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A. Batch and more general normalization on general objective functions

Here we consider the generalized versions of batch normalization on general problems, including but not limited to deep
neural networks. Consider a smooth loss function Jo(wy, ..., w,, ) and its normalized version J (1, ..., Yo, W1, -, Wiy ),

J(’yh ooy Ym, W1, 7wm) = JO(’Yl ”wqfﬁsl y e Tm Hw:WS'rn )7w’i 7& 0,i=1,....m. (]8)

Here the normalizing matrices S;,7 = 1, ..., m, are assumed to be positive definite and .S; does not depend on w; and ~;
(it could depend on w; or vy;, j < ). For neural networks, choosing .S; = I as the identity matrix, one gets the weight
normalization (Salimans & Kingma, 2016). Choosing S; as the covariance matrix X; of ith layer output z;, one gets batch
normalization. When the covariance matrix is degenerate, one can set .S; = ¥; + Sy with Sy being small but positive
definite, e.g. Sy = 0.0011.

It is obvious that the normalization changes the landscape of the original loss function Jy, such as introducing new stationary
points which are not stationary points of .Jy. However, we will show the newly introduced stationary points are strict saddle
points and hence can be avoid by many optimization schemes (Lee et al., 2016; Panageas & Piliouras, 2017).

A.1. Normalization only introduces strict saddles

Let us begin with a simple case where m = 1 in Eq. (18), i.e. J(y,w;S) = Jy (7 thvHs ) In this case, the gradients of J are
oJ T w
— = VJ o — (19)
oy = VORI
aJ ~ SwwT
— = I-— VJ L), 20
ow ~ Tuls "~ Tl VU IE) e

The stationary points (-, w) of J can be grouped into two parts:

(1) w:= ”Zjﬁ’s is a stationary point of Jp. In this case, v = £||w||s.

(2) w is not a stationary point of Jo. In this case, v = 0, w? VJo () = 0.

The stationary points in (2) are ones introduced by normalization, giving the Hessian matrix

a%J 8%J wT (V2 Jo(9))w -
A= | 97 wpe | TalZ rorz (Vo (@) o
SN A R e 21 0 '

Owdy Ow?2 HwH% ol\w

Since VJy(w) # 0, the rank of A, is 2. In fact, the nonzero eigenvalues of A; are:

a++/aZ + 4[|

2 )

w? (V2 Jo)w

where a = 5
llwllE

b= Hu}HQ V Jo. Therefore A; has a negative eigenvalue, and (7, w) is a strict saddle point.
S

Let us now consider the case of m > 1. The normalization-introduced stationary points satisfy v; = 0, w} VJo(10;) = 0.
The Hessian matrix A at these points always has negative eigenvalues because it has a principal minor like A; in Eq. (21).
Thus we have the following lemma:

Lemma A.1. If (Y1, .., Yo, W1, -.., Wy, ) is a stationary point of J but ( thllﬁvsl sy H:’U’i’ﬁ;"m ) is not a stationary point of Jo,

then (Y1, .o, Ym, W1, .., Wy, ) IS a strict saddle point of J.
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A.2. Scaling property and increasing norm of w;

When using gradient descent to minimize the loss function (18), we need to specify the numerical parameters including the
initial values of +; and w;, which denoted by I'g and W), respectively, and the step size for them, denoted by ¢, and e. For
simplicity, we use the same ¢, for all +; and the same ¢ for w;. Due to the fact that the scale of w; does not effect the loss,
we immediately have the scaling properties on the set of numerical parameters, or a configuration {I'g, Wy, e, €}.
Definition A.2 (Equivalent configuration). Two configurations, {T'o, Wo, -, ¢} and {I'y, Wy, €l €'}, are said to be equiva-
lent if for iterates {I'y,, Wy }, {I'}., W} } following these configurations respectively, there is an invertible linear transforma-
tion T and a nonzero constant t such that W], = TWy,, I} = tT'y, for all k.

It is easy to check the gradient descent on normalized loss function (18) has the following scaling property.

Proposition A.3 (Scaling property). For any r # 0, the configurations {Tg, Wy, e~,¢} and {To,rWo,e,,1%c} are
equivalent.

Proof. Gradient descent gives the following iteration:

Yik+1 = Yik — 57387‘]@‘1«, W), (22)
Wi k+1 = Wi g — an Tk, Wy). (23)
It is easy to check that a(m = %%’ TW; k1 = TWi | — rzsa(m )(Fk, Wi). Let v, = 7%, wh = rw;, 5 =¢g,,¢ = = r2e,
then we immediately have the equivalence result. O

Another consequence of the invariance of 1oss functions with respect to the scale of w; is the orthogonality between w; and

e%i' In fact, we have 0 = % = ﬁ aw . As a consequence, we have the following property.

Proposition A.4 (Increaing norm of w;). For any configuration {T'g, Wy, €., €}, the norm of each w; is incresing during
gradient descent iteration.

Proof. According to the orthogonality between w; and , we have

2
lwi e 1]* = ||wzk||2 +52Haw1 I > ikl 24

which finishes the proof. O

A.3. Convergence for arbitrary step size

As a consequence of scaling property and the increasing-norm property, we have the following convergence result, which
says that convergence for small learning rates implies convergence for arbitrary learning rates for weights.

Theorem A.5 (Convergence of the gradient descent on (18)). If there are two positive constants, 57, €*, such that the
gradient descent on J converges for any initial value Ty, Wy such that ||w; || = 1 and step size e, < €l,€ <", then the

gradient of w; converges for arbitrary step size € > 0 and €, < €.

Proof. Firstly, the norm of each w;, k must converge for any step size ¢ > 0 and £, < £. In fact, if w; ;, is not bounded,
then there is a £ = K such that ToraE < ¢*. Then using the scaling property, one has a configuration contradicts the
assumptions.

Secondly, the gradients of w;, ag—‘_jk, converges to zero. According to Eq. (24), we have,

lwieoll? = i oll? + 23 [| 72 |” < o0 (25)
k=0
from which it follows by using 3, = oo that
lim inf | 554 H (26)
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B. Proof of Theorems on OLS problem
B.1. Gradients and the Hessian matrix

The objective function in OLS problem (6) has an equivalent form:

J(a,w) = 2(u— 2w)TH(u— 2w) = u|} — “la+ La?, o
where u = H1g.
The gradients are:
o0 = —g(w Hu— Sw"Hw) = —Zw’g +a, (28)
G = 5 (Hu = 2 Hw) + 5 (w" Hu = Zw’ Hw)Hw = =29 + 5w’ g)Huw. (29)

The Hessian matrix is

T ( 1AL ) (30)
b Sur Az Az
where
Az = E(wTg) [H + g (Hw)g" + g(Hw)T) = 2 (Hw)(Hw)" |, (31)
Ay = f%(g - %(ng)Hw). (32)

The objective function .J(a, w) has saddle points, {(a*,w*)|a* = 0,w*T g = 0}. The Hessian matrix at those saddle points
has at least one negative eigenvalue, i.e. the saddle points are strict. In fact, the eigenvalues at the saddle point (a*, w*) are

2
{%(1 +14/1+ 4w*”1‘57]”{w* ),0, ...y 0} which contains d — 2 repeated zero, a positive and a negative eigenvalue.

On the other hand, the nontrivial critical points satisfies the relations,

a* = +vVuT Hu,w" [Ju, (33)

where the sign of a* depends on the direction of u, w*, i.e. sign(a*) = sign(u®w*). It is easy to check that the nontrivial
2
critical points are global minimizers. The Hessian matrix at those minimizers is diag(l, ”‘JJ)‘J‘HQ H *) where the matrix H* is
Huu” H
H*=H - =7 (34)

which is positive semi-definite and has a zero eigenvalue with eigenvector u, i.e. H*u = 0. The following lemma, similar to
the well-known Cauchy interlacing theorem, gives an estimate of eigenvalues of H*.

Lemma B.1. If H is positive definite and H* is defined as H* = H — h; 1}“;5 , then the eigenvalues of H and H* satisfy
the following inequalities:

Here \;(H) means the i-th smallest eigenvalue of H.

Proof. (1) According to the definition, we have H*u = 0, and for any z € R4,

T H s = T Hz — EHW ¢ 0,27 Hz], (36)

uT Hu

which implies H* is positive semi-definite, and \;(H*) > A1 (H*) = 0. Furthermore, we have the following equality:

T rr* . 2
Hzr = — .
x 2 = min |z — tu||% 37
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(2) We will prove A\;(H*) < X\;(H) for all 4, 1 < i < d. In fact, using the Min-Max Theorem, we have

. T pyx . T
N(H*) = min max 22 < min max 22 = \;(H).
) . =]l ; ; [E]

dimV =i €V dimV =i xeV

(3) We will prove A\;(H*) > \;—1(H) for all ¢, 2 < ¢ < d. In fact, using the Max-Min Theorem, we have

. T pr* . . —tul|?
Ni(H*) = max min %y hﬁf = max min min %
dimV=n—i+1zecV % dimV=n—i+1,ulV z€V teR z
_ 2
> max min min I‘\I-% J’tull“’;
dimV=n—i+1,ulV zeV teR r—tu
2
= max min l“‘yll“fg Yy =1x —tu
dimV=n—i+1yespan{V,u} 'Y
oT I
> max min 1—"“’2*/ = \i—1(H),
dimV=n—(i—1)+1yev 1Y
where we have used the fact that z | u, ||x — tul|?> = ||z||* + ¢2||ul|® > ||z||*. O

There are several corollaries related to the spectral property of H*. We first give some definitions. Since H* is positive
semi-definite, we can define the H*-seminorm.

Definition B.2. The H*-seminorm of a vector x is defined as ||x|| g+ := 2T H*z. ||z||gr- = 0 if and only if x is parallel to
u.
Definition B.3. The pseudo-condition number of H* is defined as k* (H*) := Aa(H7)

X2 (H")"
Definition B.4. For any real number ¢, the pseudo-spectral radius of the matrix I — e H* is defined as p*(I — eH*) :=
Jmax |1 —eAi(H)].

The following corollaries are direct consequences of Lemma B.1, hence we omit the proofs.

Corollary B.5. The pseudo-condition number of H* is less than or equal to the condition number of H :

—

* *\ . (H") Aa(H
KT = e < S

=: k(H), (38)

~

where the equality holds if and only if u L span{vy,vq}, v; is the eigenvector of H corresponding to the eigenvalue \;(H ).
Corollary B.6. For any vector x € R and any real number ¢, we have ||(I — e H*)z|| g+ < p*(I — eH*)||z| g

Corollary B.7. For any positive number € > 0, we have

p*(I—eH") <p(I—-€cH), (39)
where the inequality is strict if u"v; # 0 fori = 1,d.
It is obvious that the inequality in Eq. (38) and Eq. (39) is strict for almost all u with respect to the Lebesgue measure.

Particularly, if the spectral gap \o(H) — A1 (H) or \y(H) — A\j—1(H) is large, the condition number x*(H*) could be
much smaller than x(H).

B.2. Scaling property

The dynamical system defined in Eq. (7)-(8) is completely determined by a set of configurations { H, u, ag, wo, €4, €}. It is
easy to check the system has the following scaling property:

Lemma B.8 (Scaling property). Suppose i # 0,7y # 0,7 # 0,Q7Q = I, then

(1) The configurations {uQT HQ, ﬁ@u, ~yag, YQwo, €q, €} and { H, u, ag, wo, €q, €} are equivalent.

(2) The configurations {H,u, ag, wo, €q, €} and {H, u, ag, rwo, 4, %€} are equivalent.
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B.3. Proof of Theorem 3.3
Recall the BNGD iterations

wi g
ak+1*ak+5a( o )
)T
Wiyl = Wi + € ’“( ’“ZgHwk).
Tk
The scaling property simplify our analysis by allowing us to set, for example, ||u|| = 1 and ||wg|| = 1. In the rest of this

section, we only set ||u|| = 1.

For the step size of a, it is easy to check that ay, tends to infinity with €, > 2 and initial value ag = 1, wy = u. Hence we
only consider 0 < €, < 2, which make the iteration of aj;, bounded by some constant C,.

Lemma B.9 (Boundedness of ay). If the step size 0 < €, < 2, then the sequence ay, is bounded for any € > 0 and any
initial value (ag, wy).

uT Huy =:

Proof. Define oy, :=

Aft1 = (1 — Ea)ak + 40k

=(1—e) " ag+ (1 —eo)feqan + ... + (1 — €0)equn_1 + a0y

Since |1 — e4] < 1, we have |aj11| < |ag| +2C 325 o 11— eal® <aol +20m O
According to the iterations (40), we have
= (1-e2m) (u— tw,). (40)
oL o [
Define
T
w;;zcg (41)
T _\2
qr = v Hu — % = |lex |3 >0, (42)
& = e B kY, (43)
Ok 0',c
and using the property <> vl argmmHu — tw|| g, and the property of H-norm, we have
2 . 9 S
aern < || | =10 = acmend < ot - et (44)
Therefore we have the following lemma to make sure the iteration converge:
Lemma B.10. Let 0 < g, < 2. If there are two positive numbers €~ and £, and the effective step size &}, satisfies
- A At 2
O<mopE S& =& <xo (45)
for all k large enough, then the iterations (40) converge to a minimizer.
Proof. Without loss of generality, we assume ”w H2 < y—— and the inequality (45) is satisfied for all £ > 0. We will prove

|lwg || converges and the direction of wy, converges to the direction of .
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(1) Since |Jwy]| is always increasing, we only need to prove it is bounded. We have,

(1/2'
lwial* = lwel|* +* 25| Hex || (46)
= [lwol® + & Z (47)
k 2
< lwoll* + & Amaz Y S (48)
=0
k

< ”w ”2 +62 /\mu

Amin,

(49)

The inequality in last lines are based on the fact that || He;||? < Apnaz|lei||%, and |ax| are bounded by a constant C,,. Next,
we will prove Y ;7 W < 00, which implies ||wy|| are bounded.

According to the estimate Eq. (44), we have
@i < max{[1— AP 1= s P (50)

< max{l — " 19 Anin Yop (C1))

\wkIP

where 1 — 4T = max;{|1 — &7 );|*} € (0, 1). Using the definition of g, we have

min{~y* [lwol|* e~ )‘mm} . Cak 0. (52)

_ > >
Gk — qk+1 = Tws 2 T = Twpl2 =

Since gy, is bounded in [0, u” Hu], summing both side of the inequality, we get the bound of the infinite series > ”Ufﬁ <

T
uw' Hu
- < 0.

(2) Since ||wg]| is bounded, we denote £~ := TosT? Hz’ and define p := max{|1 — &% )|} € (0,1), then the inequality (44)
implies gr+1 < p2qi. As a consequence, ¢ tends to zero, which implies the direction of wj, converges to the direction of w.
(3) The convergence of ay, is a consequence of wy, converging.

O

Since ay, is bounded, we assume |ai| < C,vVuTHu, C, > 1, and define ¢ := ﬁ The following lemma gives the
convergence for small step size. o

Lemma B.11. [f the initial values (ag, wo) satisfies agwd g > 0, and step size satisfies ¢, € (0,1],&/||wo||* < €0, then the

sequence (ay,wy,) converges to a global minimizer.

T
Remark 1: If we set ag = 0, then we have w; = wy, a1 = €4 “:;’Og

, hence a;w!g > 0 provided wi g # 0.

Remark 2: For the case of ¢, € (1, 2), if the initial value satisfies an additional condition 0 < |ag| < &, , then we

have (ay, wy) converging to a global minimizer as well.

lwg gl
a0

Proof. Without loss of generality, we only consider the case of ag > 0, OT >0, |lwol > 1.

(1) We will prove a > 0, w,~c g > 0 for all k. Denote yy, := wk g,0 = lall.

4k

On the one hand, if ax > 0,0 < yi < 24, then

Yiop1 > yp + e g > (53)
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On the other hand, when ax > 0, yx > 0, < g9, we have

pe 2 el gy (1 22 /GTHg) > Ly, (54)
a1 > min{ag, yr/ox}- (55
As a consequence, we have aj > 0,y > 0, := min{yo, 6} for all k by induction.
(2) We will prove the effective step size &, satisfies the condition in Lemma B.10.

Since aj is bounded, € < g¢, we have

2 ar Wi 9 Eéaknzam
Epi=ce - < (T <eCur =16 < 2>\maz (56)
and
qk+1 S (]- - ék)\m,in)2qk é (]- - ék)\mzn)qk < gk- (57)
T T T
which implies ’“trllg > “;’“kg > %. Furthermore, we have a; > min{ao, ug’og }, and there is a positive constant £~ > 0
such that
> e U0 > e (58)
k= Am,a:cHwk“2 Ok ”wkH2
(3) Employing the Lemma B.10, we conclude that (ay, wy) converges to a global minimizer. O

Lemma B.12. [f step size satisfies €, € (0,1],/||wol|? < €0, then the sequence (ax,wy.) converges.

Proof. Thanks to Lemma B.11, we only need to consider the case of axw] g < 0 for all k, and we will prove the iteration
converges to a saddle point in this case. Since the case of a;, = 0 or wgg = 0 s trivial, we assume akwgg < 0 below. More
specifically , we will prove |ay41| < 7]ay| for some constant » € (0, 1), which implies convergence to a saddle point.

(1) If ay, and a1 have a same sign, hence different sign with w? g, then we have |ax11| = |1 — ,||ax| — eo|wi g| /o) <
1 — &allal.

(2) If aj, and a1 have different signs, then we have

st < e (Jlg]2 - 252" Hug) < 22kAmar < 1. (59)

Consequently, we get
|7Z:‘1‘ =g, ||Zkgil‘ (1 —¢eq) < 2eeqkAmaz — (1 —&4) <& < 1. (60)
(3) Setting r := max(|1 — &4/, 2e€akAmaz — (1 — €4)), we finish the proof. O

To simplify our proofs for Theorem 3.3, we give two lemmas which are obvious but useful.

Lemma B.13. [f positive series fi, hy, satisfy fr41 < rfr + hg,r € (0,1) and klim hi = 0, then klim fi=0.
— 00 — 00

Proof. 1t is obvious, because the series by, defined by by1 = by, + hy, by > 0, tends to zeros. O]

Lemma B.14 (Separation property). For &y small enough, the set S = {w|y*q < do, ||lw|| > 1} is composed by two
separated parts: Sy and Ss, dist(Sy,S2) > 0, where in the set S one has y? < 61,q > 0o, and in Sy one has

q < 0o,y? > 0y for some 51 > 0,05 > 0. Herey := w’ g, q := u" Hu — @I HW? Ty 2

wT Hw

Proof. The proof is based on H being positive. The geometric meaning is illustrated in Figure 5. [

Corollary B.15. If lim ||wy+1 — wg| =0, and lim (w} g)?q, = 0, then either lim (wf'g)?> = 0or lim gz = 0.
k—o0 k—o0 k—o0 k—o0
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Y= wigyess,

Figure 5. The geometric meaning of the separation property

Proof. Denote yy, := w} g. According to the separation property (Lemma B.14), we can chose a §p > 0 small enough such
that the separated parts of the set S := {w|y?q < do, ||w|| > 1}, S1 and Sa, have dist(S1, S2) > 0.

Because y2q;, tends to zero, we have wy, belongs to S for k large enough, for instance k& > k1. On the other hand, because
|lwk+1 — wy]| tends to zero, we have ||wy1+1 — wi|| < dist(Sy,S2) for k large enough, for instance k& > ko. Then consider
k > ks := max(k1, k2), we have all w;, belongs to the same part Sy or Ss.

If wy, € S1, (g > J2), for all k > k3, then we have klim (wlg)? =0.
—0o0

On the other hand, if wy € S, (y,ﬁ > 1), for all k& > ks, then we have klim q. = 0.
—00

Theorem B.16. Let ¢, € (0,1] and € > 0. The sequence (ay, wy) converges for any initial value (ag, wo).

Proof. We will prove ||wy|| converges, and then prove (ay, wy) converges as well.
(1) We prove that ||wg]| is bounded and hence converges.

In fact, according to the Lemma B.12, once ||wy||? > &/e¢ for some k, the rest of the iteration will converge, hence ||wy]| is
bounded.

(2) We prove lim |lwgi1 — wi|| = 0, and lim (w] g)?q, = 0.
k—o0 k—o0
The convergence of ||wg|| implies Y, a? gy is summable. As a consequence,
lim a?pp =0, lim apey, = 0, (61)
k—o0 k—oo
and lim |Jwgy1 — wg| = 0. In fact, we have
k— o0

2 2
[wigr — wiel|* = 255 | Hep||” < 2mee=alqp — 0. (62)

Consider the iteration of series |a; —

wl g g wi g wqj g
o~ w— | - i
_ lang™ Hep| lwiy 19l .
<(1—¢g4)|a P + (0k0k+1)|0k+1 okl
w? €k |wT 9l _Amaz
< (1-0)|ar - f;ﬂ] + clolalopesls | i tl A gy | 4
< (1 - ea)|ar — 9| 4 20 aper] 63)
< Ea)|ak — =& larer| n- (
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EAmax HUHH
Amin [lwoll?

klirn lar, — wl'g/oy| = 0. Combine the equation (61), then we have klim (wl g)?pr = 0.
—00 —00

The constant C' in Eq. (63) can be chosen as C' = . Since ||agex || zr tends to zero, we can use Lemma B.13 to get

(3) According to the Corollary B.15, we have either klim yi = 0, or klim qx = 0. In the former case, the iteration of
— 00 c— 00

(ak,wy) converges to a saddle point. However, in the latter case, (ax, wy) converges to a global minimizer. In both cases we
have (ay, wy) converges.

O

To finish the proof of Theorem 3.3, we have to demonstrate the special case of £, = 1 where the set of initial values such
that BN iteration converges to saddle points is of Lebeguse measure zero. We leave this demonstration in next section where
we consider the case of ¢, > 1.

B.4. Impossibility of converging to strict saddle points

In this section, we will prove the set of initial values such that BN iteration converges to saddle points is of Lebesgue measure
zero, as long as €, > 1. The tools in our proof is similar to the analysis of gradient descent on non-convex objectives (Lee
et al., 2016; Panageas & Piliouras, 2017). In addition, we used the real analytic property of the BN loss function (27).

For brevity, here we denote = := (a,w) and let &, = ¢, then the BN iteration can be rewritten as
Tn+1 = T(xn) =T — EV'](J:’!L)'

Lemma B.17. If A C T(R%/{0}) is a measure zero set, then the preimage T~'(A) is of measure zero as well.

Proof. Since T is smooth enough, according to Theorem 3 of Ponomarev (1987), we only need to prove the Jacobian of
T(x) is nonzero for almost all € R?. In other words, the set {x : det(I —eV?2.J(z)) = 0} is of measure zero. This is true
because the function det(I — eV?2.J(z)) is a real analytic function of x € R%/{0}. (Details of properties of real analytic
functions can be found in Krantz & Parks (2002)).

O

Lemma B.18. Let f : X — R be twice continuously differentiable in an open set X C R* and x* € X be a stationary
point of f. If e > 0, det(I — eV2f(x*)) # 0 and the matrix V? f (x*) has at least a negative eigenvalue, then there exist a
neighborhood U of x* such that the following set B has measure zero,

B:={x0€U:xpy1 =2, —eVf(x,) €U ¥n >0} (64)

Proof. The detailed proof is similar to Lee et al. (2016); Panageas & Piliouras (2017).

Define the transform function as F'(x) := z — eV f(z). Since det(I — eV?2f(z*)) # 0, according to the inverse function
theorem, there exist a neighborhood U of x* such that T" has differentiable inverse. Hence 7' is a local C 1 diffeomorphism,
which allow us to use the central-stable manifold theorem (Shub, 2013). The negative eigenvalues of V2 f(z*) indicates
Amaz (I — V2 f(2*)) > 1 and the dimension of the unstable manifold is at least one, which implies the set B is on a lower
dimension manifold hence B is of measure zero.

O

Lemma B.19. Ife, = ¢ > 1, then the set of initial values such that BN iteration converges to saddle points is of Lebeguse
measure zero.

Proof. We will prove this argument using Lemma B.17 and Lemma B.18. Denote the saddle points set as W := {(a*, w*) :
a* = 0,w*Tg = 0}. The basic point is that the saddle point z* := (a*,w*) of the BN loss function (27) has eigenvalues

{%(1:& 14 4Jal” ),O,...,O}oftheHessianmatrix.

w*T Hw*

(1) For each saddle point 2* := (a*,w*) of BN loss function, ¢ > 1 is enough to allow us to use Lemma B.18. Hence there
exist a neighborhood U, of z* such that the following set B, is of measure zero,

By :={xg € Ups : 2y € Upr,Vn > 1}. (65)
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(2) The neighborhoods U~ of all z* € W forms a cover of W, hence, according to Lindel6f’s open cover lemma, there are
countable neighborhoods {U; : i = 1,2, ...} cover W, i.e. U := U,;U; 2 W. As a consequence, the following set Ay is of
measure zero,

Ay =U;B; = Ui{l‘o eU;:xz, €eU;,Vn > 1}. (66)

(3) Define A1 = T (A,) = {x € R : T(x) € Ay}, m > 0. According to Lemma B.17, we have all A,, and
Um Ay, are of measure zero.

(4) Since each initial value xq such that the iteration converges to a saddle point must be contained in some set A,,, we
finish the proof.

O

Combine the results of Lemma B.19, scaling property 3.2 and the convergence theorem B.16, we have the following theorem
directly.

Theorem B.20. I[fc, = 1, > 0, then the BN iteration (7)-(8) converges to global minimizers for almost all initial values.

B.5. Convergence rate

T
In section B.3, we encountered the following estimate for e, = u — wg’zg W
k

lewsilla < p(I — éxH)lex| m- (67)

We can improve the convergence rate of the above if H* has better spectral property. This is the content of Theorem 3.4 and
the following lemma proves this.

Lemma B.21. The following inequality holds,
(= oWllensalln < (o (1 = EcH") + 6 llenl (68)

where Oy, := 7)""“;?“’”“ llek || -

Proof. The case of w,{ g = 0 is trivial, hence we assume w,{ g # 0 in the following proof. Rewrite the iteration on wy, as the
following equality,

_ wkTg _ 2 _ 2 * 2 - (w:g)z
u 5 We+1 = (I EkH)ek = (I EkH )ek Ek 1 Hu. (69)
k

o uT Huo?
Then we will use the properties of H *-seminorm to prove our argument.

(1) Estimate the H*-seminorm on the right hand of Eq. (69).

u]T 2
Irightll - < (1 = &l )exlli- + 2] (1 55255 ) | Hull - (70)
<Pt (1= &k H)lexll e + 222 ey (71)
o« A ey |wigl Amazelarwi g| 2
=p"(I —é&H )ﬁ%”%”l{ + ﬁ”%”f{ (72)
wT * 3 *
— bl (1 = &) + ¢ ) exl . (73)

(2) Estimate the H*-seminorm on the left hand of equation (69). Using the H-norm on the iteration of wy, we have

Oha1 = wp + 2 Hep|| g > op — e2mezlttl eyl (74)
Consequently, we have
T T
eftl| - = APl —Zettleyy |l > Lk I— (1 — &) llepsa |- (75)

(3) Combining (1) and (2), we finish the proof. O]
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Then we give the proof of Theorem 3.4.

Proof of Theorem 3.4. Firstly, the Lemma B.21 implies the second part of Theorem 3.4 which is the special case of
o <0< 1.

Secondly, if € < €7, ... then p*(I — éH™*) < 1. Since (ay, wy,) converges to a minimizer, J;, must converge to zero and the

coefficient % must less than a number p € (0, 1) when £ is large enough which results in the linear convergence
of |lex|| - O

Now, we turn to the convergence of the loss function which can be rewritten as .J; = §||éx[|% with &, = u — S wy. There
is an useful equality between ||éx||%; and ||ex]||%;:

T \2
e lE = Newli3r + (ax — “E2)". (76)
Recalling the inequality (63) and the boundedness of aj, we have a constant Cy such that
T T
a1 — 2 < |1 —eqf [k — 2|+ Colle]| 7

which indicates that we can use the convergence of e, to estimate the convergence of the loss value Ji. In fact we have the
following lemma.

Lemma B.22. If |lex||r < Cp* for some constant C and p € (0,1), e, € (0, 1], then we have
2
lenlly < C2p% + (Ca(1 = ea) + Caky*) (78)
where v = max(p, 1 — €,), C1 = |ag — wi g/oo| and Cy = CC,.

Proof. According to the inequality (77), we have
k—1
’ak — w‘%g’ <Ol —e0)* + Co Z(l — ) T < CL(1 — £,)F 4 CakAt. (79)
i=0

Put it in the Eq. (76), then we finish the proof.

B.6. Estimating the effective step size

Firstly, we consider the limit of effective step size £&. When the iteration converges to a minimizer (a*, w*), the value

of isé = W Without loss generality, we assume that wy, always has different direction with u during the whole
course of the iterations. In fact, if w;, has the same direction with u for some k, then the iteration of wj, is trivial, i.e.
W = Wit+1 = Wk+2 = ..., and the effective step size can be any positive number. However, this case is rare. More precisely,

we have the following lemma:

Lemma B.23. The set of initial values (ag, wo) such that (ay, wy,) converges to a minimizer (a*,w*) with effective learning

rate € 1= klim Ep > ek op and det(I — EH™) # 0 is of measure zero.
— 00

Proof. The proof is similar to the proof of Lemma B.20. The key point is that the matrix I — £H™ at this minimizer is
non-degenerate and has an eigenvalue with its absolute value large than 1, hence there is a local unstable manifold with
dimension greater than one. O

Now we consider the effective learning rate £, and give the proof of Proposition 3.5.

According to Lemma B.11, the effective step size £, has same order with £ provided agwg g > 0,¢/||wo|| < £o. In
fact, we have

Cie . a(ﬂ”g‘g £ < A< T o€ _. Cse

Tunl® = o0 Smazlfw? = &k S VU HUSZo e = e (80)

Hence, to prove the Proposition 3.5, we only need to estimate the norm of wy.
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Proof of Proposition 3.5. According to the BNGD iteration, we have (see the proof of Lemma B.10)

k
2
||wk:+1||2 S ”U)O”2 +52)\maz § %Ch (81)
=0

(1) When W < €g (g is defined in Lemma B.11), the sequence ¢, satisfies qx+1 < (1 — €xAmin )qx- Hence the norm of
wy, is bounded by

(oo}
lwkll? < llwoll® + enCa 2 S (@ = ain) < lluoll® + Ce, (82)
i=0
for some constant C. As a consequence,
A C - Cae  _. A
Cie := Hwo||2(1i-cao) <ép < HwiiQ =: Cqe. (83)

(2) When ¢ is large enough, the increment of the norm ||wy|| at the first step is large as well. In fact, we have
2
lwi ] = llwoll* = * 24 Heo||* = Cse®. (84)

T
Since ||g||? > %gTHwO, we have ajw? g > a;wl g > 0. Choose € to be larger than some value £; such that W < €p,
0

then we can use the argument in (1) on (a1, w1 ). More precisely, there are two constants, Cy, Cs, such that

Cie ~ Cse
Tl < €k < Tunfe- (85)
Plugging the equation (84) into it, we have
015% 0152 -~ 0262 Ca
ool 16 = TwolPCse? = k€ < [uplitcaer < G- (86)
O

B.7. Quantification of the insensitive interval

In this section, we estimate the magnitude of insensitive interval of step size.

The BNGD iteration with configuration e, = 1, a9 = g s lwoll = ||u|| = 1 implies the following equality of ||wy|

g0

2

Jeokll? + ooy AL e 5,

2
: HwkH2+ Huiu'zﬁkv &7

[wr+1 1

2 . .
k H 2+ The linear convergence results allow us to assume that 3, converges linearly

. . aillws]?
where [y is defined as B, := =& 5 He
k

to zero, i.e. Bx = Bop”, k > 0 where p € (0, 1) depends on ¢ and is self-consistently determined by the limiting effective

step size, i.e. p = p(I — WH ) is the spectral radius of I — WH . Observed that the iteration in Eq. (87) can be
regarded as a numerical scheme for solving the following ODE:
: e2Bop™
§0) = llunll”, €0 = =5~ (88)
which has solution £2(¢) = £2(0) + f;ﬁp(" (1 — p?'), the value of |Jwy]||? can be approximated by &(k + 1). Particularly, we

have an approximation for ||we]|?:

wsol? & £(00) = /(1 +€260)2 + 5228 (89)
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To determine the value of p, we let p and € satisfy the following relation:

p= (I = gy 1) i= max{[1 — g M (1)}, (90)

which closed the calculation of £(c0).

Next, we consider two limiting case: € < 1 and € >> 1. In both case, the effective step size € is small, and the value of p is
relatedto p =1 — % Combine the definition of £(c0), then we have

242 2 2
Ty = £(00)” = (1+°60) + i ~ (1+¢260)” + T2, o1

where the estimate of |In p| & 1 — p, is used since p is closed to 1 for £ is small enough. Consequently, we have:

(1) Whene < 1,wehave a* = 1, p~ 1 — e\, and € ~ €.

(2) When € > 1, we have

£~

1-p 1+ 452/\37“-” -1 1 2 A min 1 ©2)
)\min - 25260)\min B 60 \/ 1 =+ 452)\72712-” + 1 Boe”
1

Those results indicate the magnitude of insensitive interval of step size is proportion to the constant o

Finally, we estimate the average of 5y over wq and u for given H. The average value of 5y from BNGD is defined as the
following geometric average over wy and u, which we take to be independent and uniformly on the unit sphere S~ 1,

i 1= ES, u[A0] = exp (B In [(2422)* o] 3] 3

Correspondingly, the magnitude of insensitive interval of step size is defined as (2,

[/\fna:c(H)} — Afna_z(H). (94)

_ _ G
=0y :=E 460 48y

wo ,U

The numerical tests find that Qz; highly depends on the dimension d provided the eigenvalues of H is sampled from typical
distributions sugh as the uniform Elistribution on [Amin, Amaz] With 0 < Apin < Apmaz- In fact we have the following
estimations for Sy which implies Sz < O(1/d) and Qg > O(d).

Lemma B.24. For positive definite matrix H with minimal and maximal eigenvalues, Ap,;n and Ay, q. respectively, the B
defined in (93) satisfies,

Tr[H?] AmaeTr[H nr Tr[H
[d ] d AL ,\,21 exp ( - 251—1 (dkim],, - 1))7 95)

min

-

Bu <

where k = i”’ = js the condition number of H.
Proof. The definition of E“ allows us to estimate each term in /3 separately.
(1). The inequality of arithmetic and geometric means implies E¢[(wl Hu)?] < E[(wl Hu)?] = %fz].

(2). Using the definition of g = u — wq, We have

wy Hu
T
wq Hwo

T
]EG[”eO”%{?] < )‘marE[HQOH%{] = )‘mazE[Hu — S olu U)OH%I}

wg Hwq
= )\mam]E [uTHU — (717}?1;50 )2}

< )‘mazE[UTH’U,] = %TT[H]
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(3). Since wl Hwo € [Amin,r., ) using the fact that In(1 + z) > %, Va € [0,k — 1], we have
E¢ [ngwo] = exp (IE In(wd ))
> Amin exp (B2 (wg Huwo/Amin — 1)) (96)
’VTL}:L{”L B 1)) '

- /\’rnin €exXp (

Combine the inequities above, then we finish the proof. O

If the eigenvalues of H is sampled from a given distribution on [Aynin, Amaz), the values TTU[lH] , %HZ] are related to

the distribution and not sensitive to dimension d (for d large enough), then the estimate in Lemma B.24 indicates that
Bu < O(1/d)and Qg > O(d). As an example, we consider the H with eigenvalues forming an arithmetic sequence below.

Corollary B.25. If the eigenvalues of H are \; = \ppin, + (1 — 1)M d > 2, then we have

2

2 (k+1)% X2, R
< maz () > (], 97
ﬂH > <2 Ad H Z (Ii-l—l)?’ ( )
. TrlH] _ (5+DAmin Tr[H?] _ (s+1)°X2 ..
Proof. It is enough to show that —— = 5 gz < 5a . O

The Corollary B.25 indicates that larger dimensions lead to larger insensitive intervals of step size. It is interesting to note
that although the lower bound of {2 is also related to the condition number «, the numerical tests in section B.7.1 find the
width is not sensitive to . In fact, one could get better lower bounds for 2 by better estimates on EC (wTH w). However,
here we focus on the effect of dimension.

B.7.1. NUMERICAL TESTS

In this section, we give some numerical tests on the BNGD iteration with e, = 1, a9 = 0 and choices of the matrix H. The
scaling property allows us to set H diagonal and the initial value wy having the same norm with u, ||wo|| = |Ju|| = 1.

Firstly, we show the difference of geometric mean(G-mean) and arithmetic mean(A-mean) in quantifying the performance
of BNGD. Figure 6 gives an example of a 100-dimensional H with condition number x = 853. The GD and MBNGD
iteration are executed k£ = 5000 times where u and wy are randomly chosen from the unit sphere. The values of effective
step size, loss ||ex ||%; and error ||ex|| are plotted. Furthermore, the mean values over 500 random tests are given. The results
show that the G-mean converges quickly when the number of tests increase, however the A-mean does not converge as
quickly and A-mean is dominated by the largest sample values. Hence we use the geometric mean in later tests.

Effective step size / €max

Figure 6. Test BNGD on OLS model with step size €, = 1, ap = 0. Parameters: H is a diagonal matrix with condition number x = 853
(the first random test in Figure 8), u and wy is randomly chosen uniformly from the unit sphere in R'°°. The BNGD iterations are
executed for £ = 5000 steps. The bold curves are averaged over the 500 independent runs (the shadow curves).

Secondly, we test the effect of dimension d.

Figure 7 gives three typical setting of H: (a) with arithmetic progression eigenvalues, (b) with geometric progression
eigenvalues and (c) with only one large eigenvalue perturbed from identity matrix. In the first two cases, the effect of
dimension is observed, the large dimensions lead to large magnitude (2 of optimal step size, and the magnitude is almost
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proportion to the dimension d which confirm the analysis in Lemma B.24 and Corollary B.25. In the last case, the large
dimensions lead to small €2 which is due to Tr[H|/d and Tr[H?]/d are highly influenced by d. However, the condition
number of H* be much smaller than x(H ), in which case leads to marked acceleration over GD.

Effective step size/e,
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Effective step size/emax

i

€/Emaz

Figure 7. Tests of BNGD on OLS model with step size €, = 1, ap = 0. Parameters: (a, top) H = diag(linspace(1,10000,d)), (b, middle)
H = diag(logspace(0,4,d)), (c, bottom) H = diag([ones(1,d-1),10000]]). « and wo is randomly chosen uniformly from the unit sphere in
R?. The BNGD iterations are executed for k& = 5000 steps. The curves are averaged over the 500 independent runs.

Finally, we test the effect of eigenvalue distributions. Figure 8 gives examples of H with different condition number but
same dimension d = 100. When the eigenvalues are arithmetic sequences, the width of optimal learning rate is almost
same over different condition numbers while the loss and error still depend on the condition number. Randomly choosing
eigenvalues also exhibits this phenomenon.
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Figure 8. Tests of BNGD on OLS model with step size ¢, = 1, ag = 0. Parameters: (top) H =diag(linspace(1,condH,100)), (bottom)
H € R'00%190 j5 3 diagonal matrix with random positive entrances which has condition number . u and wy is randomly chosen
uniformly from the unit sphere in R'°°. The BNGD iterations are executed for k = 5000 steps. The curves are averaged over the 500

independent runs.



