
Stochastic Momentum Methods

A. Constrained Optimization and ASPG
Consider the constrained optimization problem minx∈C f(x), where C ⊂ Rd is a compact set with a finite diameter
DC := supx,y∈C ‖x− y‖2 and GM := maxx∈C ‖∇f(x)‖. The accelerated stochastic projected gradient method (ASPG)
consists of the iterations

x̃k+1 = PC (ỹk − α(∇f(ỹk) + εk+1)) , (30)
ỹk = (1 + β)x̃k − βx̃k−1, (31)

where εk is the random gradient error satisfying Assumption 2, α, β > 0 are the stepsize and momentum parameter and
PC(x) denotes the projection of a point x to the compact set C. For constrained problems, algorithms based on projection
steps that restricts the iterates to the constraint set are more natural compared to the standard AG algorithm primarily
designed for the unconstrained optimization (Bubeck, 2014). Accelerated projected gradient methods can also be viewed as
a special case of the accelerated proximal gradient methods as the proximal operator reduces to a projection in a special case
(see e.g. Parikh et al. (2014)).

We will show in Proposition 28 that the metric dψ implies the standard p-Wasserstein metric in the sense that for any two
probability measures µ1, µ2 on the product space C2 := C × C,

Wp(µ1, µ2) ≤ 21/pDC2‖µ1 − µ2‖1/pTV ≤ DC2d
1/p
ψ (µ1, µ2),

where DC2 =
√

2DC is the diameter of C2.

Under Assumption 2, ξ̃k = (x̃Tk , x̃
T
k−1)T forms a time-homogeneous Markov chain and we assume ξ̃0 ∈ C2. In addition

to Assumption 2, we also assume that the random gradient error εk admits a continuous density so that conditional on
ξ̃k = (x̃Tk , x̃

T
k−1)T , x̃k+1 also admits a continuous density, i.e.

P(x̃k+1 ∈ dx̃|ξ̃k = ξ̃) = p̃(ξ̃, x̃)dx̃,

where p̃(ξ̃, x̃) > 0 is continuous in both ξ̃ and x̃.

For the ASPG method with any given α, β so that ρα,β , Pα,β satisfy the LMI inequality (6), the next result gives a bound of
k-th iterate to stationary distribution in the weighted total variation distance and standard p-Wasserstein distance, and also a
bound on the expected suboptimality E[f(x̃k)]− f(x̃∗) after k iterations.

Theorem 16. Given any η ∈ (0, 1) and R > 0 so that

inf
x̃∈C:ξ̃∈C2,VPα,β (ξ̃)≤R

p̃(ξ̃, x̃)

p̃(ξ̃∗, x̃)
≥ η.

Consider the Markov chain generated by the iterates ξ̃Tk = (x̃Tk , x̃
T
k−1) of the ASPG algorithm. Then the distribution ν̃k,α,β

of ξ̃k converges linearly to a unique invariant distribution π̃α,β satisfying

Wp(ν̃k,α,β , π̃α,β) ≤ DC2d
1/p

ψ̃
(ν̃k,α,β , π̃α,β) ≤ (1− η̃)kDC2d

1/p

ψ̃
(ν̃0,α,β , π̃α,β), (32)

whereWp is the standard p-Wasserstein metric (p ≥ 1) and

E[f(x̃k)]− f(x̃∗) ≤ VPα,β (ξ̃0)ρkα,β +
K̃α,β

1− ρα,β
, (33)

where K̃α,β := ασ
(
(ασ + 2DC) ‖Pα,β‖+GM + ασL

2

)
, η̃ := min

{
η
2 ,
(

1
2 −

ρα,β
2 − K̃α,β

R

)
Rη

4K̃α,β+Rη

}
and ψ̃ :=

η

2K̃α,β
.

We can see from (33) that the expected value of the objective with respect to the k-th iterate is close to the true minimum of
the objective if k is large, and the stepsize α or the variance of the noise σ2 is small. By choosing (α, β) = (αAG, βAG), we
obtain the optimal convergence in the next theorem.
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Proposition 17. Given (α, β) = (αAG, βAG). Define R as in Theorem 16 with η = 1/κ1/2. Also assume that the noise
has small variance, i.e.

σ2 <
1

4a2
1

(
−b1 +

√
b21 +

(
a1R/

√
κ
))2

,

where a1 := 1
L2

(
µ
2 ((1−

√
κ)2 + κ) + L

2

)
and b1 := 1

L

(
DCµ((1−

√
κ)2 + κ) +GM

)
. Then, we have

Wp(ν̃k,α,β , π̃α,β) ≤ DC2d
1/p

ψ̃
(ν̃k,α,β , π̃α,β) ≤

(
1− 1

8
√
κ

)k
DC2d

1/p

ψ̃
(ν̃0,α,β , π̃α,β), (34)

whereWp is the standard p-Wasserstein metric (p ≥ 1) and

E[f(x̃k)]− f(x̃∗) ≤ VPAG(ξ̃0)

(
1− 1√

κ

)k
+
√
κK̃, (35)

where K̃ := 2σDCL+σ2

2L2 µ((1−
√
κ)2 + κ) + σGM

L + σ2

2L and ψ̃ := 1
2
√
κK̃

.

B. Weakly Convex Constrained Optimization
In this section, we extend the constrained optimization for the accelerated stochastic projected gradient method (ASPG)
from the strongly convex objectives studied in Section A to the (weakly) convex objectives.

Consider the constrained optimization problem minx∈C f(x) for f ∈ S0,L on the convex compact domain C ⊆ Rd with
diameter DC . Consider the following (regularized) function

fε(x) = f(x) +
ε

2D2
C
‖x‖2,

which is strongly convex with parameter µε = ε/D2
C and smooth with parameter Lε = L+ ε/D2

C , i.e. fε ∈ Sµε,Lε with
a condition number κε := Lε/µε = 1 + LD2

C/ε. Let x̃εk denote iterates of ASPG defined by fε (i.e f = fε(x)) in (30)
and (31)) with optimal value x̃ε∗ and define x̃∗ to be one of the minimizers of f(x) (the optimizer may not be unique). By
applying Proposition 17, we can control the expected suboptimality after k iterations as follows:

E[fε(x̃
ε
k)]− fε(x̃ε∗) ≤ VP εAG(ξ̃0)

(
1− 1
√
κε

)k
+
√
κεK̃ε,

where

K̃ε :=
2σDCLε + σ2

2L2
ε

µε((1−
√
κε)

2 + κε) +
σGεM
Lε

+
σ2

2Lε
.

Therefore,

E[f(x̃εk)]− f(x̃∗) = E
[
fε(x̃

ε
k)
]
− fε(x̃∗) +

ε

2D2
C

(
‖x̃∗‖2 − E[‖x̃εk‖2]

)
≤ E

[
fε(x̃

ε
k)
]
− fε(x̃ε∗) +

ε

2D2
C

(
‖x̃∗‖2 − E[‖x̃εk‖2]

)
≤ VP εAG(ξ̃0)

(
1− 1
√
κε

)k
+
√
κεK̃ε +

ε

2
,

where we used the fact that x̃εk, x̃∗ ∈ C. Therefore, if the noise level σ is small enough such that
√
κεK̃ε ≤ ε

2 and if

k ≥
| log(ε)− log(VP εAG(ξ̃0))|

| log(1− 1√
κε

)|
= O

(
1√
ε

log

(
1

ε

))
,

we obtain

E[f(x̃εk)]− f(x̃∗) ≤ 2ε. (36)
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This shows that if the noise is small is enough, it suffices to have

O

(
1√
ε

log

(
1

ε

))
many iterations to sample an ε-optimal point in expectation.

C. Proofs of Results in Section 3
In this section, we prove the results for Section 3, in which the objective is quadratic: f(x) = 1

2x
TQx + aTx + b and

f ∈ Sµ,L, which satisfies the inequalities:

f(x)− f(y) ≥ ∇f(y)T (x− y) +
µ

2
‖x− y‖2,

f(y)− f(x) ≥ ∇f(y)T (y − x)− L

2
‖x− y‖2,

(see e.g. Nesterov (2004)).

C.1. Proofs of Results in Section 3.1

Before we proceed to the proofs of the results in Section 3.1, we first show that the matrix Sα,β defined in (17) is positive
definite so that the weighted 2-Wasserstein metricW2,Sα,β given in (1) is well-defined.

Lemma 18. The matrix Sα,β ∈ R2d×2d defined by (17) is positive definite if P̃α,β(2, 2) 6= 0.

Proof. For brevity of the notation, we will not explicitly write the dependency of the matrices to α, β and set P = Pα,β and
P̃ = Pα,β in our discussion. It is known that if A ∈ Rn×n is a symmetric matrix with eigenvalues {λi}mi=1 and eigenvectors
{ai}ni=1, and B ∈ Rd×d is a symmetric matrix with eigenvalues {µj}dj=1 and eigenvectors {bj}nj=1, the eigenvalues of the
Kronecker product A⊗B are exactly λiµj with corresponding eigenvectors ai ⊗ bj for i = 1, 2, . . . , n and j = 1, 2, . . . , d.
Since P = P̃ ⊗ Id and P̃ is positive-semi definite by assumption, this implies that P is positive semi-definite and in case P
has a zero eigenvalue, any eigenvector z of P (corresponding to a zero eigenvalue of P ) can be written as

z =

(
c1
c2

)
⊗ s =

(
c1s
c2s

)
∈ R2d,

for some s ∈ Rd, s 6= 0 where c = [c1 c2]T is an eigenvector of P̃ corresponding to a zero eigenvalue. The symmetric
matrix

S := P + Q̂, where Q̂ :=

(
1
2Q 0d
0d 0d

)
, (37)

is the sum of two positive semi-definite matrices, therefore it is positive semi-definite by the eigenvalue interlacing property
of the sum of symmetric matrices (see e.g. Golub & Van Loan (1996)). Thus, it suffices to show that S is non-singular, i.e. it
does not have a zero eigenvalue. If P̃ is of full rank, then such a vector z cannot exist and P cannot have a zero eigenvalue.
Therefore, P is positive definite and hence S is positive definite which completes the proof.

The remaining case is when P̃ is of rank one (P̃ = 0 is excluded as P̃22 6= 0) in which case we can write P̃ = uuT for
some u =

(
u1 u2

)T ∈ R2d and u2 6= 0. We will prove the claim by contradiction. Assume that there exists a non-zero
v ∈ R2d such that Sv = 0. Then,

0 = vTSv = vTPv + vT Q̂v.

Since both of the matrices P and Q̂ are positive semi-definite, this is true if and only if vTPv = 0 and vT Q̂v = 0. Since
vT Q̂v = 0 and Q is positive definite, from the structure of Q̂, it follows that the first d entries of v has to be zero, i.e.
v = [0 vT2 ]T for some v2 ∈ Rd.

It is easy to see that the eigenvalues of the two by two symmetric rank-one matrix P̃ = uuT are λ1 = ‖u‖2 > 0 and λ2 = 0

with corresponding eigenvectors
(
u1 u2

)T
and

(
u2 −u1

)T
respectively. Since v is an eigenvector of P corresponding
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to an eigenvalue zero (i.e. Pv = 0), then using (C.1) we can write

v =

(
u2

−u1

)
⊗ s =

(
u2s
−u1s

)
∈ R2d,

for some s ∈ Rd, s 6= 0. Since v = [0 vT2 ]T for some v2 ∈ Rd, this implies u2 = 0 as s 6= 0. This is a contradiction.

Next, before we proceed to the proofs of the results in Section 3.1, let us first recall that throughout Section 3, the noise εk
are assumed to be i.i.d. Let us define the coupling

x
(j)
k+1 = y

(j)
k − α

[
∇f

(
y

(j)
k

)
+ εk+1

]
, (38)

y
(j)
k = (1 + β)x

(j)
k − βx

(j)
k−1, (39)

with j = 1, 2. Then, we have
ξk+1 = Aξk +Bwk,

where A = Ã⊗ Id, B = B̃ ⊗ Id, for

Ã =

(
1 + β −β

1 0

)
, B̃ =

(
−α
0

)
,

and

ξk =

((
x

(1)
k − x

(2)
k

)T
,
(
x

(1)
k−1 − x

(2)
k−1

)T)T
, (40)

wk = ∇f
(

(1 + β)x
(1)
k − βx

(1)
k−1

)
−∇f

(
(1 + β)x

(2)
k − βx

(2)
k−1

)
. (41)

Let us define:
X̃ = ρX̃1 + (1− ρ)X̃2, (42)

where

X̃1 =
1

2

 β2µ −β2µ −β
−β2µ β2µ β
−β β α(2− Lα)

 , (43)

and

X̃2 =
1

2

 (1 + β)2µ −β(1 + β)µ −(1 + β)
−β(1 + β)µ β2µ β
−(1 + β) β α(2− Lα)

 , (44)

and X = X̃ ⊗ Id, X1 = X̃1 ⊗ Id, X2 = X̃2 ⊗ Id.

Before we proceed, let us recall the following lemma from Hu & Lessard (2017).

Lemma 19 (Theorem 2 Hu & Lessard (2017)). Let X be a symmetric matrix with X ∈ R(nε+nw)×(nε+nw). If there exists
a matrix P ∈ Rnε×nε with P ≥ 0 so that(

ATPA− ρP ATPB
BTPA BTPB

)
−X � 0,

then, we have
V (ξk+1)− ρV (ξk) ≤ S(ξk, wk),

where V (ξ) := ξTPξ, and

S(ξ, w) :=

(
ξ
w

)T
X

(
ξ
w

)
,

and
ξk+1 = Aξk +Bwk.
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The proof of Theorem 4 relies on the following lemma.
Lemma 20. Assume the coupling:

x
(j)
k+1 = y

(j)
k − α

[
∇f

(
y

(j)
k

)
+ εk+1

]
, (45)

y
(j)
k = (1 + β)x

(j)
k − βx

(j)
k−1, (46)

with j = 1, 2. Assume that f is quadratic and f(x) = 1
2x

TQx+ aTx+ b, where Q is positive definite.

Let ρ = ρα,β ∈ (0, 1) that can depend on α and β so that there exists some P = Pα,β symmetric and positive semi-definite
that can depend on α and β such that (

ATPA− ρP ATPB
BTPA BTPB

)
−X � 0, (47)

where X := X̃ ⊗ Id, where X̃ is defined in (42). Then, we have

E

[(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)T
Pα,β

(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
+

1

2

(
x

(1)
k+1 − x

(2)
k+1

)T
Q
(
x

(1)
k+1 − x

(2)
k+1

)]

≤ ρα,β

(
E

[(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+

1

2

(
x

(1)
k − x

(2)
k

)T
Q
(
x

(1)
k − x

(2)
k

)])
.

Proof of Lemma 20. First of all, since f is L-smooth and µ-strongly convex, we have for every x, y ∈ Rd:

f(x)− f(y) ≥ ∇f(y)T (x− y) +
µ

2
‖x− y‖2, (48)

f(y)− f(x) ≥ ∇f(y)T (y − x)− L

2
‖y − x‖2. (49)

Note that since f is L-smooth, we also have for every x, y ∈ Rd:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Let us first consider the simpler case f(x) = 1
2x

TQx. Since f is quadratic, ∇f is linear. Applying (48) and the linearity of
∇f , we get

f
(
x

(1)
k − x

(2)
k

)
− f

(
y

(1)
k − y

(2)
k

)
≥
(
∇f

(
y

(1)
k

)
−∇f

(
y

(2)
k

))T (
x

(1)
k − x

(2)
k −

(
y

(1)
k − y

(2)
k

))
+
µ

2

∥∥∥x(1)
k − x

(2)
k −

(
y

(1)
k − y

(2)
k

)∥∥∥2

.

Applying (49) and the linearity of∇f , we get

f
(
y

(1)
k − y

(2)
k

)
− f

(
y

(1)
k − y

(2)
k − α∇f

(
y

(1)
k − y

(2)
k

))
≥ α

2
(2− Lα)

∥∥∥∇f (y(1)
k

)
−∇f

(
y

(2)
k

)∥∥∥2

.

Using the identity:
x

(1)
k+1 − x

(2)
k+1 = y

(1)
k − y

(2)
k − α∇f

(
y

(1)
k − y

(2)
k

)
,

we get

f
(
y

(1)
k − y

(2)
k

)
− f

(
x

(1)
k+1 − x

(2)
k+1

)
≥ α

2
(2− Lα)

∥∥∥∇f (y(1)
k

)
−∇f

(
y

(2)
k

)∥∥∥2

.

Hence, we get

f
(
x

(1)
k − x

(2)
k

)
− f

(
x

(1)
k+1 − x

(2)
k+1

)
≥
(
∇f

(
y

(1)
k

)
−∇f

(
y

(2)
k

))T (
x

(1)
k − x

(2)
k −

(
y

(1)
k − y

(2)
k

))
+
µ

2

∥∥∥x(1)
k − x

(2)
k −

(
y

(1)
k − y

(2)
k

)∥∥∥2

+
α

2
(2− Lα)

∥∥∥∇f (y(1)
k

)
−∇f

(
y

(2)
k

)∥∥∥2

.
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By the definition of X̃1 from (43), with X1 = X̃1 ⊗ Id, we get x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


T

X1

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )

 ≤ f (x(1)
k − x

(2)
k

)
− f

(
x

(1)
k+1 − x

(2)
k+1

)
.

Similarly, by applying (48) with (x, y) 7→ (0, y
(1)
k − y

(2)
k ), by the definition of X̃2 from (44), with X2 = X̃2 ⊗ Id, we get x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


T

X2

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )

 ≤ f(0)− f
(
x

(1)
k+1 − x

(2)
k+1

)
.

By using X̃ = ρX̃1 + (1− ρ)X̃2 and X = X̃ ⊗ Id, we get x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


T

X

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


≤ −

(
f
(
x

(1)
k+1 − x

(2)
k+1

)
− f(0)

)
+ ρ

(
f
(
x

(1)
k − x

(2)
k

)
− f(0)

)
.

By Lemma 19 and the definition of ρα,β , Pα,β the inequality (47) holds. Thus(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)T
Pα,β

(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
+ f

(
x

(1)
k+1 − x

(2)
k+1

)
− f(0)

≤ ρα,β

( x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+ f

(
x

(1)
k − x

(2)
k

)
− f(0)

 .

Since f is quadratic, and we assumed that f(x) = 1
2x

TQx, where Q is positive definite, we get(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)T
Pα,β

(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
+

1

2

(
x

(1)
k+1 − x

(2)
k+1

)T
Q
(
x

(1)
k+1 − x

(2)
k+1

)

≤ ρα,β

( x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+

1

2

(
x

(1)
k − x

(2)
k

)T
Q
(
x

(1)
k − x

(2)
k

) .

Previously, we assumed f(x) = 1
2x

TQx, so that∇f(x− y) = ∇f(x)−∇f(y). In general, the quadratic function takes
the form

f(x) =
1

2
xTQx+ aTx+ b.

In this case,
∇f(x− y)− (∇f(x)−∇f(y)) = aT (x− y).

By the definition of X̃1 from (43), with X1 = X̃1 ⊗ Id, we get x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


T

X1

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


≤ f

(
x

(1)
k − x

(2)
k

)
− f

(
x

(1)
k+1 − x

(2)
k+1

)
+
(
∇f

(
y

(1)
k − y

(2)
k

)
−∇f

(
y

(1)
k

)
+∇f

(
y

(2)
k

))T (
x

(1)
k+1 − x

(2)
k+1 −

(
x

(1)
k − x

(2)
k

))
.

= f
(
x

(1)
k − x

(2)
k

)
− f

(
x

(1)
k+1 − x

(2)
k+1

)
+ aT

(
x

(1)
k+1 − x

(2)
k+1 −

(
x

(1)
k − x

(2)
k

))
.
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By the definition of X̃2 from (44), with X2 = X̃2 ⊗ Id, we get

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f
(
y

(1)
k

)
−∇f

(
y

(2)
k

)

T

X2

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f
(
y

(1)
k

)
−∇f

(
y

(2)
k

)


≤ f(0)− f
(
x

(1)
k+1 − x

(2)
k+1

)
+
(
∇f

(
y

(1)
k − y

(2)
k

)
−∇f

(
y

(1)
k

)
+∇f

(
y

(2)
k

))T (
x

(1)
k+1 − x

(2)
k+2

)
= f(0)− f

(
x

(1)
k+1 − x

(2)
k+1

)
+ aT

(
x

(1)
k+1 − x

(2)
k+1

)
.

Using X̃ = ρX̃1 + (1− ρ)X̃2 and X = X̃ ⊗ Id, we get x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


T

X

 x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

∇f(y
(1)
k )−∇f(y

(2)
k )


≤ −

(
f
(
x

(1)
k+1 − x

(2)
k+1

)
− f(0)

)
+ ρ

(
f
(
x

(1)
k − x

(2)
k

)
− f(0)

)
+ aT

(
x

(1)
k+1 − x

(2)
k+1 − ρ

(
x

(1)
k − x

(2)
k

))
= −1

2

(
x

(1)
k+1 − x

(2)
k+1

)T
Q
(
x

(1)
k+1 − x

(2)
k+1

)
+ ρ

1

2

(
x

(1)
k − x

(2)
k

)
Q
(
x

(1)
k − x

(2)
k

)
.

Hence, by Lemma 19 and the definition of ρα,β , Pα,β so that (47) holds, we get the same result as before:(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)T
Pα,β

(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
+

1

2

(
x

(1)
k+1 − x

(2)
k+1

)T
Q
(
x

(1)
k+1 − x

(2)
k+1

)

≤ ρα,β

( x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+

1

2

(
x

(1)
k − x

(2)
k

)T
Q
(
x

(1)
k − x

(2)
k

) .

By taking α = αAG, β = βAG, ρ = ρAG and PAG in definition (7), we recall the following result from Hu & Lessard
(2017).

Lemma 21 (Hu & Lessard (2017)). , With the choice

α = αAG =
1

L
, β = βAG =

√
κ− 1√
κ+ 1

, ρ = ρAG = 1− 1√
κ
,

where κ = L/µ is the condition number, there exists a matrix P̃AG ∈ R2×2 with P̃AG ≥ 0, where

P̃AG := ũũT , ũ =
(√

L
2

√
µ
2 −

√
L
2

)T
,

such that PAG = P̃AG ⊗ Id and (
ATPAGA− ρPAG ATPAGB

BTPAGA BTPAGB

)
−X � 0,

where X := X̃ ⊗ Id, where X̃ is defined in (42).

We immediately obtain the following result.
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Lemma 22. Assume the coupling (45)-(46). Assume that f is quadratic and f(x) = 1
2x

TQx+aTx+b, whereQ is positive
definite. Then, we have

E

[(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)T
PAG

(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
+

1

2

(
x

(1)
k+1 − x

(2)
k+1

)T
Q
(
x

(1)
k+1 − x

(2)
k+1

)]

≤ ρAG

(
E

[(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
PAG

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+

1

2

(
x

(1)
k − x

(2)
k

)T
Q
(
x

(1)
k − x

(2)
k

)])
,

where P is defined in (7).

Now, we are ready to state the proof of Theorem 4.

Proof of Theorem 4. Recall the iterates ξk = (xTk , x
T
k−1)T , the Markov kernel Pα,β and the definition of the weighted

2-Wasserstein distance (1) with the weighted norm (16)-(17) and P = Pα,β . Then showing Theorem 4 is equivalent to show

W2
2,Sα,β

(Rkα,β((x0, x−1), ·), πα,β) (50)

≤ ρkα,β
∫
Rd×Rd

[(
x0 − x̂0

x−1 − x̂−1

)T
Pα,β

(
x0 − x̂0

x−1 − x̂−1

)
+

1

2
(x0 − x̂0)TQ(x0 − x̂0)

]
dπα,β(x̂0, x̂−1).

Let (((x
(i)
k )T , (x

(i)
k−1)T )T )∞k=0, i = 1, 2 be a coupling of ((xTk , x

T
k−1)T )∞k=0 defined as before. We have shown before that

for every k, (
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)T
Pα,β

(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
+

1

2

(
x

(1)
k+1 − x

(2)
k+1

)T
Q
(
x

(1)
k+1 − x

(2)
k+1

)

≤ ρα,β

( x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+

1

2

(
x

(1)
k − x

(2)
k

)T
Q
(
x

(1)
k − x

(2)
k

) .
Using induction on k, we get(

x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
+

1

2

(
x

(1)
k − x

(2)
k

)T
Q
(
x

(1)
k − x

(2)
k

)

≤ ρkα,β

( x
(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)T
Pα,β

(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)
+

1

2

(
x

(1)
0 − x

(2)
0

)T
Q
(
x

(1)
0 − x

(2)
0

) .
By taking expectation and since 1

2x
TQx ≥ 0 for any x, we get

E

( x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)T
Pα,β

(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
≤ ρkα,βE

[(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)T
Pα,β

(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)
+

1

2

(
x

(1)
0 − x

(2)
0

)T
Q
(
x

(1)
0 − x

(2)
0

)]
.

Let λ1, λ2 ∈ P2,Sα,β (R2d). There exist a couple of random vectors (x
(1)
0 , x

(1)
−1), and (x

(2)
0 , x

(2)
−1), independent of (εk)∞k=0

such that

W2
2,Sα,β

(λ1, λ2) = E
[(

x
(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)T
Pα,β

(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)
+

1

2

(
x

(1)
0 − x

(2)
0

)T
Q
(
x

(1)
0 − x

(2)
0

)]
.
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Then, we get
W2

2,Sα,β

(
Pkα,βλ1,Pkα,βλ2

)
≤ ρkα,βI2(λ1, λ2),

where

I2(λ1, λ2) = E
(x

(j)
0 ,x

(j)
−1)∼λj ,j=1,2

( x
(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)T
Pα,β

(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)
+

1

2

(
x

(1)
0 − x

(2)
0

)T
Q
(
x

(1)
0 − x

(2)
0

) .
Therefore,

∞∑
k=1

W2
2,Sα,β

(
Pkα,βλ1,Pkα,βλ2

)
<∞.

By taking λ2 = Pα,βλ1, we get
∞∑
k=1

W2
2,Sα,β

(
Pkα,βλ1,Pk+1

α,β λ1

)
<∞.

Hence Pkα,βλ1 is a Cauchy sequence and converges to a limit πλ1

α,β :

lim
k→∞

W2,Sα,β

(
Pkα,βλ1, π

λ1

α,β

)
= 0.

Next, let us show that πλ1

α,β does not depend on λ1. Assume that there exists πλ2

α,β so that limk→∞W2,Sα,β (Pkα,βλ2, π
λ2

α,β) =
0. SinceW2,Sα,β is a metric, by the triangle inequality,

W2,Sα,β

(
πλ1

α,β , π
λ2

α,β

)
≤ W2,Sα,β

(
πλ1

α,β ,P
k
α,βλ1

)
+W2,Sα,β

(
Pkα,βλ1,Pkα,βλ2

)
+W2,Sα,β

(
πλ2

α,β ,P
k
α,βλ2

)
,

which goes to zero as k →∞. Hence, πλ1

α,β = πλ2

α,β . The limit is therefore the same for any initial distributions and we can
denote it by πα,β . Indeed,

W2,Sα,β (Pα,βπα,β , πα,β) ≤ W2,Sα,β

(
Pα,βπα,β ,Pkα,βπα,β

)
+W2,Sα,β

(
Pkα,βπα,β , πα,β

)
,

which goes to zero as k → ∞. Hence Pα,βπα,β = πα,β gives the invariant distribution. We can also show similarly as
before that it is unique.

Remark 23. If α ∈ (0, 1/L] and β =
1−√αµ
1+
√
αµ , then we can take the matrix Pα,β appearing in Theorem 4 according to

the Pα matrix defined in Aybat et al. (2019, Theorem 2.3) to obtain ρ(α, β) = 1−√αµ. For α = log2(k)
µk2 , then this leads

toW2,Sα,β (νk,α,β , πα,β) ≤ 1
kW2,Sα,β (ν0,α,β , πα,β) and it can be shown with an analysis similar to that of Aybat et al.

(2019) that the second moment of πα,β is also O(1/k); ignoring some logarithmic factors in k. Therefore, our results do
not violate (and are in agreement with) the Ω(1/k) lower bounds studied in Chatterjee et al. (2016); Raginsky & Rakhlin
(2011); Agarwal et al. (2009) for strongly convex stochastic optimization.

Proof of Theorem 5. First let us recall the AG method:

xk+1 = yk − α[∇f(yk)],

yk = (1 + β)xk − βxk−1,

where α > 0 is the step size and β is the momentum parameter. In the case when f is quadratic and f(x) = 1
2x

TQx+aTx+b,
we can compute that

xk+1 = yk − α[Qyk + a],

yk = (1 + β)xk − βxk−1,

and with the optimizer x∗ we get

xk+1 − x∗ = yk − x∗ − α[Q(yk − x∗)],
yk − y∗ = (1 + β)(xk − x∗)− β(xk−1 − x∗),
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which implies that (
xk+1 − x∗
xk − x∗

)
=

(
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

)(
xk − x∗
xk−1 − x∗

)
,

which yields that (
xk − x∗
xk−1 − x∗

)
=

(
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

)k (
x0 − x∗
x−1 − x∗

)
,

and we aim to provide an upper bound to the 2-norm of the matrix, that is:∥∥∥∥∥
(

(1 + β)(Id − αQ) −β(Id − αQ)
Id 0d

)k∥∥∥∥∥ .
Let us assume that Q has the decomposition

Q = V DV T ,

where D is diagonal consisting of eigenvalues λi, 1 ≤ i ≤ d in increasing order:

µ = λ1 ≤ λ2 ≤ · · · ≤ λd = L,

then we have
Id − αQ = V D̃V T ,

where D̃ = Id − αD is diagonal matrix with entries

1− αλi, 1 ≤ i ≤ d.

Therefore, the matrix (
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

)
has the same eigenvalues as the matrix (

(1 + β)(Id − αD) −β(Id − αD)
Id 0d

)
,

which has the same eigenvalues as the matrix: 
T1 · · · 0 0
0 T2 · · · 0
... · · ·

. . .
...

0 0 · · · Td

 ,

where

Ti =

(
(1 + β)(1− αλi) −β(1− αλi)

1 0

)
, 1 ≤ i ≤ d,

are 2× 2 matrices with eigenvalues:

µi,± =
(1 + β)(1− αλi)±

√
(1 + β)2(1− αλi)2 − 4β(1− αλi)

2
,

where 1 ≤ i ≤ d, and therefore∥∥∥∥∥
(

(1 + β)(Id − αQ) −β(Id − αQ)
Id 0d

)k∥∥∥∥∥ ≤ max
1≤i≤d

∥∥T ki ∥∥ . (51)
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Next, we upper bound ‖T ki ‖. We recall the choice:

α =
4

3L+ µ
, β =

√
3κ+ 1− 2√
3κ+ 1 + 2

, ρ = 1− 2√
3κ+ 1

. (52)

We can compute that

∆i := (1 + β)2(1− αλi)2 − 4β(1− αλi) = 16
(1− αλi)

(
√

3κ+ 1 + 2)2

(
1− λi

µ

)
. (53)

Therefore ∆i = 0 if and only if λi = µ or λi = 3L+µ
4 , and moreover ∆i < 0 for µ < λi <

3L+µ
4 and ∆i > 0 for

λi >
3L+µ

4 .

(1) Consider the case µ < λi <
3L+µ

4 . Then ∆i < 0. It is known that the k-th power of a 2 × 2 matrix A with distinct
eigenvalues µ± is given by

Ak =
µk+

µ+ − µ−
(A− µ−I) +

µk−
µ− − µ+

(A− µ+I),

where I is the 2× 2 identity matrix (Williams, 1992). In our context, A = Ti and µ± = µi,±, we get

T ki =
µki,+

µi,+ − µi,−
(Ti − µi,−I) +

µki,−
µi,− − µi,+

(Ti − µi,+I). (54)

We can compute that

|µi,+| = |µi,−| = (β(1− αλi))1/2
=

(√
3κ+ 1− 2√
3κ+ 1 + 2

3L+ µ− 4λi
3L+ µ

)1/2

≤
(√

3κ+ 1− 2√
3κ+ 1 + 2

3κ− 3

3κ+ 1

)1/2

, (55)

and notice that
3κ− 3 =

(√
3κ+ 1 + 2

) (√
3κ+ 1− 2

)
, (56)

and thus we get

|µi,+| = |µi,−| ≤
(

(
√

3κ+ 1− 2)2

3κ+ 1

)1/2

= 1− 2√
3κ+ 1

= ρ. (57)

Moreover,
1

|µi,+ − µi,−|
=

1√
|∆i|

≤
√

3κ+ 1 + 2

4
max

i:µ<λi<
3L+µ

4

√
µ√

(λi − µ)(1− 4λi
3L+µ )

. (58)

Furthermore,

Ti − µi,−I =

(
µi,+ −β(1− αλi)

1 −µi,−

)
=

(
µi,+

1

)(
1 −µi,−

)
,

and

Ti − µi,+I =

(
µi,− −β(1− αλi)

1 −µi,+

)
=

(
µi,−

1

)(
1 −µi,+

)
.

Therefore,

‖Ti − µi,−I‖ ≤
∥∥∥∥( µi,+

1

)∥∥∥∥∥∥( 1 −µi,−
)∥∥ = ρ2 + 1, (59)

and

‖Ti − µi,+I‖ ≤
∥∥∥∥( µi,−

1

)∥∥∥∥∥∥( 1 −µi,+
)∥∥ = ρ2 + 1. (60)

Hence, it follows from (54), (57), (58), (59) and (60) that

∥∥T ki ∥∥ ≤ √3κ+ 1 + 2

2
max

i:µ<λi<
3L+µ

4

√
µ√

(λi − µ)(1− 4λi
3L+µ )

ρk(ρ2 + 1).
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(2) Consider the case 3L+µ
4 < λi < L. Then, ∆i > 0. As before, we have

T ki =
µki,+

µi,+ − µi,−
(Ti − µi,−I) +

µki,−
µi,− − µi,+

(Ti − µi,+I). (61)

We can compute that

|µi,+| ≤ |µi,−| =
1

2
(1 + β)(αλi − 1) +

1

2

√
∆i (62)

≤ 1

2
(1 + β)(αL− 1) +

1

2

√
16

(αL− 1)

(
√

3κ+ 1 + 2)2

L− µ
µ

=

√
3κ+ 1√

3κ+ 1 + 2

κ− 1

3κ+ 1
+

1

2

√
16

κ− 1

(
√

3κ+ 1 + 2)2

κ− 1

3κ+ 1
= 1− 2√

3κ+ 1
= ρ.

Moreover,
1

|µi,+ − µi,−|
=

1√
∆i

≤
√

3κ+ 1 + 2

4
max

i: 3L+µ
4 <λi<L

√
µ√

(λi − µ)( 4λi
3L+µ − 1)

. (63)

Furthermore,

Ti − µi,−I =

(
µi,+ −β(1− αλi)

1 −µi,−

)
=

(
µi,+

1

)(
1 −µi,−

)
,

and

Ti − µi,+I =

(
µi,− −β(1− αλi)

1 −µi,+

)
=

(
µi,−

1

)(
1 −µi,+

)
.

Therefore,

‖Ti − µi,−I‖ ≤
∥∥∥∥( µi,+

1

)∥∥∥∥∥∥( 1 −µi,−
)∥∥ ≤ ρ2 + 1, (64)

and

‖Ti − µi,+I‖ ≤
∥∥∥∥( µi,−

1

)∥∥∥∥∥∥( 1 −µi,+
)∥∥ ≤ ρ2 + 1. (65)

Hence, it follows from (61), (62), (63), (64) and (65) that

∥∥T ki ∥∥ ≤ √3κ+ 1 + 2

2
max

i: 3L+µ
4 <λi<L

√
µ√

(λi − µ)( 4λi
3L+µ − 1)

ρk(ρ2 + 1).

(3) Consider the case λi = µ. Then ∆i = 0. It is known that the k-th power of a 2× 2 matrix A with two equal eigenvalues
µ+ = µ− = µ is given by

Ak = µk−1(kA− (k − 1)µI),

where I is the 2× 2 identity matrix (Williams, 1992). In our context, A = Ti and

µ = µ± = µi,± =
1

2
(1 + β)(1− αλi) = 1− 2√

3κ+ 1
= ρ. (66)

Therefore, with λi = µ, we have

T ki = ρk(kTi − (k − 1)ρI)

= ρk
(
k(1 + β)(1− αλi)− (k − 1)ρ −kβ(1− αλi)

k −(k − 1)ρ

)
=

(
(k + 1)ρ −kρ2

k −(k − 1)ρ

)
,
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and therefore

‖T ki ‖ ≤
√

Tr
(
T ki (T ki )T

)
(67)

= ρk
(
(k + 1)2ρ2 + (k − 1)2ρ2 + k2ρ4 + k2

)1/2
(68)

= ρk
√
k2(ρ2 + 1)2 + 2ρ2. (69)

Furthermore, we see that the sequence T ki /k converges to a non-zero matrix. Therefore, ‖T ki ‖ ≥ ck for some constant c for
every k. This means that the linear dependency to k of our upper bound in (69) is tight. This behavior is expected due to the
fact that T ki has double roots.

(4) Consider the case λi = 3L+µ
4 . Then ∆i = 0. We can compute that

µi,± =
1

2
(1 + β)(1− αλi) = 1− 2√

3κ+ 1
= 0. (70)

In this case, Ti = 0.

Finally, combining the three cases (1) µ < λi <
3L+µ

4 ; (2) λi > 3L+µ
4 ; (3) λi = µ; (4) λi = 3L+µ

4 , and recall (51), we get∥∥∥∥∥
(

(1 + β)(Id − αQ) −β(Id − αQ)
Id 0d

)k∥∥∥∥∥
≤ max

1≤i≤d

∥∥T ki ∥∥
≤ ρk max


√

3κ+ 1 + 2

2
(ρ2 + 1) max

i:µ<λi 6= 3L+µ
4

√
µ√

(λi − µ)|1− 4λi
3L+µ |

,
√
k2(ρ2 + 1)2 + 2ρ2

 .

The proof is complete.

Proof of Theorem 7. First let us recall the ASG method:

xk+1 = yk − α[∇f(yk) + εk+1],

yk = (1 + β)xk − βxk−1,

where α > 0 is the step size and β is the momentum parameter. In the case when f is quadratic and f(x) = 1
2x

TQx+aTx+b,
we can compute that

xk+1 = yk − α[Qyk + a+ εk+1],

yk = (1 + β)xk − βxk−1,

so that with two couplings x(1)
k , x

(2)
k :

x
(j)
k+1 = y

(j)
k − α

[
Qy

(j)
k + a+ εk+1

]
,

y
(j)
k = (1 + β)x

(j)
k − βx

(j)
k−1,

with j = 1, 2, we get

x
(1)
k+1 − x

(2)
k+1 = y

(1)
k − y

(2)
k − αQ

(
y

(1)
k − y

(2)
k

)
,

y
(1)
k − y

(2)
k = (1 + β)(x

(1)
k − x

(2)
k )− β(x

(1)
k−1 − x

(2)
k−1),

which implies that(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
=

(
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

)(
x

(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)
,
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which yields that∥∥∥∥∥
(

x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)∥∥∥∥∥ ≤
∥∥∥∥∥
(

(1 + β)(Id − αQ) −β(Id − αQ)
Id 0d

)k∥∥∥∥∥
∥∥∥∥∥
(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)∥∥∥∥∥ .
Following from the proof of Theorem 4, we can show by constructing a Cauchy sequence that there exists a unique stationary
distribution πα,β . Finally, we assume that (x

(1)
0 , x

(1)
−1) starts from the given (x0, x−1) distributed as ν0,α,β and (x

(2)
0 , x

(2)
−1)

starts from the stationary distribution πα,β so that their Lp distance is exactly theWp distance. Then we get

Wp
p (νk,α,β , πα,β) ≤ E

∥∥∥∥∥
(

x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)∥∥∥∥∥
p

≤ (C∗k)p(ρ∗AG)pkWp
p (ν0,α,β , πα,β) ,

and the proof is complete by taking the power 1/p in the above equation.

Before we state the proof of Theorem 8, let us spell out X and V ∗AG(ξ0) in the statement of Theorem 8 explicitly here. We
will show that Theorem 8 holds with V ∗AG(ξ0) given by

V ∗AG(ξ0) := E
[∥∥(ξ0 − ξ∗)(ξ0 − ξ∗)T

∥∥]+
(α∗AG)2‖Σ‖
1− (ρ∗AG)2

,

where Σ := E[εkε
T
k ] and X∗AG = E[(ξ∞ − ξ∗)(ξ∞ − ξ∗)T ] satisfies the discrete Lyapunov equation:

X∗AG = A∗QX
∗
AG(A∗Q)T +

(
(α∗AG)2Σ 0d

0d 0d

)
,

and

A∗Q :=

(
(1 + β∗AG)(Id − α∗AGQ) −β∗AG(Id − α∗AGQ)

Id 0d

)
.

In the special case Σ = c2Id for some constant c ≥ 0, it follows from Aybat et al. (2018) that

Tr(X∗AG) = c2
d∑
i=1

α∗AG
λi(1− β∗AG(1− α∗AGλi))

, (71)

where {λi}di=1 are the eigenvalues of Q.

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. For the ASG method,

xk+1 = (1 + β)xk − βxk−1 − α(∇f((1 + β)xk − βxk−1) + εk+1),

where we consider the quadratic objective f(x) = 1
2x

TQx+ aTx+ b so that

xk+1 = (1 + β)xk − βxk−1 − α(Q((1 + β)xk − βxk−1) + a+ εk+1),

and the minimizer x∗ satisfies:

x∗ = (1 + β)x∗ − βx∗ − α(Q((1 + β)x∗ − βx∗) + a),

so that

xk+1 − x∗ = (1 + β)(xk − x∗)− β(xk−1 − x∗)− α(Q((1 + β)(xk − x∗)− β(xk−1 − x∗)) + εk+1),

and (
xk − x∗
xk−1 − x∗

)
=

(
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

)(
xk−1 − x∗
xk−2 − x∗

)
+

(
−αεk

0d

)
,
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and with Σ := E[εkε
T
k ], we get

E
[
(ξk − ξ∗)(ξk − ξ∗)T

]
= A∗QE

[
(ξk−1 − x∗)(ξk−1 − x∗)T

]
(A∗Q)T +

(
α2Σ 0d
0d 0d

)
, (72)

where

A∗Q =

(
(1 + β)(Id − αQ) −β(Id − αQ)

Id 0d

)
.

Therefore,

X = E
[
(ξ∞ − ξ∗)(ξ∞ − ξ∗)T

]
satisfies the discrete Lyapunov equation:

X = A∗QX(A∗Q)T +

(
α2Σ 0d
0d 0d

)
.

Next by iterating equation (72) over k, we immediately obtain

E
[
(ξk − ξ∗)(ξk − ξ∗)T

]
=
(
A∗Q
)k E [(ξ0 − ξ∗)(ξ0 − ξ∗)T ] ((A∗Q)T

)k
+

k−1∑
j=0

(
A∗Q
)j ( α2Σ 0d

0d 0d

)(
(A∗Q)T

)j
,

so that

E
[
(ξk − ξ∗)(ξk − ξ∗)T

]
= E

[
(ξ∞ − ξ∗)(ξ∞ − ξ∗)T

]
+
(
A∗Q
)k E [(ξ0 − ξ∗)(ξ0 − ξ∗)T ] ((A∗Q)T

)k
−
∞∑
j=k

(
A∗Q
)j ( α2Σ 0d

0d 0d

)(
(A∗Q)T

)j
,

which implies that

Tr
(
E
[
(ξk − ξ∗)(ξk − ξ∗)T

])
= Tr

(
E
[
(ξ∞ − ξ∗)(ξ∞ − ξ∗)T

])
+
(
A∗Q
)k E [(ξ0 − ξ∗)(ξ0 − ξ∗)T ] ((A∗Q)T

)k
−
∞∑
j=k

(
A∗Q
)j ( α2Σ 0d

0d 0d

)(
(A∗Q)T

)j
≤ Tr(X) +

∥∥(A∗Q)k
∥∥2 E

[∥∥(ξ0 − ξ∗)(ξ0 − ξ∗)T
∥∥]+

∞∑
j=k

∥∥(A∗Q)j
∥∥2
α2‖Σ‖

≤ Tr(X) + (C∗k)2(ρ∗AG)2kE
[∥∥(ξ0 − ξ∗)(ξ0 − ξ∗)T

∥∥]+ α2‖Σ‖(C∗k)2 (ρ∗AG)2k

1− (ρ∗AG)2
,

where we used the estimate ‖(A∗Q)k‖ ≤ C∗k(ρ∗AG)k from the proof of Theorem 5.

Finally, since∇f is L-Lipschtiz,

E[f(xk)]− f(x∗) ≤
L

2
E‖xk − x∗‖2 ≤

L

2
E‖ξk − ξ∗‖2 =

L

2
Tr
(
E
[
(ξk − ξ∗)(ξk − ξ∗)T

])
.

The proof of (23) is complete.

Remark 24. Note that our results in p-Wasserstein distances would hold if there exists some p ≥ 1 so that p-th moment of
the noise is finite. For instance, the p < 2 case can arise in applications where the noise has heavy tail (see e.g. (Simsekli
et al., 2019)).
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C.2. Proofs of Results in Section 3.2

Proof of Theorem 9. First let us recall the HB method:

xk+1 = xk − α∇f(xk) + β(xk − xk−1),

where α > 0 is the step size and β is the momentum parameter. In the case when f is quadratic and f(x) = 1
2x

TQx+aTx+b,
we can compute that

xk+1 = xk − α(Qxk + a) + β(xk − xk−1),

and the minimizer x∗ satisfies
x∗ = x∗ − α(Qx∗ + a) + β(x∗ − x∗),

which implies that (
xk+1 − x∗
xk − x∗

)
=

(
(1 + β)Id − αQ −βId

Id 0d

)(
xk − x∗
xk−1 − x∗

)
,

which yields that (
xk − x∗
xk−1 − x∗

)
=

(
(1 + β)Id − αQ −βId

Id 0d

)k (
x0 − x∗
x−1 − x∗

)
,

and we aim to provide an upper bound to the 2-norm of the matrix, that is:∥∥∥∥∥
(

(1 + β)Id − αQ −βId
Id 0d

)k∥∥∥∥∥ .
Let us assume that Q has the decomposition

Q = V DV T ,

where D is diagonal consisting of eigenvalues λi, 1 ≤ i ≤ d in increasing order:

µ = λ1 ≤ λ2 ≤ · · · ≤ λd = L,

then we have
(1 + β)Id − αQ = V D̃V T ,

where D̃ = (1 + β)Id − αD is diagonal matrix with entries

1 + β − αλi, 1 ≤ i ≤ d.

Therefore, the matrix (
(1 + β)Id − αQ −βId

Id 0d

)
has the same eigenvalues as the matrix (

(1 + β)Id − αD −βId
Id 0d

)
,

which has the same eigenvalues as the matrix: 
T1 · · · 0 0
0 T2 · · · 0
... · · ·

. . .
...

0 0 · · · Td

 ,

where

Ti =

(
1 + β − αλi −β

1 0

)
, 1 ≤ i ≤ d,



Stochastic Momentum Methods

are 2× 2 matrices with eigenvalues:

µi,± =
1 + β − αλi ±

√
(1 + β − αλi)2 − 4β

2
,

where 1 ≤ i ≤ d, and therefore ∥∥∥∥∥
(

(1 + β)Id − αQ −βId
Id 0d

)k∥∥∥∥∥ ≤ max
1≤i≤d

∥∥T ki ∥∥ . (73)

Next, we upper bound ‖T ki ‖. We consider three cases (1) µ < λi < L; (2) λi = µ; (3) λi = L.

(1) Consider the case µ < λi < L. With the choice of α and β in (12), we can compute that for those µ < λi < L, we have

1 + β − αλi < 1 + β − αµ = 2
√
β,

and
1 + β − αλi > 1 + β − αL = −2

√
β,

and thus the eigenvalues are complex and

µi,± =
1 + β − αλi ± i

√
4β − (1 + β − αλi)2

2
,

where 1 ≤ i ≤ d. It is known that the k-th power of a 2× 2 matrix A with distinct eigenvalues µ± is given by

Ak =
µk+

µ+ − µ−
(A− µ−I) +

µk−
µ− − µ+

(A− µ+I),

where I is the 2× 2 identity matrix (Williams, 1992). In our context, A = Ti and µ± = µi,±, we get

T ki =
µki,+

µi,+ − µi,−
(Ti − µi,−I) +

µki,−
µi,− − µi,+

(Ti − µi,+I). (74)

We can compute that

|µi,+| = |µi,−| =
(

1

4

[
(1 + β − αλi)2 + (4β − (1 + β − αλi)2)

])1/2

=
√
β, (75)

and

1

|µi,+ − µi,−|
=

1√
4β − (1 + β − αλi)2

(76)

=
1√

(2
√
β − 1− β + αλi)(2

√
β + 1 + β − αλi)

=
1√

(−(
√
β − 1)2 + αλi)((

√
β + 1)2 − αλi)

=
(
√
µ+
√
L)2

4
√

(λi − µ)(L− λi)
.

Moreover,

Ti − µi,−I =

(
µi,+ −β

1 −µi,−

)
=

(
µi,+

1

)(
1 −µi,−

)
,

and

Ti − µi,+I =

(
µi,− −β

1 −µi,+

)
=

(
µi,−

1

)(
1 −µi,+

)
.
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Therefore,

‖Ti − µi,−I‖ ≤
∥∥∥∥( µi,+

1

)∥∥∥∥∥∥( 1 −µi,−
)∥∥ = β + 1, (77)

and

‖Ti − µi,+I‖ ≤
∥∥∥∥( µi,−

1

)∥∥∥∥∥∥( 1 −µi,+
)∥∥ = β + 1. (78)

Hence, it follows from (74), (75), (76), (77) and (78) that

∥∥T ki ∥∥ ≤ (
√
β)k

(β + 1)(
√
µ+
√
L)2

4
√

(λi − µ)(L− λi)
=

(√
L−√µ
√
L+
√
µ

)k
µ+ L

2
√

(λi − µ)(L− λi)
.

(2) Consider the case λi = µ. With the choice of α and β in (12), we can compute that for those λi = µ, we have

(1 + β − αλi)2 = (1 + β − αµ)2 = 4β,

so we have double eigenvalues and indeed 1 + β − αλi = 2
√
β, and

Ti =

(
2
√
β −β

1 0

)
, 1 ≤ i ≤ d,

and by a direct computation (e.g. induction on k), we get:

T ki = (
√
β)k

(
(k + 1) −kβ1/2

kβ−1/2 −(k − 1)

)
, 1 ≤ i ≤ d.

Thus, ∥∥T ki ∥∥ ≤√Tr
(
T ki (T ki )T

)
(79)

= (
√
β)k
√

2k2 + 2 + k2(β + β−1) (80)

=

(√
L−√µ
√
L+
√
µ

)k√
4k2

(
L+ µ

L− µ

)2

+ 2. (81)

Finally, we note that the matrix T ki /(
√
β
k
k) as k goes to infinity converges to the 2× 2 matrix

M2,2(β) :=

(
1 −β1/2

β−1/2 −1

)
, ‖M2,2(β)‖ > 0.

Therefore, the linear dependency of our bound in (81) with respect to k is tight. This behavior is expected due to the fact
that T ki has double roots.

(3) Consider the case λi = L. With the choice of α and β in (12), we can compute that for those λi = L, we have

(1 + β − αλi)2 = (1 + β − αL)2 = 4β,

so we have double eigenvalues and indeed 1 + β − αλi = −2
√
β, and

Ti =

(
−2
√
β −β

1 0

)
, 1 ≤ i ≤ d,

and by a direct computation (e.g. induction on k), we get:

T ki = (
√
β)k

(
(k + 1) kβ1/2

−kβ−1/2 −(k − 1)

)
, 1 ≤ i ≤ d.
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Thus, ∥∥T ki ∥∥ ≤√Tr
(
T ki (T ki )T

)
= (
√
β)k
√

2k2 + 2 + k2(β + β−1)

=

(√
L−√µ
√
L+
√
µ

)k√
4k2

(
L+ µ

L− µ

)2

+ 2.

Finally, combining the three cases (1) µ < λi < L; (2) λi = µ; (3) λi = L, we get

max
1≤i≤d

∥∥T ki ∥∥ ≤
(√

L−√µ
√
L+
√
µ

)k
max

 max
i:µ<λi<L

µ+ L

2
√

(λi − µ)(L− λi)
,

√
4k2

(
L+ µ

L− µ

)2

+ 2

 . (82)

Then it follows from (73) that∥∥∥∥∥
(

(1 + β)Id − αQ −βId
Id 0d

)k∥∥∥∥∥ (83)

≤

(√
L−√µ
√
L+
√
µ

)k
max

 max
i:µ<λi<L

µ+ L

2
√

(λi − µ)(L− λi)
,

√
4k2

(
L+ µ

L− µ

)2

+ 2

 .

Recall that (
xk − x∗
xk−1 − x∗

)
=

(
(1 + β)Id − αQ −βId

Id 0d

)k (
x0 − x∗
x−1 − x∗

)
,

and the proof is complete by applying (83).

Before we state the proof of Theorem 11, let us state the following result, which is built on Theorem 9.

Lemma 25. Let us consider two couplings (x
(1)
k )k≥0 and (x

(2)
k )k≥0 with the common noise (εk+1)k≥0 that starts from x

(1)
0

and x(2)
0 :

x
(1)
k+1 = x

(1)
k − α∇f(x

(1)
k ) + β(x

(1)
k − x

(1)
k−1) + εk+1, (84)

x
(2)
k+1 = x

(2)
k − α∇f(x

(2)
k ) + β(x

(2)
k − x

(2)
k−1) + εk+1, (85)

where f is quadratic and f(x) = 1
2x

TQx+ aTx+ b. Then, we have∥∥∥∥∥
(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)∥∥∥∥∥ ≤ CkρkHB
∥∥∥∥∥
(
x

(1)
1 − x

(2)
1

x
(1)
0 − x

(2)
0

)∥∥∥∥∥ ,
where ρHB and Ck are defined by (13) and (25) respectively.

Proof of Lemma 25. We can compute that(
x

(1)
k+1 − x

(2)
k+1

x
(1)
k − x

(2)
k

)
=

(
(1 + β)Id − αQ −βId

Id 0d

)k(
x

(1)
1 − x

(2)
1

x
(1)
0 − x

(2)
0

)
.

It follows from the estimate (83) in the proof of Theorem 9 and the definitions of ρHB and Ck in (13) and (25) that we have∥∥∥∥∥
(

(1 + β)Id − αQ −βId
Id 0d

)k∥∥∥∥∥ ≤ CkρkHB .
The proof is complete.
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Proof of Theorem 11. We recall from Lemma 25 that for any coupling x(1) and x(2)∥∥∥∥∥
(

x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)∥∥∥∥∥ ≤ Ck
(√

L−√µ
√
L+
√
µ

)k ∥∥∥∥∥
(
x

(1)
0 − x

(2)
0

x
(1)
−1 − x

(2)
−1

)∥∥∥∥∥ .
Following from the proof of Theorem 4, we can show by constructing a Cauchy sequence that there exists a unique stationary
distribution πα,β . Finally, we assume that (x

(1)
0 , x

(1)
−1) starts from the given (x0, x−1) distributed as ν0,α,β and (x

(2)
0 , x

(2)
−1)

starts from the stationary distribution πα,β so that their Lp distance is exactly theWp distance. Then we get

Wp
p (νk,α,β , πα,β) ≤ E

∥∥∥∥∥
(

x
(1)
k − x

(2)
k

x
(1)
k−1 − x

(2)
k−1

)∥∥∥∥∥
p

≤ Cpk

(√
L−√µ
√
L+
√
µ

)pk
Wp
p (ν0,α,β , πα,β) ,

and the proof is complete by taking the power 1/p in the above equation.

Before we state the proof of Theorem 12, let us spell out X and VHB(ξ0) in the statement of Theorem 12 explicitly here.
We will show that Theorem 12 holds with VHB(ξ0) given by

VHB(ξ0) := E
[
‖(ξ0 − ξ∗)(ξ0 − ξ∗)T ‖

]
+
α2
HB‖Σ‖

1− ρ2
HB

,

where Σ := E[εkε
T
k ] and XHB = E[(ξ∞ − ξ∗)(ξ∞ − ξ∗)T ] satisfies the discrete Lyapunov equation:

XHB = AQXHBA
T
Q +

(
α2
HBΣ 0d
0d 0d

)
.

and

AQ :=

(
(1 + βHB)Id − αHBQ −βHBId

Id 0d

)
.

In the special case Σ = c2Id for some constant c ≥ 0, we obtain

Tr(XHB) = c2
d∑
i=1

2αHB(1 + βHB)

(1− βHB)λi(2 + 2βHB − αHBλi)
, (86)

where {λi}di=1 are the eigenvalues of Q.

Now, we are ready to prove Theorem 12.

Proof of Theorem 12. For the stochastic heavy ball method

xk+1 = xk − α(∇f(xk) + εk+1) + β(xk − xk−1),

where we consider the quadratic objective f(x) = 1
2x

TQx+ aTx+ b so that

xk+1 = xk − α(Qxk + a+ εk+1) + β(xk − xk−1),

and the minimizer x∗ satisfies:
x∗ = x∗ − α(Qx∗ + a) + β(x∗ − x∗),

so that
(xk+1 − x∗) = (xk − x∗)− α(Q(xk − x∗) + εk+1) + β((xk − x∗)− (xk−1 − x∗)),

and (
xk − x∗
xk−1 − x∗

)
=

(
(1 + β)Id − αQ −βId

Id 0d

)(
xk−1 − x∗
xk−2 − x∗

)
+

(
−αεk

0d

)
,
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and with Σ := E[εkε
T
k ], we get

E
[
(ξk − ξ∗)(ξk − ξ∗)T

]
= AQE

[
(ξk−1 − x∗)(ξk−1 − x∗)T

]
ATQ +

(
α2Σ 0d
0d 0d

)
, (87)

where

AQ =

(
(1 + β)Id − αQ −βId

Id 0d

)
.

Therefore,
X = E

[
(ξ∞ − ξ∗)(ξ∞ − ξ∗)T

]
satisfies the discrete Lyapunov equation:

X = AQXA
T
Q +

(
α2Σ 0d
0d 0d

)
.

Next by iterating equation (87) over k, we immediately obtain

E
[
(ξk − ξ∗)(ξk − ξ∗)T

]
= (AQ)

k E
[
(ξ0 − ξ∗)(ξ0 − ξ∗)T

] (
ATQ
)k

+

k−1∑
j=0

(AQ)
j

(
α2Σ 0d
0d 0d

)(
ATQ
)j
,

so that

E
[
(ξk − ξ∗)(ξk − ξ∗)T

]
= E

[
(ξ∞ − ξ∗)(ξ∞ − ξ∗)T

]
+ (AQ)

k E
[
(ξ0 − ξ∗)(ξ0 − ξ∗)T

] (
ATQ
)k − ∞∑

j=k

(AQ)
j

(
α2Σ 0d
0d 0d

)(
ATQ
)j
,

which implies that

Tr
(
E
[
(ξk − ξ∗)(ξk − ξ∗)T

])
= Tr

(
E
[
(ξ∞ − ξ∗)(ξ∞ − ξ∗)T

])
+ (AQ)

k E
[
(ξ0 − ξ∗)(ξ0 − ξ∗)T

] (
ATQ
)k − ∞∑

j=k

(AQ)
j

(
α2Σ 0d
0d 0d

)(
ATQ
)j

≤ Tr(X) +
∥∥AkQ∥∥2 E

[
‖(ξ0 − ξ∗)(ξ0 − ξ∗)T ‖

]
+

∞∑
j=k

∥∥∥AjQ∥∥∥2

α2‖Σ‖

≤ Tr(X) + C2
kρ

2k
HBE

[
‖(ξ0 − ξ∗)(ξ0 − ξ∗)T ‖

]
+ α2‖Σ‖C2

k

ρ2k
HB

1− ρ2
HB

,

where we used the estimate ‖AkQ‖ ≤ CkρkHB from the proof of Theorem 9.

Finally, since∇f is L-Lipschtiz,

E[f(xk)]− f(x∗) ≤
L

2
E‖xk − x∗‖2 ≤

L

2
E‖ξk − ξ∗‖2 =

L

2
Tr
(
E
[
(ξk − ξ∗)(ξk − ξ∗)T

])
.

The proof of (27) is complete. To show (86), we can adapt the proof technique of Aybat et al. (2018, Proposition 3.2) for
gradient descent to HB. Without loss of generality, due to the scaling of the Lyapunov equation, we can assume c = 1.
Consider the eigenvalue decomposition AQ = V ΛV T where Q is orthogonal and Λ is diagonal with Λ(i, i) = λi. We can
write

AQ = V̄ AΛV̄
T ,

where

V̄ =

(
V 0d
0d V

)
, AΛ =

(
(1 + β)Id − αΛ −βId

Id 0d

)
.



Stochastic Momentum Methods

Futhermore, following Recht (2012), let P ∈ R2d×2d be the permutation matrix with entries

P (i, j) =


1 if i is odd, j = i,

1 if i is even, j = 2d+ i,

0 otherwise.

Then, we have

AM := PAΛP
T =


M1 0d . . . 0d
0d M2 . . . 0d
...

...
. . .

...
0d 0d . . . Md

 where Mi =

(
(1 + β)− αλi −β

1 0

)
∈ R2×2.

If we define Y := UXU−1 for the orthogonal matrix U = PV̄ T , it solves

AMY A
T
M − Y + S = 0, S := P

(
α2Id 0d
0d 0d

)
PT ,

where the latter matrix S is a 2d× 2d diagonal matrix with entries S(i, i) = α2 if i is odd, and zero if i is even. Due to the
special structure of S and AM , the solution Y has the structure

Y =


Y1 0d . . . 0d
0d Y2 . . . 0d
...

...
. . .

...
0d 0d . . . Yd

 ,

where Yi solves the 2× 2 Lyapunov equation

MiYiM
T
i − Yi +

(
α2 0
0 0

)
= 0.

If we write

Yi =

(
xi yi
yi wi

)
with scalars xi, yi and wi, this equation is equivalent to the linear systema2 − 1 2ab b2

a b− 1 0
1 0 −1

xiyi
wi

 =

−α2

0
0

 ,

with
a = 1 + β − αλi, b = −β.

After a simple computation, we obtain

xi = wi =
α2(b− 1)

(b+ 1)(a− b+ 1)(a+ b− 1)
=

α(1 + β)

(1− β)λi(2 + 2β − αλi)
.

Therefore we obtain

Tr(X) = Tr(Y ) =

d∑
i=1

Tr(Yi) = 2

d∑
i=1

xi =

d∑
i=1

2α(1 + β)

(1− β)λi(2 + 2β − αλi)
,

which completes the proof.
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D. Proofs of Results in Section 4
Before we proceed to prove the main results in Section 4, let us first show that the weighted total variation distance dψ upper
bounds the standard 1-Wasserstein distance.

Proposition 26. Assume P̃ (2, 2) 6= 0. Then,

W1(µ1, µ2) ≤ c−1
0 dψ(µ1, µ2),

whereW1 is the standard 1-Wasserstein distance and

c0 := min{ĉ0ψ, 1}, (88)

where ĉ0 is the smallest positive eigenvalue of

P̃ ⊗ Id +

(
µ
2 Id 0d
0d 0d

)
.

Proof. By applying the Kantorovich-Rubinstein duality for the Wasserstein metric (see e.g. Villani (2009)), we get

W1(µ1, µ2) = sup
φ∈L1(dµ1)

{∫
R2d

φ(ξ)(µ1 − µ2)(dξ) : φ is 1-Lipschitz
}

= sup
φ∈L1(dµ1)

{∫
R2d

(φ(ξ)− φ(ξ∗))(µ1 − µ2)(dξ) : φ is 1-Lipschitz
}

≤
∫
R2d

‖ξ − ξ∗‖|µ1 − µ2|(dξ)

≤ c−1
0

∫
R2d

(1 + ψVP (ξ))|µ1 − µ2|(dξ) = c−1
0 dψ(µ1, µ2),

where we used 1 + ψVP (ξ) ≥ c0‖ξ − ξ∗‖ from Lemma 27.

Lemma 27. Assume P̃ (2, 2) 6= 0. Then,
1 + ψVP (ξ) ≥ c0‖ξ − ξ∗‖,

for any ξ ∈ R2d, where c0 = min{ĉ0ψ, 1}, where ĉ0 is the smallest positive eigenvalue of

P̃ ⊗ Id +

(
µ
2 Id 0d
0d 0d

)
.

Proof. Let ξT = (xT , yT ). If ‖ξ − ξ∗‖ ≤ 1, then c0 = 1 works. Otherwise,

VP (ξ) = f(x)− f(x∗) + (ξ − ξ∗)TP (ξ − ξ∗)

≥ (ξ − ξ∗)TP (ξ − ξ∗) +
µ

2
‖x− x∗‖2

= (ξ − ξ∗)T P̃ ⊗ Id(ξ − ξ∗) + (ξ − ξ∗)T
(

µ
2 Id 0d
0d 0d

)
(ξ − ξ∗).

The proof is complete.

For constrained optimization on a compact set C, we have the following result.

Proposition 28. For any µ1, µ2 on the product space C2 := C × C,

Wp(µ1, µ2) ≤ 21/pDC2‖µ1 − µ2‖1/pTV ≤ DC2d
1/p
ψ (µ1, µ2),

where DC2 is the diameter of C2.
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Proof. The second inequality in Proposition 28 follows from dψ(µ1, µ2) ≥ 2‖µ1 − µ2‖TV . So it suffices to prove the first
inequality. We can compute that

Wp
p (µ1, µ2) = inf

X1∼µ1,X2∼µ2

E [‖X1 −X2‖p]

≤ Dp−1
C2 inf

X1∼µ1,X2∼µ2

E [‖X1 −X2‖]

= Dp−1
C2 W1(µ1, µ2)

= Dp−1
C2 sup

φ∈L1(dµ1)

{∫
R2d

(φ(ξ)− φ(ξ∗))(µ1 − µ2)(dξ) : φ is 1-Lipschitz
}

≤ Dp−1
C2

∫
R2d

‖ξ − ξ∗‖|µ1 − µ2|(dξ) ≤ 2DpC2‖µ1 − µ2‖TV .

D.1. Proofs of Results in Section 4.1

Throughout Section 4, the noise εk are assumed to satisfy Assumption 2. Our proof of Theorem 13 relies on the geometric
ergodicity and convergence theory of Markov chains. Geometric ergodicity and convergence of Markov chains has been
well studied in the literature. Harris’ ergodic theorem of Markov chains essentially states that a Markov chain is ergodic
if it admits a small set that is visited infinitely often (Harris, 1956). Such a result often relies on finding an appropriate
Lyapunov function (Meyn & Tweedie, 1993). The transition probabilities converge exponentially fast towards the unique
invariant measure, and the prefactor is controlled by the Lyapunov function (Meyn & Tweedie, 1993). Computable bounds
for geometric convergence rates of Markov chains has been obtained in e.g. Meyn & Tweedie (1994); Hairer & Mattingly
(2011). In the following, we state the results from Hairer & Mattingly (2011). Before we proceed, let us introduce some
definitions and notations.

Let X be a measurable space and P(x, ·) be a Markov transition kernel on X. For any measurable function ϕ : X→ [0,+∞],
we define:

(Pϕ)(x) =

∫
X
ϕ(y)P(x, dy).

Assumption 29 (Drift Condition). There exists a function V : X→ [0,∞) and some constants K ≥ 0 and γ ∈ (0, 1) so
that

(PV )(x) ≤ γV (x) +K,

for all x ∈ X.

Assumption 30 (Minorization Condition). There exists some constant η ∈ (0, 1) and a probability measure ν so that

inf
x∈X:V (x)≤R

P(x, ·) ≥ ην(·),

for some R > 2K/(1− γ).

Let us recall the definition of the weighted total variation distance:

dψ(µ1, µ2) =

∫
X

(1 + ψV (x))|µ1 − µ2|(dx).

It is noted in Hairer & Mattingly (2011) that dψ has the following alternative expression. Define the weighted supremum
norm for any ψ > 0:

‖ϕ‖ψ := sup
x∈X

|ϕ(x)|
1 + ψV (x)

,

and its associated dual metric dψ on probability measures:

dψ(µ1, µ2) = sup
ϕ:‖ϕ‖ψ≤1

∫
X
ϕ(x)(µ1 − µ2)(dx).
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It is also noted in Hairer & Mattingly (2011) that dψ can also be expressed as:

dψ(µ1, µ2) = sup
ϕ:|‖ϕ‖|ψ≤1

∫
X
ϕ(x)(µ1 − µ2)(dx),

where

|‖ϕ‖|ψ := sup
x 6=y

|ϕ(x)− ϕ(y)|
2 + ψV (x) + ψV (y)

.

Lemma 31 (Theorem 1.3. Hairer & Mattingly (2011)). If the drift condition (Assumption 29) and minorization condition
(Assumption 30) hold, then there exists η̄ ∈ (0, 1) and ψ > 0 so that

dψ(Pµ1,Pµ2) ≤ η̄dψ(µ1, µ2)

for any probability measures µ1, µ2 on X. In particular, for any η0 ∈ (0, η) and γ0 ∈ (γ + 2K/R, 1) one can choose
ψ = η0/K and η̄ = (1− (η − η0)) ∨ (2 +Rψγ0)/(2 +Rψ).

Lemma 32 (Theorem 1.2. Hairer & Mattingly (2011)). If the drift condition (Assumption 29) and minorization condition
(Assumption 30) hold, then P admits a unique invariant measure µ∗, i.e. Pµ∗ = µ∗.

The drift condition has indeed been obtained in Aybat et al. (2018). The AG method follows the dynamics

ξk+1 = Aξk +B(∇f(yk) + εk+1), (89)
yk = Cξk, (90)

where

A :=

(
(1 + β)Id −βId

Id 0d

)
, B :=

(
−αId

0d

)
, C :=

(
(1 + β)Id −βId

)
.

Define ỹk := yk − x∗ and ξ̃k := ξk − ξ∗, where ξ∗ = Aξ∗ and x∗ = Cξ∗. Let us recall the Lyapunov function from (5)

VP (ξk) = (ξk − ξ∗)TP (ξk − ξ∗) + f(xk)− f∗,

where ξ∗ = (x∗, x∗).

Next, let us prove that the drift condition holds. The proof is mainly built on Corollary 4.2. and Lemma 4.5. in Aybat et al.
(2018).

Lemma 33.
(Pα,βVPα,β )(ξ) ≤ γα,βVPα,β (ξ) +Kα,β ,

where

γα,β := ρα,β , Kα,β :=

(
L

2
+ P̃α,β(1, 1)

)
α2σ2.

Proof. By Corollary 4.2. and its proof in Aybat et al. (2018) (In Aybat et al. (2018), the noise are assumed to be independent.
But a closer look at the proof of Corollary 4.2. reveals that our Assumption 2 suffices), we have

E[V (ξk+1)]− ρE[V (ξk)] (91)

= E

[(
ξ̃k

∇f(yk)

)T (
ATPA− ρP ATPB
BTPA BTPB

)(
ξ̃k

∇f(yk)

)]
+ E

[
εTk+1B

TPBεk+1

]
,

where
V (ξ) := (ξ − ξ∗)TP (ξ − ξ∗).

A closer look at the proof of Corollary 4.2. in Aybat et al. (2018) reveals that the following equality also holds:

E[V (ξk+1)|ξk]− ρV (ξk) (92)

=

(
ξ̃k

∇f(yk)

)T (
ATPA− ρP ATPB
BTPA BTPB

)(
ξ̃k

∇f(yk)

)
+ E

[
εTk+1B

TPBεk+1

]
.
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When f ∈ Sµ,L is strongly convex, Lemma 4.5. in Aybat et al. (2018) states that for any ρ ∈ (0, 1),(
ξ̃k

∇f(yk)

)T
X

(
ξ̃k

∇f(yk)

)
(93)

≤ ρ(f(xk)− f∗)− (f(xk+1)− f∗) +
Lα2

2
‖εk+1‖2 − α(1− Lα)∇f(yk)T εk+1,

where X := ρX1 + (1− ρ)X2, where

X1 :=
1

2

 β2µId −β2µId −βId
−β2µId β2µId βId
−βId βId α(2− Lα)Id

 , (94)

X2 :=
1

2

 (1 + β)2µId −β(1 + β)µId −(1 + β)Id
−β(1 + β)µId β2µId βId
−(1 + β)Id βId α(2− Lα)Id

 . (95)

Taking expectation w.r.t. the noise εk+1 only in (93), we get(
ξ̃k

∇f(yk)

)T
X

(
ξ̃k

∇f(yk)

)
≤ ρ(f(xk)− f∗)− (f(xk+1)− f∗) +

Lα2

2
σ2. (96)

With the definition of ρα,β , Pα,β by Lemma 21, we get(
ATPα,βA− ρα,βPα,β ATPB

BTPα,βA BTPα,βB

)
−X � 0. (97)

Then, combining (92) and (96), applying (97) and the definition of VPα,β , we get

E[VPα,β (ξk+1)|ξk] ≤ ρα,βVPα,β (ξk) + E
[
εTk+1B

TPα,βBεk+1

]
+
Lα2

2
σ2

= ρα,βVPα,β (ξk) + E
[
εTk+1α

2P̃α,β(1, 1)Idεk+1

]
+
Lα2

2
σ2

≤ ρα,βVPα,β (ξk) + α2P̃α,β(1, 1)σ2 +
Lα2

2
σ2

It follows that

(Pα,βVPα,β )(ξ) ≤ ρα,βVPα,β (ξ) +

(
L

2
+ P̃α,β(1, 1)

)
α2σ2.

In the special case (α, β) = (αAG, βAG), we obtain the following result.

Lemma 34. Given (α, β) = (αAG, βAG).

(Pα,βVPAG)(ξ) ≤ γVPAG(ξ) +K,

where

γ := ρAG, K :=
σ2

L
,

where ρAG = 1− 1/
√
κ.

Proof. By letting (α, β) = (αAG, βAG) in Lemma 33, we get

(Pα,βVPAG)(ξ) ≤ γVPAG(ξ) +K,
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where

γ = ρAG, K =

(
L

2
+ P̃AG(1, 1)

)
α2
AGσ

2,

where ρAG = 1− 1/
√
κ and P̃AG(1, 1) is the (1, 1)-entry of P̃AG. Notice that

P̃AG =

 √
L
2√

µ
2 −

√
L
2

( √L
2

√
µ
2 −

√
L
2

)
,

and hence

PAG = P̃AG ⊗ Id =

 L
2 Id

(√
Lµ
2 − L

2

)
Id(√

µL
2 − L

2

)
Id

(
√
µ−
√
L)2

2 Id

 ,

which implies that P̃AG(1, 1) = L
2 .

Next, let us verify the minorization condition. Assume that the noise admits a continuous probability density function, then
the Markov transition kernel Pα,β also admits a continuous probability density function for xk+1 conditional on xk and
xk−1, which we denote by p(ξ, x), that is, P(xk+1 ∈ dx|(xTk , xTk−1) = ξT ) = p(ξ, x)dx. Also note that when we transit
from (xTk , x

T
k−1)T to (xk+1, xk), the value of xk follows a Dirac delta distribution. We aim to show that for any Borel

measurable sets A,B

inf
(xk,xk−1)∈R2d:VP ((xk,xk−1))≤R

P((xk, xk−1), (xk+1, xk) ∈ A×B) ≥ ην2(A×B),

for some probability measure ν2. Let us define:

BR :=
{
x ∈ Rd : ∃ y ∈ Rd, VP (x, y) ≤ R

}
.

We define ν2 such that ν2(A×B) = 0 for any B that does not contain BR, and ν2(A×B) = ν1(A) for some probability
measure ν1 and for any B that contains BR.Then, it suffices for us to show that

inf
ξ∈R2d,VP (ξ)≤R

p(ξ, x) ≥ ην(x),

where ν(x) is the probability density function for some probability measure ν1(·).

Lemma 35. For any η ∈ (0, 1), there exists some R > 0 such that

inf
ξ∈R2d,VP (ξ)≤R

p(ξ, x) ≥ ην(x).

Proof. Let us take:

ν(x) = p(ξ∗, x) ·
1‖x−x∗‖≤M∫

‖x−x∗‖≤M p(ξ∗, x)dx
,

where M > 0 is sufficiently large so that the denominator in the above equation is positive.When ‖x − x∗‖ > M ,
infξ∈R2d,VP (ξ)≤R p(ξ, x) ≥ 0 automatically holds. Thus, we only need to focus on ‖x− x∗‖ ≤M .

Note that for sufficiently large M ,
∫
‖x−x∗‖≤M p(ξ∗, x)dx can get arbitrarily close to 1. Fix M , by the continuity of p(ξ, x)

in both ξ and x, we can find η′ ∈ (0, 1) such that uniformly in ‖x− x∗‖ ≤M ,

inf
ξ∈R2d,VP (ξ)≤R

p(ξ, x) ≥ η′p(ξ∗, x) = ην(x),

where we can take

η := η′
∫
‖x−x∗‖≤M

p(ξ∗, x)dx,
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which can be arbitrarily close to 1 if we take R > 0 to be sufficiently small. In particular, if we fix η ∈ (0, 1), then we can
take M > 0 such that ∫

‖x−x∗‖≤M
p(ξ∗, x)dx ≥ √η,

and similarly with fixed η and M , we take R > 0 such that uniformly in ‖x− x∗‖ ≤M ,

inf
ξ∈R2d,VP (ξ)≤R

p(ξ, x) ≥ √ηp(ξ∗, x).

Finally, we are ready to state the proof of Theorem 13 and Proposition 14.

Proof of Theorem 13. According to the proof of Lemma 35, for any fixed η > 0, we can define:

M ≥ inf

{
m > 0 :

∫
‖x−x∗‖≤m

p(ξ∗, x)dx =
√
η

}
,

and

R ≤ sup

{
r > 0 : inf

ξ∈R2d,VPα,β (ξ)≤R
p(ξ, x) ≥ √ηp(ξ∗, x) for every ‖x− x∗‖ ≤M

}
.

Then, we have
inf

ξ∈R2d,VPα,β (ξ)≤R
p(ξ, x) ≥ ην(x).

Let us recall that
(Pα,βVPα,β )(ξ) ≤ γα,βVPα,β (ξ) +Kα,β .

By Lemma 31 and Lemma 32,
dψ(νk,α,β , πα,β) ≤ η̄kdψ(ν0,α,β , πα,β)

where η̄ = (1− (η − η0)) ∨ (2 +Rψγ0)/(2 +Rψ) and ψ = η0/Kα,β , where η0 ∈ (0, η) and γ0 ∈ (γα,β + 2Kα,β/R, 1).
In particular, we can choose

η0 =
η

2
, γ0 =

1

2
γα,β +

1

2
+
Kα,β

R
.

Therefore,

η̄ = max

{
1− η

2
, 1−

(
1

2
− 1

2
γα,β −

Kα,β

R

)
Rψ

2 +Rψ

}
,

where ψ := η
2Kα,β

so that

η̄ = max

{
1− η

2
, 1−

(
1

2
− 1

2
γα,β −

Kα,β

R

)
Rη

4Kα,β +Rη

}
.

The proof is complete.

Proof of Proposition 14. Let us recall that γ = ρ = 1− 1√
κ

and K = σ2

L . Recall that γ0 satisfies γ0 ∈ (γ + 2K/R, 1) and

let us assume that K is sufficiently small so that K ≤ R
4
√
κ

, then we can take

γ0 = 1− 1

4
√
κ
.

We also recall that ψ = η0/K and

η̄ = max

{
1− η + η0,

2 +Rψγ0

2 +Rψ

}
= max

{
1− η + η0,

K +Rη0γ0

K +Rη0

}
.
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We have discussed before that we can take η to be arbitrarily close to 1 by taking M sufficiently large, and for fixed M take
R sufficiently small. Let us take

η = 1− ρ =
1√
κ
, η0 =

1

2
η =

1

2
√
κ
,

and then
1− η + η0 = 1− 1

2
√
κ
.

If we take K < Rη0 = R
2
√
κ

, then
K +Rη0γ0

K +Rη0
≤ 1− 1

8
√
κ
.

Hence, we can take K ≤ R
4
√
κ

, that is,

σ2 ≤ RL

4
√
κ
,

so that
η̄ ≤ 1− 1

8
√
κ
.

Finally, we want to take R > 0 and M > 0 such that

inf
ξ∈R2d,VPAG (ξ)≤R

p(ξ, x) ≥ ην(x) =
ν(x)√
κ

holds for the choice of
ν(x) = p(ξ∗, x) ·

1‖x−x∗‖≤M∫
‖x−x∗‖≤M p(ξ∗, x)dx

.

It is easy to see that we can take M so that ∫
‖x−x∗‖≤M

p(ξ∗, x)dx ≥ 1

κ1/4
,

and take R such that for any ‖x− x∗‖ ≤M ,

inf
ξ∈R2d,VPAG (ξ)≤R

p(ξ, x) ≥ 1

κ1/4
p(ξ∗, x).

Hence, by applying Lemma 31, we conclude that for any two probability measures µ1, µ2 on R2d:

dψ(Pkα,βµ1,Pkα,βµ2) ≤
(

1− 1

8
√
κ

)k
dψ(µ1, µ2).

Recall that νk,α,β denotes the law of the iterates ξk. By Lemma 32, the Markov chain ξk admits a unique invariant
distribution πα,β . By letting µ1 = ν0,α,β and µ2 = πα,β , we conclude that

dψ(νk,α,β , πα,β) ≤
(

1− 1

8
√
κ

)k
dψ(ν0,α,β , πα,β),

where
ψ =

η0

K
=

1

2
√
κK

=
L

2
√
κσ2

.

Finally, let us prove (29). Given (α, β) = (αAG, βAG), we have ρα,β = 1− 1√
κ

, α = 1
L . It follows from Lemma 34 and its

proof that

E[VPAG(ξk+1)] ≤ ρAGE[VPAG(ξk)] +
1

L

√
κσ2.
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By induction on k, we can show that for every k,

E[VPAG(ξk+1)] ≤ VPAG(ξ0)ρk+1
AG +

1

L

√
κσ2.

By the definition of VP , it follows that

E[f(xk+1)]− f(x∗) ≤ VPAG(ξ0)ρk+1
AG +

1

L

√
κσ2 = VPAG(ξ0)ρk+1

AG +
1

L

√
κσ2.

Thus, we get

E[f(xk)]− f(x∗) ≤ VPAG(ξ0)

(
1− 1√

κ

)k
+

1

L

√
κσ2.

The proof is complete.

Remark 36. In Proposition 14, the amount of noise that can be tolerated is limited. Nevertheless, in applications where the
gradient is estimated from noisy measurements, such results would be applicable if the noise level is mild (Birand et al.,
2013).

Proof of Corollary 15. If the noise εk are i.i.d. Gaussian N (0,Σ), then conditional on xk = xk−1 = x∗ in the AG method,
with stepsize α = 1/L, xk+1 is distributed as N (x∗, L

−2Σ) with Σ � L2Id. Therefore, for γ > 0 sufficiently small,

E
[
eγ‖xk+1−x∗‖2

∣∣∣xk = xk−1 = x∗

]
=

1√
det (Id − 2γL−2Σ)

.

By Chebychev’s inequality, letting γ = 1/2, for any m ≥ 0, we get

P (‖xk+1 − x∗‖ ≥ m|xk = xk−1 = x∗) ≤
e−

1
2m

2√
det(Id − L−2Σ)

.

Hence, we can take

M =

(
−2 log

((
1− 1

κ1/4

)√
det(Id − L−2Σ)

))1/2

.

Conditional on (xTk , x
T
k−1)T = ξ = (ξT(1), ξ

T
(2))

T , where VP (ξ) ≤ r for some r > 0, then, xk+1 is Gaussian distributed:

xk+1|(xk, xk−1) = (ξ(1), ξ(2)) ∼ N
(
µξ, L

−2Σ
)
,

where

µξ =
2
√
κ√

κ+ 1
ξ(1) −

√
κ− 1√
κ+ 1

ξ(2) − L−1∇f
(

2
√
κ√

κ+ 1
ξ(1) −

√
κ− 1√
κ+ 1

ξ(2)

)
. (98)

Thus, uniformly in ‖x− x∗‖ ≤M ,

p(ξ, x)

p(ξ∗, x)
= e−

1
2 (x−µξ)TL2Σ−1(x−µξ)+ 1

2 (x−x∗)TL2Σ−1(x−x∗).

Note that VPAG(ξ) ≤ r implies that (
ξ(1) − x∗
ξ(2) − x∗

)T
PAG

(
ξ(1) − x∗
ξ(2) − x∗

)
≤ r.

By the definition of PAG, we get

(
ξ(1) − x∗
ξ(2) − x∗

)T  √
L
2 Id(√

µ
2 −

√
L
2

)
Id

 √
L
2 Id(√

µ
2 −

√
L
2

)
Id

T (
ξ(1) − x∗
ξ(2) − x∗

)
≤ r,
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so that
L

2
‖ξ(1) − x∗‖2 +

(
√
µ−
√
L)2

2
‖ξ(2) − x∗‖2 ≤ r,

which implies that

‖ξ(1) − x∗‖ ≤
√

2r√
L
, ‖ξ(2) − x∗‖ ≤

√
2r√

L−√µ
.

Moreover,

µξ − x∗ =
2
√
κ√

κ+ 1
ξ(1) −

√
κ− 1√
κ+ 1

ξ(2) − L−1∇f
(

2
√
κ√

κ+ 1
ξ(1) −

√
κ− 1√
κ+ 1

ξ(2)

)
−
(

2
√
κ√

κ+ 1
x∗ −

√
κ− 1√
κ+ 1

x∗ − L−1∇f
(

2
√
κ√

κ+ 1
x∗ −

√
κ− 1√
κ+ 1

x∗

))
=

2
√
κ√

κ+ 1
(ξ(1) − x∗)−

√
κ− 1√
κ+ 1

(ξ(2) − x∗)

− L−1

(
∇f

(
2
√
κ√

κ+ 1
ξ(1) −

√
κ− 1√
κ+ 1

ξ(2)

)
−∇f

(
2
√
κ√

κ+ 1
x∗ −

√
κ− 1√
κ+ 1

x∗

))
.

Since ∇f is L-Lipschitz,

‖µξ − x∗‖ ≤ (1 + L−1L)
2
√
κ√

κ+ 1
‖ξ(1) − x∗‖+ (1 + L−1L)

√
κ− 1√
κ+ 1

‖ξ(2) − x∗‖

≤ 2
2
√
κ√

κ+ 1

√
2r√
L

+ 2

√
κ− 1√
κ+ 1

√
2r√

L−√µ

≤ 2
2
√
κ√

κ+ 1

√
2r√

L−√µ
+ 2

√
κ− 1√
κ+ 1

√
2r√

L−√µ

= 2
3
√
κ− 1√
κ+ 1

√
2r√

L−√µ
. (99)

Thus, uniformly in ‖x− x∗‖ ≤M ,

p(ξ, x)

p(ξ∗, x)
= exp

{
−1

2
(x− µξ)TL2Σ−1(x− µξ) +

1

2
(x− x∗)TL2Σ−1(x− x∗)

}
≥ exp

{
−1

2
‖µξ − x∗‖L2‖Σ−1‖(‖x− µξ‖+ ‖x− x∗‖)

}
≥ exp

{
−1

2
‖µξ − x∗‖L2‖Σ−1‖(‖µξ − x∗‖+ 2‖x− x∗‖)

}
≥ exp

{
−1

2
L2‖Σ−1‖(‖µξ − x∗‖2 + 2M‖µξ − x∗‖)

}
≥ 1

κ1/4
,

if we have

‖µξ − x∗‖ ≤ −M +

√
M2 +

log(κ)

2L2‖Σ−1‖
. (100)

Combining (99) and (100), we can take

R =
1

8

(
−M +

√
M2 +

log(κ)

2L2‖Σ−1‖

)2

(
√
κ+ 1)2(

√
L−√µ)2

(3
√
κ− 1)3

=

(
−M +

√
M2 +

log(L/µ)

2L2‖Σ−1‖

)2

(L− µ)2

8(3
√
L−√µ)3

.
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For the remaining of the proof, without loss of generality assume that µ = Θ(1) and L = Θ(κ).2 It is straightforward to see
from the Taylor expansion of M that M = O(κ−1/8) and

R =

(
log(L/µ)

2L2‖Σ−1‖

)2

(
M +

√
M2 + log(L/µ)

2L2‖Σ−1‖

)2

(L− µ)2

8(3
√
L−√µ)3

= O

(
1

M2

(
log(L/µ)

2L2‖Σ−1‖

)2
(L− µ)2

8(3
√
L−√µ)3

)
= O

(
κ−13/4 log2(κ)

)
.

D.2. Proofs of Results in Section A

Consider the constrained optimization problem
min
x∈C

f(x),

where C ⊂ Rd is compact. The projected AG method consists of the iterations

x̃k+1 = PC (ỹk − α(∇f(ỹk) + εk+1)) , (101)
ỹk = (1 + β)x̃k − βx̃k−1, (102)

where εk is the random gradient error satisfying Assumption 2, α, β > 0 are the stepsize and momentum parameter and the
projection onto the convex compact set C with diameter DC can be written as

PC(x) := arg min
y∈Rd

(
1

2α
‖x− y‖2 + h(y)

)
where the function h : Rd → R ∪ {+∞} is the indicator function, defined to be zero if y ∈ C and infinity otherwise.
Let us recall that we assumed that the random gradient error εk admits a continuous density so that conditional on
ξ̃k = (x̃Tk , x̃

T
k−1)T , x̃k+1 also admits a continuous density, i.e.

P(x̃k+1 ∈ dx̃|ξ̃k = ξ̃) = p̃(ξ̃, x̃)dx̃,

where p̃(ξ̃, x̃) > 0 is continuous in both ξ̃ and x̃.

For the function f(x), the gradient mapping g : Rd → R which replaces the gradient for constrained optimization problems
is defined as

g(y) =
1

α
(y − PC(y − α∇f(y)) , α > 0.

Due to the noise in the gradients, we also define the perturbed gradient mapping, gε(y) : Rd → R as

gε(y) =
1

α

(
y − PC

(
y − α(∇f(y) + ε)

))
, α > 0, ε ∈ Rd.

Due to the non-expansiveness property of the projection operator, we have (see e.g. Combettes & Wajs (2005, Lemma 2.4))

∆ε(y) := gε(y)− g(y), ‖∆ε(y)‖2 ≤ ‖ε‖2, for every y ∈ Rd. (103)

Following a similar approach to Hu & Lessard (2017); Fazlyab et al. (2017), we reformulate the projected AG iterations as a
linear dynamical system as

x̃k+1 = (1 + β)x̃k − βx̃k−1 − αgεk+1
(ỹk) ,

ỹk = (1 + β)x̃k − βx̃k−1 ,

2Given two scalar-valued functions f and g, we say f = Θ(g), if the ratio f(x)/g(x) lies in an interval [c1, c2] for every x and
somec1, c2 > 0.
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which is equivalent to

ξ̃k+1 = Aξ̃k +Bũk, (104)

ỹk = Cξk, x̃k = Eξ̃k, (105)
ũk = g(ỹk) + ∆εk+1

(ỹk), (106)

with ξ̃k = [x̃Tk x̃Tk−1]T , and

A =

(
(1 + β)Id −βId

Id 0d

)
, B =

(
−αId

0d

)
, C =

(
(1 + β)Id −βId

)
, E =

(
Id 0d

)
. (107)

We see that ξ̃k forms a time-homogeneous Markov chain. To this chain, we can associate a Markov kernel P̃α,β , following a
similar approach to the Markov kernel Pα,β we defined for AG. We have the following result.

Lemma 37.

(P̃α,βVPα,β )(ξ̃) ≤ ρα,βVPα,β (ξ̃) + K̃α,β ,

where

K̃α,β := ασ(2DC‖Pα,β‖+GM ) + α2σ2

(
‖Pα,β‖+

L

2

)
,

if there exists a matrix Pα,β ∈ R2d×2d such that

− ρα,βX1 − (1− ρα,β)X2 +X3 � 0, (108)

where

X1 =
1

2

 β2µId −β2µId −βId
−β2µId β2µId βId
−βId βId α(2− Lα)Id

 , X2 =
1

2

 (1 + β)2µId −β(1 + β)µId −(1 + β)Id
−β(1 + β)µId β2µId βId
−(1 + β)Id βId α(2− Lα)Id

 ,

and

X3 =

(
ATPα,βA− ρ̃α,βPα,β ATPα,βB

BTPα,βA BTPα,βB

)
,

where GM := maxx∈C ‖∇f(x)‖.

In particular, with ρ = 1− 1√
κ

, β =
√
κ−1√
κ+1

, α = 1
L where κ = L

µ . Then (108) holds with the matrix

P =
µ

2

(
(1−

√
κ)Id

√
κId
)T (

(1−
√
κ)Id

√
κId
)
.

Proof. We follow the proof technique of Fazlyab et al. (2017) for deterministic proximal AG which is based on Nesterov
(2004, Lemma 2.4) and adapt this proof technique to accelerated stochastic projected gradient. Defining the error at step k

ẽk := [(ξ̃k − ξ̃∗)T (g(ỹk)− g(ỹ∗))
T ]T ,

where ξ̃∗ := [xT∗ x
T
∗ ]T and g(ỹ∗) = 0 due to the first order optimality conditions where ỹ∗ := x̃∗ is the unique minimum of

f over C. Let Fk be the natural filtration for the iterations of the algorithm until and including step k so that xk, yk and ẽk



Stochastic Momentum Methods

are Fk-measurable. Similar to the analysis of AG, we estimate

E
[
f (x̃k+1)− f (x̃k)

∣∣∣∣Fk] = E
[
f
(
ỹk − αgεk+1

(ỹk)
)
− f (x̃k)

∣∣∣∣Fk] (109)

= E
[
f
(
ỹk − αg (ỹk)− α∆εk+1

(ỹk)
)
− f (x̃k)

∣∣∣∣Fk] (110)

≤ E
[
f (ỹk − αg (ỹk)) +∇f (ỹk − αg (ỹk))

T
α∆εk+1

(ỹk) (111)

+
α2L

2
‖∆εk+1

(ỹk)‖2 − f (x̃k)

∣∣∣∣Fk] (112)

≤ f (ỹk − αg (ỹk))− f (x̃k) + E
[
αGM‖∆εk+1

(ỹk)‖+
α2L

2
‖εk+1‖2

∣∣∣∣Fk] (113)

≤ f (ỹk − αg (ỹk))− f (x̃k) + αGMσ +
α2L

2
σ2, (114)

where in the first inequality we used the fact that the gradient of f is L-smooth which implies that

f(y)− f(z) ≤ ∇f(z)T (y − z) +
L

2
‖y − z‖2, for every y, z ∈ Rd

(see e.g. (Bubeck, 2014)) and second inequality follows from Jensen’s inequality.Finally, the last step is a consequence of
(103) and Assumption 2 on the noise. It follows from a similar computation that

E
[
f(x̃k+1)− f(x̃∗)

∣∣∣∣Fk] ≤ f(ỹk − αg(ỹk)
)
− f(x̃∗) + αGMσ +

α2L

2
σ2. (115)

We note that the matrices X1 and X2 can be written as

X1 =
−1

2

(
−µ(C − E)T (C − E) (C − E)T

C − E (Lα2 − 2α)Id

)
, X2 =

−1

2

(
−µCTC CT

C (Lα2 − 2α)Id

)
, (116)

where A,B,C,E are defined by (107). Using Fazlyab et al. (2017, eqn. (36)–(37)) and Lemma 38, we have

f
(
ỹk − αg(ỹk)

)
− f(x̃k) ≤ −ẽTkX1ẽk, (117)

f
(
ỹk − αg(ỹk)

)
− f(x̃∗) ≤ −ẽTkX2ẽk. (118)

Plugging these into (114) and (115), we obtain

E
[
f(x̃k+1)− f(x̃k)

∣∣∣∣Fk] ≤ −ẽTkX1ẽk + αGMσ +
α2L

2
σ2, (119)

E
[
f(x̃k+1)− f(x̃∗)

∣∣∣∣Fk] ≤ −ẽTkX2ẽk + αGMσ +
σ2L

2
σ2. (120)

It also follows from (104)– (106) and the facts that Aξ̃∗ = ξ̃∗ and Bũ∗ = 0 that

ξ̃k+1 − ξ̃∗ = A
(
ξ̃k − ξ̃∗

)
+B (ũk − ũ∗) +B∆εk+1

(ỹk) = ζk +B∆εk+1
(ỹk), (121)

where
ζk := A

(
ξ̃k − ξ̃∗

)
+B (ũk − ũ∗) .

For any symmetric positive semi-definite matrix Pα,β ∈ R2d×2d, we define the quadratic function

QPα,β (ξ̃) = ξ̃TPα,β ξ̃.
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We can estimate that

E
[
QPα,β

(
ξ̃k+1

) ∣∣Fk]
= E

[(
ξ̃k+1 − ξ̃∗

)T
Pα,β

(
ξ̃k+1 − ξ̃∗

) ∣∣Fk]
= ζTk Pα,βζ

T
k + E

[
2(ξ̃k+1 − ξ̃∗)TPα,βB∆εk+1

(ỹk) +BT∆εk+1
(ỹk)TPα,βB∆εk+1

(ỹk)
∣∣Fk]

≤ ẽTk
(
ATPα,βA ATPα,βB
BTPα,βA BTPα,βB

)
ẽk + E

[
2αDC · ‖Pα,β‖ · ‖εk+1‖+ α2‖Pα,β‖ · ‖εk+1‖2|Fk

]
= ẽTk

(
ATPα,βA ATPα,βB
BTPα,βA BTPα,βB

)
ẽk + 2DCασ‖Pα,β‖+ α2σ2‖Pα,β‖.

Therefore,

E
[
QPα,β

(
ξ̃k+1

)
−QPα,β

(
ξ̃k

) ∣∣∣Fk] = ẽTkX3ẽk + 2DCασ‖Pα,β‖+ α2σ2‖Pα,β‖. (122)

Considering the Lyapunov function VPα,β (ξ̃k) = f(x̃k)− f(x̃∗) + ξ̃Tk Pα,β ξ̃k, we have

VPα,β

(
ξ̃k+1

)
− ρ̃α,βVPα,β

(
ξ̃k

)
= ρ̃α,β

(
f
(
ξ̃k+1

)
− f

(
ξ̃∗

))
+ (1− ρ̃α,β)

(
f
(
ξ̃k+1

)
− f

(
ξ̃∗

))
(123)

+QPα,β

(
ξ̃k+1 − ξ̃∗

)
−QPα,β

(
ξ̃k − ξ̃∗

)
. (124)

(125)

Taking conditional expectations and inserting (119)–(120),

E
[
VPα,β

(
ξ̃k+1

) ∣∣∣Fk] ≤ ρ̃α,βVPα,β

(
ξ̃k

)
+ ẽTk

(
− ρ̃α,βX1 − (1− ρ̃α,β)X2 +X3

)
ẽk (126)

+2DCασ‖Pα,β‖+ α2σ2

(
‖Pα,β‖+

L

2

)
(127)

≤ ρ̃α,βVPα,β

(
ξ̃k

)
+ ασ(2DC‖Pα,β‖+GM ) + α2σ2

(
‖Pα,β‖+

L

2

)
, (128)

which completes the proof.

Lemma 38 (Fazlyab et al. 2017). Using the notations as in the proof of Lemma 37, we have the following two inequalities:

f
(
ỹk − αg(ỹk)

)
− f(x̃k) ≤ −ẽTkX1ẽk, (129)

f
(
ỹk − αg(ỹk)

)
− f(x̃∗) ≤ −ẽTkX2ẽk. (130)

Proof. Recall that f satisfies following inequalities,

f(z)− f(y) ≤ ∇f(y)T (z − y) +
L

2
‖y − z‖2, (131)

f(y)− f(x) ≤ ∇f(y)T (y − x)− µ

2
‖y − x‖2. (132)

Choosing z = ỹk − αg(ỹk), y = ỹk and x = x̃k yields,

f(yk − αg(yk))− f(xk) ≤ ∇f(yk)T
(
yk − xk − αg(yk)

)
+
L

2
‖αg(yk)‖2 − µ

2
‖yk − xk‖2. (133)

Additionally let ∂h(x) := {v ∈ Rd : h(x)− h(y) ≤ vT (x− y)∀y ∈ Rd} then by optimality condition, 0 ∈ ∂(PC(w))−
1
α (PC(w) − w) (e.g. (Beck, 2017) theorem 6.39). In particular there exists a Th(w) ∈ ∂h(x) such that g(w) =
∇f(w) + Th(w). Choose w = yk and note that yk = (1 + β)xk − βxk−1 and C is a convex set thus yk ∈ C. So
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if Th(yk) ∈ ∂h(yk) then either 0 ≤ Th(yk)T (yk−x) or−∞ ≤ Th(yk)T (yk−x) therefore 0 ≤ Th(yk)T (yk−x) implying
that ∇f(y)T (y − z) ≤ g(y)T (y − x) for all x ∈ Rd. Combining this result with (133) we obtain,

f(yk − αg(yk))− f(xk) ≤ ∇f(yk)T
(
yk − xk − αg(yk)

)
+
L

2
α2‖g(yk)‖2 − µ

2
β2‖xk − xk−1‖2

f(yk − αg(yk))− f(xk) ≤ βg(yk)T (xk − xk−1) +

(
L

2
α2 − α

)
‖g(yk)‖2

−µ
2
β2
(
‖xk − x∗‖2 − 2(xk − x∗)T (xk−1 − x∗) + ‖xk−1 − x∗‖2

)
.

This proves (117). Finally, (118) can also be obtained if we take x = x∗ and follow similar steps.

Lemma 39. Given α = 1
L , β =

√
κ−1√
κ+1

, where κ = L/µ, we have

(P̃α,βVPα,β )(ξ̃) ≤ γ̃VPα,β (ξ̃) + K̃,

where

γ̃ := 1− 1√
κ
, K̃ :=

σ

L

(
DCµ((1−

√
κ)2 + κ) +GM

)
+
σ2

L2

(
µ

2
((1−

√
κ)2 + κ) +

L

2

)
.

Proof. Note that
(P̃α,βVPα,β )(ξ̃) ≤ ρ̃α,βVPα,β (ξ̃) + K̃α,β ,

where

K̃α,β := ασ(2DC‖Pα,β‖+GM ) + α2σ2

(
‖Pα,β‖+

L

2

)
,

and with α = 1
L , β =

√
κ−1√
κ+1

, we have

Pα,β =
µ

2

(
(1−

√
κ)Id

√
κId
)T (

(1−
√
κ)Id

√
κId
)
,

so that
‖Pα,β‖ ≤

µ

2

∥∥∥((1−√κ)Id
√
κId
)T∥∥∥ · ∥∥((1−√κ)Id

√
κId
)∥∥ =

µ

2
((1−

√
κ)2 + κ).

Hence,

K̃α,β ≤
σ

L

(
DCµ((1−

√
κ)2 + κ) +GM

)
+
σ2

L2

(
µ

2
((1−

√
κ)2 + κ) +

L

2

)
.

Proof of Theorem 16. The proof is similar to the proof of Theorem 13 and the proof of (29). We obtain

E[f(x̃k)]− f(x̃∗) ≤ VPα,β (ξ̃0)γ̃kα,β +
K̃α,β

1− γ̃α,β
.

The conclusion then follows from the defintiion of γ̃α,β and K̃α,β .

Proof of Proposition 17. The proof is similar as the proof of Proposition 14. We can take K̃ ≤ R
4
√
κ

, that is,

σ

L

(
DCµ((1−

√
κ)2 + κ) +GM

)
+
σ2

L2

(
µ

2
((1−

√
κ)2 + κ) +

L

2

)
≤ R

4
√
κ
,

which implies

σ ≤ −b1
2a1

+
1

2a1

√
b21 + a1

R√
κ
,



Stochastic Momentum Methods

where

a1 =
1

L2

(
µ

2
((1−

√
κ)2 + κ) +

L

2

)
, b1 =

1

L

(
DCµ((1−

√
κ)2 + κ) +GM

)
.

As in the proof of Proposition 14, we can take

ψ̃ =
1

2
√
κK̃

.

Finally, the proof of (35) is similar as the proof of (33). We obtain

E[f(x̃k)]− f(x̃∗) ≤ VPAG(ξ̃0)γ̃k +
K̃

1− γ̃
.

The conclusion then follows from the definition of K̃ and γ̃.

E. Numerical Illustrations
In this section, we illustrate some of our theoretical results over some simple functions with numerical experiments. On
the left panel of Figure 1, we compare ASG for the quadratic objective f(x) = x2/2 in dimension one with additive i.i.d.
Gaussian noise on the gradients for different noise levels σ ∈ {0.01, 0.1, 1, 2}. The plots show performance with respect
to expected suboptimality using 104 sample paths. As expected, the performance deteriorates when σ increases. The fact
that the performance stabilizes after a certain number of iterations supports the claim that a stationary distribution exists, a
claim that was proved in Theorem 4. In the middle panel, we repeat the experiment in dimension d = 10 over the quadratic
objective f(x) = 1

2x
TQx, where Q is a diagonal matrix with diagonal entries Qii = 1/i. We observe similar patterns.

Figure 1. Performance comparison of ASG for different noise levels σ on quadratic functions. Left panel: f(x) = 1
2
x2 in dimension one.

Middle panel: f(x) = 1
2
xTQx in dimension d = 10. Right panel: Histogram of f(xk) for different values of k where f(x) = 1

2
xTQx

in dimension d = 10.

Finally, on the right panel of Figure 1, we estimate the distribution of f(xk) for k ∈ {5, 25, 125, 625}. For this purpose, we
plot the histograms of f(xk) over 104 sample paths for every fixed k. We observe that the histograms for k = 125 and 625
are similar, illustrating the fact that ASG admits a stationary distribution.


