0

"

�maxkwkk2  "̂k 

p

uTHu Ca"

�minkwkk2 =: C2"

kwkk2 . (80)

Hence, to prove the Proposition 3.5, we only need to estimate the norm of wk.



A Quantitative Analysis of the Effect of Batch Normalization on Gradient Descent

Proof of Proposition 3.5. According to the BNGD iteration, we have (see the proof of Lemma B.10)

kwk+1k
2
 kw0k

2 + "2�max

kX

i=0

a
2
i

�
2
i

qi. (81)

(1) When "

kw0k2 < "0 ("0 is defined in Lemma B.11), the sequence qk satisfies qk+1  (1� "̂k�min)qk. Hence the norm of
wk is bounded by

kwkk
2
 kw0k

2 + "Ca
�0

w
T

0 g

1X

i=0

(qi � qi+1)  kw0k
2 + C", (82)

for some constant C. As a consequence,

C̃1" := C1"

kw0k2(1+C"0)
 "̂k 

C2"

kw0k2 =: C̃2". (83)

(2) When " is large enough, the increment of the norm kwkk at the first step is large as well. In fact, we have

kw1k
2
� kw0k

2 = "2 a
2
0

�
2
0
kHe0k

2 = C3"
2. (84)

Since ||g||2 �
w

T

0 g

�
2
0

gTHw0, we have a1wT

1 g > a1wT

0 g > 0. Choose " to be larger than some value "1 such that "

kw1k2 < "0,
then we can use the argument in (1) on (a1, w1). More precisely, there are two constants, C1, C2, such that

C1"

kw1k2  "̂k 
C2"

kw1k2 . (85)

Plugging the equation (84) into it, we have

C1"
2
1

kw0k2+C3"
2
1


C1"
2

kw0k2+C3"
2  "̂k" 

C2"
2

kw0k2+C3"
2 

C2
C3

. (86)

B.7. Quantification of the insensitive interval

In this section, we estimate the magnitude of insensitive interval of step size.

The BNGD iteration with configuration "a = 1, a0 = w
T

0 g

�0
, kw0k = kuk = 1 implies the following equality of kwkk

2,

kwk+1k
2 = kwkk

2 + "
2

kwkk2
a
2
k
kwkk2

�
2
k

��ek
��2

H2

=: kwkk
2 + "

2

kwkk2 �k, (87)

where �k is defined as �k := a
2
k
kwkk2

�
2
k

��ek
��2

H2 . The linear convergence results allow us to assume that �k converges linearly
to zero, i.e. �k = �0⇢k, k � 0 where ⇢ 2 (0, 1) depends on " and is self-consistently determined by the limiting effective
step size, i.e. ⇢ = ⇢(I �

"

kw1k2 H) is the spectral radius of I �
"

kw1k2 H . Observed that the iteration in Eq. (87) can be
regarded as a numerical scheme for solving the following ODE:

⇠(0) = kw1k
2, ⇠̇(t) =

"2�0⇢2t

⇠(t)
, (88)

which has solution ⇠2(t) = ⇠2(0) + "
2
�0

| ln ⇢| (1 � ⇢2t), the value of kwkk
2 can be approximated by ⇠(k + 1). Particularly, we

have an approximation for kw1k
2:

kw1k
2
⇡ ⇠(1) =

q
(1 + "2�0)2 + "

2
�0

| ln ⇢| . (89)
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To determine the value of ⇢, we let ⇢ and " satisfy the following relation:

⇢ = ⇢(I �
"

⇠(1)H) := max
i

{|1 �
"

⇠(1)�i(H)|}, (90)

which closed the calculation of ⇠(1).

Next, we consider two limiting case: " ⌧ 1 and " � 1. In both case, the effective step size "̂ is small, and the value of ⇢ is
related to ⇢ = 1 �

"�min

⇠(1) . Combine the definition of ⇠(1), then we have

"
2
�
2
min

(1�⇢)2 = ⇠(1)2 = (1 + "2�0)
2 + "

2
�0

| ln ⇢| ⇡ (1 + "2�0)
2 + "

2
�0

1�⇢
, (91)

where the estimate of | ln ⇢| ⇡ 1 � ⇢, is used since ⇢ is closed to 1 for "̂ is small enough. Consequently, we have:

(1) When " ⌧ 1, we have ↵⇤
⇡ 1, ⇢ ⇡ 1 � "�min and "̂ ⇡ ".

(2) When " � 1, we have

"̂ ⇡
1 � ⇢

�min

⇡

p
1 + 4"2�2

min
� 1

2"2�0�min

=
1

�0

2�minp
1 + 4"2�2

min
+ 1

⇠
1

�0"
. (92)

Those results indicate the magnitude of insensitive interval of step size is proportion to the constant 1
� 0

.

Finally, we estimate the average of �0 over w0 and u for given H . The average value of �0 from BNGD is defined as the
following geometric average over w0 and u, which we take to be independent and uniformly on the unit sphere Sd�1,

�̄H := EG

w0,u
[�0] := exp

�
Ew0,u ln

⇥�
w

T

0 Hu

w
T

0 Hw0

�2��e0

��2

H2

⇤�
. (93)

Correspondingly, the magnitude of insensitive interval of step size is defined as ⌦,

⌦ = ⌦H := EG

w0,u
[�

2
max

(H)
4�0

] = �
2
max

(H)
4�̄H

. (94)

The numerical tests find that ⌦H highly depends on the dimension d provided the eigenvalues of H is sampled from typical
distributions such as the uniform distribution on [�min, �max] with 0 < �min < �max. In fact we have the following
estimations for �̄H which implies �̄H  O(1/d) and ⌦H � O(d).

Lemma B.24. For positive definite matrix H with minimal and maximal eigenvalues, �min and �max respectively, the �̄H

defined in (93) satisfies,

�̄H 
1
d

Tr[H2]
d

�maxTr[H]
d

1
�
2
min

exp
�
�

2 ln

�1 ( Tr[H]
d�min

� 1)
�
, (95)

where  = �max

�min

is the condition number of H .

Proof. The definition of EG allows us to estimate each term in � separately.

(1). The inequality of arithmetic and geometric means implies EG[(wT

0 Hu)2]  E[(wT

0 Hu)2] = Tr[H2]
d2 .

(2). Using the definition of e0 = u �
w

T

0 Hu

w
T

0 Hw0
w0, we have

EG
⇥
ke0k

2
H2

⇤
 �maxE

⇥
ke0k

2
H

⇤
= �maxE

⇥
ku �

w
T

0 Hu

w
T

0 Hw0
w0k

2
H

⇤

= �maxE
⇥
uTHu �

�
w

T

0 Hu

w
T

0 Hw0

�2⇤

 �maxE
⇥
uTHu

⇤
= �maxTr[H]

d
.
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(3). Since wT

0 Hw0 2 [�min,�max
], using the fact that ln(1 + x) � ln

�1 , 8x 2 [0,  � 1], we have

EG
⇥
wT

0 Hw0

⇤
= exp

�
E ln(wT

0 Hw0

��

� �min exp
�
E ln

�1 (wT

0 Hw0/�min � 1)
�

(96)

= �min exp
�

ln

�1 ( Tr[H]
d�min

� 1)
�
.

Combine the inequities above, then we finish the proof.

If the eigenvalues of H is sampled from a given distribution on [�min, �max], the values Tr[H]
d

, Tr[H2]
d

are related to
the distribution and not sensitive to dimension d (for d large enough), then the estimate in Lemma B.24 indicates that
�̄H  O(1/d) and ⌦H � O(d). As an example, we consider the H with eigenvalues forming an arithmetic sequence below.

Corollary B.25. If the eigenvalues of H are �i = �min + (i � 1)�max��min

d�1 , d � 2, then we have

�̄H 
(+1)3

2
�
2
max

4d , ⌦H �
2

( + 1)3
d. (97)

Proof. It is enough to show that Tr[H]
d

= (+1)�min

2 , Tr[H2]
d2 

(+1)2�2
min

2d .

The Corollary B.25 indicates that larger dimensions lead to larger insensitive intervals of step size. It is interesting to note
that although the lower bound of ⌦H is also related to the condition number , the numerical tests in section B.7.1 find the
width is not sensitive to . In fact, one could get better lower bounds for ⌦H by better estimates on EG(wTHw). However,
here we focus on the effect of dimension.

B.7.1. NUMERICAL TESTS

In this section, we give some numerical tests on the BNGD iteration with "a = 1, a0 = 0 and choices of the matrix H . The
scaling property allows us to set H diagonal and the initial value w0 having the same norm with u, kw0k = kuk = 1.

Firstly, we show the difference of geometric mean(G-mean) and arithmetic mean(A-mean) in quantifying the performance
of BNGD. Figure 6 gives an example of a 100-dimensional H with condition number  = 853. The GD and MBNGD
iteration are executed k = 5000 times where u and w0 are randomly chosen from the unit sphere. The values of effective
step size, loss kekk2

H
and error kekk are plotted. Furthermore, the mean values over 500 random tests are given. The results

show that the G-mean converges quickly when the number of tests increase, however the A-mean does not converge as
quickly and A-mean is dominated by the largest sample values. Hence we use the geometric mean in later tests.

Figure 6. Test BNGD on OLS model with step size "a = 1, a0 = 0. Parameters: H is a diagonal matrix with condition number  = 853
(the first random test in Figure 8), u and w0 is randomly chosen uniformly from the unit sphere in R100. The BNGD iterations are
executed for k = 5000 steps. The bold curves are averaged over the 500 independent runs (the shadow curves).

Secondly, we test the effect of dimension d.

Figure 7 gives three typical setting of H: (a) with arithmetic progression eigenvalues, (b) with geometric progression
eigenvalues and (c) with only one large eigenvalue perturbed from identity matrix. In the first two cases, the effect of
dimension is observed, the large dimensions lead to large magnitude ⌦ of optimal step size, and the magnitude is almost
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proportion to the dimension d which confirm the analysis in Lemma B.24 and Corollary B.25. In the last case, the large
dimensions lead to small ⌦ which is due to Tr[H]/d and Tr[H2]/d are highly influenced by d. However, the condition
number of H⇤ be much smaller than (H), in which case leads to marked acceleration over GD.

Figure 7. Tests of BNGD on OLS model with step size "a = 1, a0 = 0. Parameters: (a, top) H = diag(linspace(1,10000,d)), (b, middle)
H = diag(logspace(0,4,d)), (c, bottom) H = diag([ones(1,d-1),10000]]). u and w0 is randomly chosen uniformly from the unit sphere in
Rd. The BNGD iterations are executed for k = 5000 steps. The curves are averaged over the 500 independent runs.

Finally, we test the effect of eigenvalue distributions. Figure 8 gives examples of H with different condition number but
same dimension d = 100. When the eigenvalues are arithmetic sequences, the width of optimal learning rate is almost
same over different condition numbers while the loss and error still depend on the condition number. Randomly choosing
eigenvalues also exhibits this phenomenon.
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Figure 8. Tests of BNGD on OLS model with step size "a = 1, a0 = 0. Parameters: (top) H =diag(linspace(1,condH,100)), (bottom)
H 2 R100⇥100 is a diagonal matrix with random positive entrances which has condition number . u and w0 is randomly chosen
uniformly from the unit sphere in R100. The BNGD iterations are executed for k = 5000 steps. The curves are averaged over the 500
independent runs.


