Stochastic Momentum Methods

A. Constrained Optimization and ASPG

Consider the constrained optimization problem min,cc f(x), where C C R? is a compact set with a finite diameter
Dc :=sup, yec | — yll2 and Gr := max,ec ||V f(2)||. The accelerated stochastic projected gradient method (ASPG)
consists of the iterations

Trp1 = Pe (G — a(Vf(Jk) +ery1)) (30)
Ok = (1+ B)&p — BTp_1, (31)

where ¢, is the random gradient error satisfying Assumption 2, o, 8 > 0 are the stepsize and momentum parameter and
Pc(z) denotes the projection of a point z to the compact set C. For constrained problems, algorithms based on projection
steps that restricts the iterates to the constraint set are more natural compared to the standard AG algorithm primarily
designed for the unconstrained optimization (Bubeck, 2014). Accelerated projected gradient methods can also be viewed as
a special case of the accelerated proximal gradient methods as the proximal operator reduces to a projection in a special case
(see e.g. Parikh et al. (2014)).

We will show in Proposition 28 that the metric d, implies the standard p-Wasserstein metric in the sense that for any two
probability measures 41, j2 on the product space C? := C x C,

Wi(p1, p2) < 27Dz |y — a4 < Dead,/” (1, p2),

where D2 = /2D is the diameter of C2.

Under Assumption 2, ék = (57%, i{fl)T forms a time-homogeneous Markov chain and we assume 50 € C2. In addition
to Assumption 2, we also assume that the random gradient error &5 admits a continuous density so that conditional on
& = (&1,%1_,)7, Ty also admits a continuous density, i.e.

P(ix1 € diféy = €) = (€, 7)dx,
where (£, Z) > 0 is continuous in both £ and Z.

For the ASPG method with any given o, 8 so that p, g, Py g satisfy the LMI inequality (6), the next result gives a bound of
k-th iterate to stationary distribution in the weighted total variation distance and standard p-Wasserstein distance, and also a
bound on the expected suboptimality E[f(Z)] — f(&.) after k iterations.

Theorem 16. Given anyn € (0,1) and R > 0 so that

~inf {)(~E7x~) > 1.
zec:éec?,Vp, ,(O)<R P&y, T)

szsider the Markov chain generated by the iterates é,f = (565, 56;“5_1) of the ASPG algorithm. Then the distribution Uy, . 3
of &, converges linearly to a unique invariant distribution 7, g satisfying

Wy (a6 %a5) < Derdy!” (P08 Fap) < (L= i) Deadf” (70,05, o p), (32)

where W, is the standard p-Wasserstein metric (p > 1) and

- K,
E[f@0)] = £(@) < Ve, (Q)phs + 75— (33)

_ - . o Ko R f
where Kas = a0 (00 +2Dc) [Pasll + Gar + 255), i = min {8, (§ - 252 — B} b na ) =
n

2Ka,

We can see from (33) that the expected value of the objective with respect to the k-th iterate is close to the true minimum of
the objective if k is large, and the stepsize « or the variance of the noise o2 is small. By choosing (c, 8) = (aag, Bac), we
obtain the optimal convergence in the next theorem.
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Proposition 17. Given (a, ) = (aaq, Bag). Define R as in Theorem 16 with n = 1/k'/2. Also assume that the noise
has small variance, i.e.

1 2

0? < 1 <b1 + /b7 + (alR/\/E)) ,

where ay == 75 (4((1 — V/r)>+ k&) + L) and by := 1 (Dep((1 — \/K)* + k) + Gar). Then, we have

k
1
Wp(Uk,a,85 Ta,p) < Dczdf;/p(ﬁk,a,ﬂﬁa,ﬁ) < (1 - ) DCZd,}/p(Do,a,ﬁﬁa,ﬁ), (34)

8V/k

where W, is the standard p-Wasserstein metric (p > 1) and

. 1 \* -
B/ )] ~ £(6.) < Ve (@) (1- )+ VK. (39)
where K := 720172%;02#((1 — VE)? + k) + 29 4 % and 1) := 2\/%1%.

B. Weakly Convex Constrained Optimization

In this section, we extend the constrained optimization for the accelerated stochastic projected gradient method (ASPG)
from the strongly convex objectives studied in Section A to the (weakly) convex objectives.

Consider the constrained optimization problem min,ec f(x) for f € Sy 1, on the convex compact domain C C R¢ with
diameter D¢. Consider the following (regularized) function

fe(z) = f(2)

+ 9
D2

l[1?,
which is strongly convex with parameter yi. = £/D2 and smooth with parameter L. = L + ¢/D%, i.e. f- € S, 1. with
a condition number k. := L./p. = 1+ LD% /€. Let Z5, denote iterates of ASPG defined by f. (i.e f = f-(z)) in (30)

and (31)) with optimal value Z< and define Z. to be one of the minimizers of f(z) (the optimizer may not be unique). By
applying Proposition 17, we can control the expected suboptimality after k iterations as follows:

BIL(55)] - (59 < Vg, (&) (1- }) + Rk,
where
o= PP )+ T 2
Therefore,
B - () = E[G0)] - () + 555 (16 ~ B3

- - 3 - -
< E[£@D)] - £3) + 5pz (1217 - ElI1Z5]])
C
1
\ Ke
where we used the fact that Z7, ., € C. Therefore, if the noise level o is small enough such that , /K. < 5 and if

. 1og<51)0;(110§<v¢1§ |<£o>>| 0 ( % log < % >) |

k
= VPZG(&O) <1 ) JF\/EREJF%»

we obtain

E[f(#3)] — f(2.) < 2e. (36)
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This shows that if the noise is small is enough, it suffices to have

1 1
O(—=log| -
( Ve E (6 ) )
many iterations to sample an e-optimal point in expectation.

C. Proofs of Results in Section 3

In this section, we prove the results for Section 3, in which the objective is quadratic: f(z) = %ZCTQI +a’r + b and
f € Su,1, which satisfies the inequalities:

F@) = ) = VW) (@ —y) + Sl =yl
Fl) — F(@) = V) (g~ )~ 5 e,
(see e.g. Nesterov (2004)).

C.1. Proofs of Results in Section 3.1

Before we proceed to the proofs of the results in Section 3.1, we first show that the matrix S, g defined in (17) is positive
definite so that the weighted 2-Wasserstein metric W s, , given in (1) is well-defined.

Lemma 18. The matrix S, 5 € R2¥2? defined by (17) is positive definite if]saﬁ (2,2) £0.

Proof. For brevity of the notation, we will not explicitly write the dependency of the matrices to «, § and set P = P, g and
P= P, s in our discussion. It is known that if A € R™*" is a symmetric matrix with eigenvalues {\; }/”; and eigenvectors
{a;}?,, and B € R4 is a symmetric matrix with eigenvalues {y; }?:1 and eigenvectors {b;}""_;, the eigenvalues of the
Kronecker product A ® B are exactly A;ut; with corresponding eigenvectors a; ® b; fori =1,2,...,nandj =1,2,...,d.
Since P = P ® I and P is positive-semi definite by assumption, this implies that P is positive semi-definite and in case P

has a zero eigenvalue, any eigenvector z of P (corresponding to a zero eigenvalue of P) can be written as

5= <Cl) ® s = <C1S> c R2d7
Co CoS

for some s € R, s # 0 where ¢ = [c; co]” is an eigenvector of P corresponding to a zero eigenvalue. The symmetric
matrix
N 1
S:=P+Q, where Q:= 2Q O , (37)
04 Og

is the sum of two positive semi-definite matrices, therefore it is positive semi-definite by the eigenvalue interlacing property
of the sum of symmetric matrices (see e.g. Golub & Van Loan (1996)). Thus, it suffices to show that S is non-singular, i.e. it
does not have a zero eigenvalue. If P is of full rank, then such a vector z cannot exist and P cannot have a zero eigenvalue.
Therefore, P is positive definite and hence .S is positive definite which completes the proof.

The remaining case is when P is of rank one (P = 0 is excluded as Py # 0) in which case we can write P = uu” for
some u = (u1 ug)T € R2? and uy # 0. We will prove the claim by contradiction. Assume that there exists a non-zero
v € R24 guch that Sv = 0. Then, A

0 =0T Sv =0T Pv+ 0T Qu.
Since both of the matrices P and Q are positive semi-definite, this is true if and only if v* Pv = 0 and vTQu = 0. Since

UTQU = 0 and @ is positive definite, from the structure of Q, it follows that the first d entries of v has to be zero, i.e.
v=1[0 o7 for some v; € R%

It is easy to see that the eigenvalues of the two by two symmetric rank-one matrix P = wu” are A\; = ||u|> > 0and Ay = 0
. . . T T . . . . .
with corresponding eigenvectors (u1 UQ) and (UQ —ul) respectively. Since v is an eigenvector of P corresponding
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to an eigenvalue zero (i.e. Pv = 0), then using (C.1) we can write
v:(u2)®s: (UQS) ERQd’
—U —UuU1s
for some s € R?, s #0.Sincev =1[0 v, ] for some v, € R, this implies us = 0 as s # 0. This is a contradiction. [

Next, before we proceed to the proofs of the results in Section 3.1, let us first recall that throughout Section 3, the noise ¢,
are assumed to be i.i.d. Let us define the coupling

xl(cJJZI = yl(<: {Vf ( ) + 5k+1j| (38)
y =1+ )y - g, (39)

with 5 = 1, 2. Then, we have

Ekr1 = A&k + By,
where A= A® I;, B= B ® I, for

([ 1+8 -8B [
() (),

and
T
gk _ <<l’](€1) o x;f)) ($§€1)1 :17/(3)1) > , (40)
wp = Vf (148 - paf) - v ((1+8)2? - i) @)
Let us define: ~ ~ B
X =pXi + (1 - p)Xo, 42)
where
o P B B
X1 = 5 -8 Bu B ; 43)
-8 Ié; a(2 — La)
and
R A R (R (R
X =3 (1+-BM¢ B*u e : (44)
—-(1+5) B (2 — La)

and X = X ®@1I;, X1 = X1 ® I, Xo = Xo ® I
Before we proceed, let us recall the following lemma from Hu & Lessard (2017).

Lemma 19 (Theorem 2 Hu & Lessard (2017)). Let X be a symmetric matrix with X € R(et7w) X (netnw) If there exists
a matrix P € R"=*" with P > 0 so that

ATPA—pP ATPB
BTPA  BTPB

)ij

then, we have

V(1) — pV (&) < S(&k, wi),

sea=(5)5(£)

§ry1 = A&y + Buy,.

where V(&) := (T P¢, and

and
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The proof of Theorem 4 relies on the following lemma.

Lemma 20. Assume the coupling:

sr:gll = y,i -« {Vf ( (j)) + Ek;+1:| , (45)
y = (1+ Bl - B, (46)

with j = 1,2. Assume that f is quadratic and f(z) = %.%‘TQ,T +aTx + b, where Q is positive definite.

Let p = po.p € (0,1) that can depend on o and 3 so that there exists some P = P, g symmetric and positive semi-definite
that can depend on o and 3 such that

< ATPA—pP ATPB

where X = X ® 1, where X is defined in (42). Then, we have

m @ \T (1) (2) T
z Tppp— L _ @ ® _ @
E < ’“(*1% 55 ) ( ﬂ ?2 ' ) T3 ( Tr+1 ‘Ek+1> Q( Tht1 — k+1)]
k k
(IE < z) o) Tp o) — 2 1 ( (1) <2>)TQ( (1) <2>)
< Pa,B 1) (2) a,B 1) 2 +5 - Ty Ly — Ty :
Il(c—)l — T ‘Tl(c—l - xl(e—)l 2

Proof of Lemma 20. First of all, since f is L-smooth and y-strongly convex, we have for every z,y € R%:
"
F@) = fy) 2 Vi) (@ —y) + Sllz =yl (48)
L
Fly) = f@) = V)" (y —2) = 5 lly — =l (49)

Note that since f is L-smooth, we also have for every z,y € R%:

IVf(x) = Vil < Lilz -yl

Let us first consider the simpler case f(x) = %xTQa:. Since f is quadratic, V f is linear. Applying (48) and the linearity of
Vf, we get

A0 =) () 2 (01 (0) 1 () (4=~ (44
4= )

Applying (49) and the linearity of V f, we get

o) 1 (0 ol? a9 (7)) 2 - o [ () 51 o)

Using the identity:
1’21421 - 5”521 = yl(cl) y(Q) —aVf (y’(cl) B y,(f)) ’

0 ~2) =1 (o2 o) 2 S o () 5 ()|

we get

Hence, we get
1 2 1 2
£(al) = 2@) ~ (o), — 2

> (Vf (y;il)) -V (y;(f)))T (ﬂf;(cl) —a - (y;(f) - yz(f)))

2
= = =)o o ) 1 ()]
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By the definition of X from (43), with X; = X; ® I, we get
L _ @ T L _ @

I I X — X

1 2 1 2
xl((cf;l (2) T x%l ~ 5 ) <7 ()=o) = 1 (ald - ai2).
Vi) — Vf(y ) Vi) = Vi)

Similarly, by applying (48) with (x,y) — (0, y(l) (2)) by the definition of X, from (44), with X, = X5 ® I, we get
(1) _ () T (1) (2)

Z, Z, T — T

k
o el ) | e a0 g (i)
2 2
V) - Vi) V) - Vi)
By using X = pX; 4 (1 — p) Xy and X = X ® I, we get
O T (1) =@
X — X —
@ ¥ @ Tl
xl(cf)l —Tpa @ 371%1 —Tpla @
Vi) —Viy) Vf(yk) Vi)

<= (£ (2 = 2L) = 1) + 0 (£ (2 = 2) - £(0)) -
By Lemma 19 and the definition of p, g, P, g the inequality (47) holds. Thus

T
xgcl-i)-l (2) xgcl-zl 3922)1 +f x(l) B x(2) . f(O)
MO (55 MORNC k1~ Thtl

W _ @ \7 @ _ @
x — X X — X 1 2
< pa,s & (2) Pog| ' By |+f (932 )~ af )) - £(0)
L1~ Tl Tpl1 — T

Since f is quadratic, and we assumed that f(x) = %xTQz, where () is positive definite, we get

(1) (2) T (1) (2) T
X — X X — X 1 2 1 2
( kﬁ% x? ) Pa g < ’“Tﬁ §2 ! ) +35 5 ( 5«21 xl(c-i)&) Q (xl(c—zl ml(w21)

Ly,
o @ \7 20— @ T
X — T — X 1 2 1 2
< Pa,p & t2) Po.s (1) t2) +35 (335@ )~ mé )) Q (33;@ ) - 332 ))
L1 — TRy k-1~ Tt 2

Previously, we assumed f(z) = 227 Qu, so that V f(z — y) = V f(z) — Vf(y). In general, the quadratic function takes
the form

flz) = %xTQx +aTz+0.

In this case,

Vi@ —y) = (V@)= V() =ad (z—-y).
By the definition of X, from (43), with X; = X; ® I, we get

O @ T O (@

T — Ty T — Ty
1 2 2
x'(f_))l S (2) . '(f)l _xé)l (2)
Vi) = Vi) Vi) - Vi)

< f (of o) = £ (ol —ai2))

(97 (7 k) =91 () + 91 (7)) (ol =i - (o1 - 7).
=1 (ol =) g (ol =l o (i = () 7))
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By the definition of X o from (44), with X5

= Xz ® 14, we get

T
2V gl 2V o
1 2 1 (2)
xl(c—l 171(9—1 Xo xl(e—)l Ty
1 2 1 2
Vf (y,ﬁ) -Vf (y,(c )) Vf (yé Y (yé )>

)
< 10 = 1 (s, o) + (97 (o0 = o) = vF (2
-7 ( 2

k ) +Vf (%@))T (xl(clll - xﬁQ)

(1) (2) 1) )
Tht1 — $k+1> ta (zl(c-i-l xl(c-i-l) :

Using X = pX; + (1 — p)Xsand X = X ® I, we get

CONINE) T 2 — g
I(Ck)l xll(:2)1 X I(c) x]£2)1
Vi) - Vi) Vi) - Vi)
<= (F (el = ah) — 10) + o (£ (o =2 - 1(0))
+ta (“/’&21 - ',1:562"1)'1 - P (l’g) - ‘Tl(f)))

T
(1) (2) (1) (2) (1) (2) (1) (2)
D) (mk+1 - xk+1) Q (karl - $k+1) + ) ( — Ty ) Q (‘rk — T ) :
Hence, by Lemma 19 and the definition of p, g, P, g so that (47) holds, we get the same result as before

i) — 2 ' i)y — o) L @ 2) (1) 2)
x(ﬁ) L Pop (+1) e P+ 3 <$k+1 l’k+1) Q (xk+1 k+1)
k k k
T
(@ 1@
Ty, — Ty Ty, — xk 1
< Pap @ 2 Pog (1) +
L1 =Ty

5 (0 —2) @ (o) - 2)

O]
By taking o = aag, 8 = Bag, p = pag and Pyg in definition (7), we recall the following result from Hu & Lessard
(2017).

Lemma 21 (Hu & Lessard (2017)). , With the choice

1 k—1 1
“Tme=T ”B:”BAG:£+1’ p=rac=1-—m

where k = L/ is the condition number; there exists a matrix PAG € R2%2 with Pac; > 0, where

Puc = aa”

i= (V5 vE-\5)

such that Pag = ]5,4@ ® Iy and

ATPAgA — pPAG ATPAgB X <0
BTP,cA BTP,cB

where X == X ® 1, where X is defined in (42)

We immediately obtain the following result
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Lemma 22. Assume the coupling (45)-(46). Assume that f is quadratic and f(x) = %zTQx +aTx+b, where Q is positive
definite. Then, we have

xl(cl)l xl(@z)1 ' xl(cl)l xl(f)l (1) (2) (1) (2)
E ?rl) _ 2 Pac x(+1) _ 2 +5 B (Ik+1 - xk:+1> Q <$k+1 - $k+1)
k k k
m_ @ \" 1 _ @ 1 T
T i X — T 1 2 1 2
O | Tp—1 — LTy
where P is defined in (7).

Now, we are ready to state the proof of Theorem 4.

Proof of Theorem 4. Recall the iterates & = (x},x; )7, the Markov kernel P, 5 and the definition of the weighted
2-Wasserstein distance (1) with the weighted norm (16)-(17) and P = P, g. Then showing Theorem 4 is equivalent to show

WQQ,SQﬁ (Rz,;,ﬁ((xO’x—l>7 ')’ﬂ-a,ﬂ) (50)
N T ~
k To — Zo To — Zo . \r . A
= Pop /Rdx]Rd [( rT_1—T 4 ) Pa,p ( r_1—2_4 ) + 2(330 l‘o) Q(xo xo)] dﬂa,g(xo,x_l).

Let (((:1:,(C )) (x§C Y D)), i = 1,2 be a coupling of ((zf,z}_;)T)52, defined as before. We have shown before that
for every k,

m @ T (1) 2) T
T x —x 1 1 2 1 2
( ’“(*1% (2JS ) B ( "ﬁ% 11(2551 ) 5 (xgc—il - wlill) Q (xl(c—&)-l - xill)

m_ @ \" 20— @ 1 T
x — X — T 1 2 1 2
< Pa,p & t2) Pap (1) & |+5 ('rgc ) af )> Q (332 )~z ))
Ty — T T 2

- -1 k—

Using induction on &, we get
T
< 171(;) _ z(2) ) P ( xil) _ xff) ) N
(1) (2) o, (1) ()
Tp—1~ Tp—1 Tp—1~ Tp—1

T
(1) (2) (1) (2)
. X — X X — X
< P’&ﬁ ( x?m ?2) ) Pup < x?m ?2)

—1 -1

()~ o) @ ()~ 22)

(a8 — )" Q (24" — o)

S— N
+
N |

By taking expectation and since %xTQx > 0 for any z, we get

2D 2@ T (0 _ @)
E ( &) xf“z) > Pop < & (2) )
Tpl1 = T g Tpl1 — T
T
(1) (2) (1) (2) T
— T 1 2 1 2
< pa,ﬁE[ ( (12 x(()zi > Pa, ( (12 m(()zi > + (37(() )~ 37(() )) Q (‘T(() - fc(g )) ]

Let A1, A2 € Pa,g, , (R??). There exist a couple of random vectors (a:(() ).z (1)) and (x(()2), 2 %) independent of (e4)72,
such that

T
W _ @ M, T
2 _ ) Lo ) (.. _ (2 1)y _ (2
Wi, ,(A1,02) = E[ ( RO ) Po g ( ) x(z) ) *t3 (930 ) ) Q (on T )}

N =
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Then, we get
Wis.s (Pashis Pagha) < plsl® (M, da),
where
2 NONNCRN w) =2 N L N (@
Fr) =Epo oo jme || 0 &) | Pas| 0 %) Fa (=l @ el - 417)
T T3 L1 T-1
Therefore,

(o)
> Wis, (PhshPhphe) < o0
By taking Ay = P, g1, we get
ZWQS B(Pftﬁ)\l,PkJ’_ A ) 0.
Hence 7327 sA1 is a Cauchy sequence and converges to a limit ajﬁ:
lim Was,, (PEphmhls) = 0.

Next, let us show that 77’\1 does not depend on \;. Assume that there exists 7 o_p S0 that limg_y00 Wa s, (’P§ 52, Wi?ﬂ) =
0. Since Wa s, , is a metrlc by the triangle inequality,

WQ,SQY[&< Tl o) S Wasa s (15 PEaAL) + Wais. s (P sh,Ph ha) + Was,u (0%, PE gha ) |

which goes to zero as & — oo. Hence, wilﬁ = 722/3- The limit is therefore the same for any initial distributions and we can
denote it by 7, g. Indeed,

Wa S, 5 (PaTap:Ta,8) S Was, 5 (PasTas Pa gTas) + Was s (Pa g8 Ta8) s

which goes to zero as k — oo. Hence P, g7, = Ta,p gives the invariant distribution. We can also show similarly as

before that it is unique. ]
Remark 23. Ifa € (0,1/L] and B = 5 +\/\/% then we can take the matrix P, g appearing in Theorem 4 according to
the P, matrix defined in Aybat et al. (2019, Theorem 2.3) to obtain p(a, ) = 1 — \/au. Fora = lo gk(rf), then this leads

toWa s, (Va8 Ta,8) < Wg Sa.s (V0,0,8, Ta,8) and it can be shown with an analyszs similar to that of Aybat et al.
(2019) that the second moment of Ta, g is also O(1/k); ignoring some logarithmic factors in k. Therefore, our results do
not violate (and are in agreement with) the Q(1/k) lower bounds studied in Chatterjee et al. (2016); Raginsky & Rakhlin
(2011); Agarwal et al. (2009) for strongly convex stochastic optimization.

Proof of Theorem 5. First let us recall the AG method:

Tre1 = Yk — [V f(ye)],
yr = (1 + B)xy — Bayp_1,

where « > 0 is the step size and /3 is the momentum parameter. In the case when f is quadratic and f(z) = %J;TQQH—aTx—i—b,
we can compute that

Tre1 = Yk — o[Qur + al,
yr = (1+ Bz, — fri—1,

and with the optimizer x, we get

Thi1 — Tu = Yp — Tx — [Q(Yr — 7)),
U — Y« = (14 B)(zr — 24) — B(r—1 — x4),
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which implies that

<$k+1—$*)_<(1+5)(—7d—0@) —5(Id—04Q))< Tk — Tk >’

Tk — Tx 14 0q Th—1 — Ty

which yields that

Th—1 — T 14 04 Tl — T

k
( Th — Ty ) _ < 1+ 8)Iqa—aQ) —BIq—aQ) ) ( Ty — Ty )
and we aim to provide an upper bound to the 2-norm of the matrix, that is:

H< (14 8)(Is — aQ) —B(I4— aQ) )’“
1, (05

Let us assume that ) has the decomposition
Q=VDVT,

where D is diagonal consisting of eigenvalues \;, 1 <14 < d in increasing order:
p=A <A << A= L

then we have .
I;—aQ=VDVT,

where D = I; — aD is diagonal matrix with entries
1-— OZAZ‘, 1 S ) S d.
Therefore, the matrix

( (1+B)Ia—0aQ) —B(la—aQ) )
Iy 0g

has the same eigenvalues as the matrix

( (1+8)Ia—aD) —B(ls—aD) >
1, 04 ’

which has the same eigenvalues as the matrix:

T, - 0 0
0 T 0
0 0 Ty

where
Ti_<(1+5)(11_0‘/\i) —5(1()—0)\1'))’ 1<i<d,

are 2 X 2 matrices with eigenvalues:

(B —aX) £ V(1 +B)2(1 - aX)? — 4B(1 — a\)
i+ = 9 )

where 1 < 47 < d, and therefore

< s I e

H( (14 B8) (I — Q) —B(ls—aQ) )’“
1, (0F
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Next, we upper bound |77 ||. We recall the choice:

4 V3E+1-2 2 2

3strn P rire T e

We can compute that

1—a\) i
A; = (14 8)%(1 —aX)? —48(1 — a\; :16(’(1—1). 53)
(14 5P (1= an)? =451 — ad) = 16 o (1 (
Therefore A; = 0 if and only if \; = por \; = 3Lj“,and moreover A; < 0 for p < \; < 3Lj“ and A; > 0 for

)\i>dli#.

(1) Consider the case u < \; < 3%#. Then A; < 0. It is known that the k-th power of a 2 x 2 matrix A with distinct

eigenvalues p4 is given by

Il pt

A= Py A,
My — p— H— = pt
where [ is the 2 x 2 identity matrix (Williams, 1992). In our context, A = T; and p14+ = p; +, we get
k k
Mg M, —

TF = —— (T — s, 1) + —————(Ti — pi i ). (54)
M+ — Hi,— Hi,— — Hi,+

We can compute that

1/2 1/2
] = o] = (81— aA)? = <\/35+123L+u4)\i> / - <m23/€3> / 55
A " ' V3k+1+4+2 3L+up “\V3k+1+23k+1 ’
and notice that
3k —3=(V3r+1+2) (V3r+1-2), (56)
and thus we get
/2
V3RF1-2)2\" 2
ol = | < (WBEFLZDINT 2 (57)
3k+1 V3k+1
Moreover,
1 _ 1 < V3k+1+2 s VI . 58)
|’ui’+ - 'ui’*l V 1A 4 ip< i < 2 \/()\1, — (1 - 34L)-\-iu)
Furthermore,
o mer B —ak) \ _( pie o
et = ( 1 —Hi,— =)0 )
and ( )
Mi— =B —a\ > <m>
T — pi+I = ' = ’ 1 —py .
fit ( 1 —Hi,+ ( B, )
Therefore,
Immrféwuf)WHl—mm—f+L (59)
and
| T; = pa 1| < H( o )H (1 —pis )|[=p*+1. (60)
Hence, it follows from (54), (57), (58), (59) and (60) that
V3 142
i < RS ma P +1),

N O = (1= 5
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(2) Consider the case 311# < A\; < L. Then, A; > 0. As before, we have

k k
Hi 4 Mg
(T; = pi- 1) + ————(T; — pi + ). (61)

Th= 1t b
Hi+ — Hi,— Hi,— — Hi+

We can compute that

i+ | < pi—| = (1 + B)(« )+ 5 \/> (62)

(aL—-1) L—up
V3k+1+2)2

| /\

1 1
(L+B)(al = 1) + \/16(

m&—1+11 K—1 el o2
T VBt 1+23m+1 (V3r+1+2)23k+1 NeZES e
Moreover,
1 1 3 2
o V3Rt T4  max Vi . (63)
i+ — i~ | \/E 4 i 2 <\ <L \/()\i m (s — 1)
Furthermore,
piy —BA—ak) \ _ ( it
= Hi— < 1 — i — - 1 ( 1 —Hi,— )’
and
i — B(l—aX) \ [ pi- o
i ( it >_< 1 >(l ok )
Therefore,
1T — a1 < H( r )H 101 = )l <p”+1, (64)
and
it -wett < (5 )i <0 ©3)
Hence, it follows from (61), (62), (63), (64) and (65) that
3 1+2
Tt < S E—

sttt (- ) (s — 1)

(3) Consider the case A; = u. Then A; = 0. It is known that the k-th power of a 2 x 2 matrix A with two equal eigenvalues

4 = p— = pis given by
AR = MY RA = (k= Dud),

where [ is the 2 x 2 identity matrix (Williams, 1992). In our context, A = T; and

2

Bl P (66)

1
p=pr=pig =1+ A1 —ak) =1~
Therefore, with \; = i, we have

TF = pP(KT; — (k — 1)pI)

- < HLEA( =03 = (=D~ -0k )
—K=1)p

— < (]H];l)p —(;k—pi)p ) ,



Stochastic Momentum Methods

and therefore
1T} < \/Tr (THTF)T) (67)
= PF ((k+1)%0 + (k= 1% + K2p" + k%) (68)
= pF/E2(p? + 1)2 + 2p2. (69)

Furthermore, we see that the sequence T /k converges to a non-zero matrix. Therefore, || 77| > ck for some constant c for
every k. This means that the linear dependency to % of our upper bound in (69) is tight. This behavior is expected due to the
fact that T} has double roots.

(4) Consider the case \; = BLZ“. Then A; = 0. We can compute that

1 2
Mz‘,izi(l—&-ﬁ)(l—a)\i):l—\/ﬁ —0. (70)

In this case, T; = 0.

Finally, combining the three cases (1) u < \; < SL%; )\ > 3%#; GNi=u DN = BLI", and recall (51), we get

( (1+8)(la—aQ) —B(I;— aQ) )’“
1y 0g

< uas 7]

~ 1<i<d
V3 142
< p¥ max L(f +1) max Vi A E2(p? +1)2 +2p2
2 i<t S \/()\z — )|l — 34L)—\|-i#
The proof is complete. O

Proof of Theorem 7. First let us recall the ASG method:
Trt1 =Yk — [V f(yr) + Eptal,
yr = (L + B)ag, — Brg—1,

where « > 0 is the step size and /3 is the momentum parameter. In the case when f is quadratic and f(z) = %:cTQx—&—aTx—i—b,
we can compute that

Thy1 = Ye — [Qyr + a + epy1],
ye = (14 B)ap — Pri—1,

so that with two couplings J:,(Cl), x,(f):

‘Tl(c];i)-l — yl(gj) —a {Qy;ij) +a+ 5k+1:| :

v = (40 — il
with j =1, 2, we get

1 2 1 2 1 2
o 2l =l ol @ (" i),

o = = 0+ B! = o) - B - ),
which implies that
< x% - xig ) _ ( (14 8)(Is—aQ) —B(I4— aQ) ) ( oy — ) >
1 2 - )

k
x, ) —xy Iq Oa xl(ﬁ:l—)l - xl(f—)l



Stochastic Momentum Methods

which yields that

1

> 2 gg)
<2> ROMIE
—1 L1

Following from the proof of Theorem 4, we can show by constructing a Cauchy sequence that there exists a unique stationary

distribution 7,_g. Finally, we assume that (xo ) 2l %) starts from the given (o, x_1) distributed as v o, g and (wé ), x(zi)

starts from the stationary distribution 7, g so that their L,, distance is exactly the W, distance. Then we get

( x’(j) _xl(f) )
1 2
xl(c )1 _xl(c )1

and the proof is complete by taking the power 1/p in the above equation. O

<

( (14 8)Ia — aQ) 5@1*04@
I;

p

W2 (Vk,0,8:Ta,8) < E < (CRP(Pac)"WE (W0,0,8, Tas) »

Before we state the proof of Theorem 8, let us spell out X and V(&) in the statement of Theorem 8 explicitly here. We
will show that Theorem 8 holds with V(&) given by

M
(P*AG)2 ’

where ¥ := Elegel ] and X = E[(€so — &) (€0 — &)7] satisfies the discrete Lyapunov equation:

Via(&) =E[|[(& - &)(& - &)T|] +

* * * * o’ 22 0
Xac = QXAG(AQ)T + ( ( AOC;) OZ > )

and
ae o [ A+ Bag)Ua = 0agQ) —Bigla — aheQ)
Q- 1 (0P .

In the special case ¥ = 21, for some constant ¢ > 0, it follows from Aybat et al. (2018) that

d ot

(X AG , 71
36) = D ST gl — ) 7D

where {\; }¢_, are the eigenvalues of Q.

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. For the ASG method,

Tpp1 = (14 B)ay, — Brp—1 — V(1 + B)zr — Brr_1) +epy1),

where we consider the quadratic objective f(z) = 127 Qxz + a”x + b so that

Tpp1 = (14 B)ag — Brp—1 — (Q((1 + B)zg — Brr—1) + a+ ext1),

and the minimizer z. satisfies:

= (14 B)zs = Bra — (Q((1 + B)zs — fs) + ),

so that

Tpp1 — s = (1+ B) (@ — ) — Blap—1 — 2+) — A Q((L + B)(zk — 24) — B(wr—1 — 24)) + Et1),

< T — T )_< 1+ 8)Iqa—aQ) —BIq—aQ) > < Tho1 — T )+( —oey, )
Tp—1— T ) 1 (0P Tp—2 — Tx 0q ’

and
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and with > := E[exel], we get

2
E [(gk - E*)(ﬁk‘ - f*)T] = ‘A*QIE [(gk—l - x*)(gk—l - x*)T] (A*Q)T + < O[OdE 8Z ) ) (72)
where
a - A+ B)Ua—aQ) —f(la—aQ)
Q I 04 '
Therefore,

X=E [(goo - 5*)(500 - 5*)T]

satisfies the discrete Lyapunov equation:

* * 22 0
X = AHX(A5)T + ( O‘Od 0. )
Next by iterating equation (72) over k, we immediately obtain
E T*A* kE T A*Tk — A*j o’y 04 A* T\J
(6 — €06~ )] = (40) E[(60 — )06 — )T (40))" + 2 (40) ( %, o, ) (42"
=

so that
E [(& — &) — &0 = E [(boo — £)(€no — £)7] + (A5) " E [(€0 — &) (&0 — €)7] ((A5)T)"
- *\J 0[22 Od * \T J
>’ (%) o ) (@2
which implies that
Tr (E [(gk - f*)(ﬁk - f*)T]) =Tr (E [(500 - f*)(goo - 5*)Tj|) + (A*Q)kE [(50 - 6*)(50 - g*)TjI ((AEQ)T)k
> Ny a?y 0 « j
-3 (42) (0 0 (e
< Te(X) + || (A9 E ]| (60 — )60 — €T + D |[(Ap ) || 2IIZ]
j=k

* 2k
< Tr(X) + (C3)(pe) ™ E [[| (60 — &)(6o — &)7]|] + OZ2HEII(CZ)2%,
1 (pAG)

where we used the estimate || (AZ?)’“ | < C;(p* )k from the proof of Theorem 5.

Finally, since V f is L-Lipschtiz,
L 2 _ L 2 L T
E[f(z)] - f(@2) < SEllon — 2all? < SEI& — &2 = STr (B (6 — £)(& — €)7]).
The proof of (23) is complete. O

Remark 24. Note that our results in p-Wasserstein distances would hold if there exists some p > 1 so that p-th moment of
the noise is finite. For instance, the p < 2 case can arise in applications where the noise has heavy tail (see e.g. (Simsekli
etal., 2019)).
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C.2. Proofs of Results in Section 3.2
Proof of Theorem 9. First let us recall the HB method:

Tp1 = 7k — oV f(zg) + B(vk — Tp-1),
where o > 0 is the step size and 3 is the momentum parameter. In the case when f is quadratic and f(z) = 227 Qz+az+b,

2
we can compute that
Tpy1 = 2 — Qg +a) + B(wy — xp_1),

and the minimizer x,. satisfies
v = 2. — a(Qu, +a) + Blr. — z.),

(karl_fL'*):((l"‘ﬁ)Id_aQ —51d>< Tk — T >
Tk — T I; 0Oq The1 — Tx )’

Tp — T A+ —aQ —PBlg M omo— .
Tho1 — Ty ) Iq 04 Ty —x )’

and we aim to provide an upper bound to the 2-norm of the matrix, that is:

which implies that

which yields that

H( 1+ 8L —aQ —Bl )’“
1, 04

Let us assume that @) has the decomposition
Q=VDVT,

where D is diagonal consisting of eigenvalues \;, 1 <14 < d in increasing order:
p=M <A< <A=1,

then we have R
(1+B8)y —aQ =VDVT,
where D = (1 + 8)I; — a.D is diagonal matrix with entries

14+ 3 —al;, 1<i<d.

Therefore, the matrix
(1+8)la—aQ —BI,
1 04

has the same eigenvalues as the matrix

(1+B8)I4s—aD —BI,
I 00 )’

which has the same eigenvalues as the matrix:

n -+ 0 0
0 T 0
0 0 Ty

where
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are 2 X 2 matrices with eigenvalues:

148 —aX+£+/(1+8—a\)?—4p
i+ = 9 )

where 1 < 7 < d, and therefore

< max [|TF|. (73)

T 1<i<d

H( 1+ By —0Q —Bly >
1 (0F

Next, we upper bound || 77||. We consider three cases (1) 1 < A\; < L; (2) \i = p; 3) \; = L.
(1) Consider the case i < A; < L. With the choice of o and 3 in (12), we can compute that for those u < A; < L, we have
148 —aX <1+8—ap=28,

and
14+ 8—ak>1+p—al=-23,

and thus the eigenvalues are complex and

L+ 8 —aX £i/48 — (1+ 6 — a);)?
/'Li,:l:: D) )

where 1 < ¢ < d. It is known that the k-th power of a 2 x 2 matrix A with distinct eigenvalues u- is given by

Ak_LA_ I LA_ I
_u+—u7( u—)+ui_u+( pt 1),

where [ is the 2 x 2 identity matrix (Williams, 1992). In our context, A = T; and 1+ = p; +, we get

uk b
TF = — 5 (T — i T) + —————(T; — p i D). (74)
Hi4 — i, — Hi,— — i+
We can compute that
1 1/2
it = lpi-| = (4 (148 —aX)* + (48— (145~ aAZ-)Q)]) = V5, (75)
and
1 1
= 76
i+ —wi—| /4B — (1 + B — a\;)? (76)
1
CV@VB-1-B+aX)2VB+1+5-aN)
1
CVEWB- 12+ ad) (VB4 17 - ad)
_ e+ Ly
4/ =) (L =XN)
Moreover,
tewer= (M )= () 0 e,
and

T — pid = ( Mil’f —;iﬁ+ ) = < Mil’f >( T —piy ).
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Therefore,

ITs = 1| < H( ot )H (1 —p )| =8+1, (77)
and

17— s < (457 )| I =il =51 as)

Hence, it follows from (74), (75), (76), (77) and (78) that

"Tk"<(\/5)k(ﬂ+1)(\/ﬁ+\/f)2 _ (\/Z—\/,E)k .
il = 4/ i=w(L =) \VL+yr) 2/ —u)(L—=X\)

(2) Consider the case \; = p. With the choice of « and f3 in (12), we can compute that for those A; = p, we have

(14+B8—aX)?=(1+8—apn)® =148,

so we have double eigenvalues and indeed 1 + 3 — a); = 24/, and

_(2vVB -8 ,
E—( 1 0 ), 1<i<d,

and by a direct computation (e.g. induction on k), we get:
. p( (k+1) —kp'/? e
,Ti *(\/B) ( ]{)ﬁ_l/Q —(k—l) ’ 1<i<d.
Thus,

| TF|| < \/Te (THTF)T) (79)

= (VB V22 +2+ K2 (B+ B 1) (80)
\/E*\/ﬁ : o (L+p 2
_<\/f+\//7> \/4k (722 +2 81)

Finally, we note that the matrix T / (\/Bkk‘) as k goes to infinity converges to the 2 x 2 matrix

1 _BI/Z
Mo = (550 ) IMa)l > o

Therefore, the linear dependency of our bound in (81) with respect to k is tight. This behavior is expected due to the fact
that T* has double roots.

(3) Consider the case \; = L. With the choice of o and /3 in (12), we can compute that for those A\; = L, we have
(148 —aX)?=(1+5—aL)’ =45,

so we have double eigenvalues and indeed 1 + 3 — a)\; = —2+/5, and

Ti:(‘i\/ﬁ ‘05), 1<i<d,

and by a direct computation (e.g. induction on k), we get:

1/2
Tik_(\/g)k(_(llz;_}% _’;5_1)>, 1<i<d
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Thus,

I < /T (THTA)T)

= (VB V2K + 2+ K2(B+ 571
= M k\/4k2<L+'u>2+2
VL + /i L—p '

Finally, combining the three cases (1) up < A\; < L; (2) A; = p; (3) A\; = L, we get

k
L— L L 2
max ||T H M max max Pt , 4] 4k2 (Jr,u> +2 5. (82)
1<i<d \@Jr\/ﬁ in<Mi<L 24 /(N; — ) (L — \;) L—pu
Then it follows from (73) that
(1+8)s—aQ —BI; \"
(83)
1 04
k
L— L L ?
< M max max gt 4] 4k? (+,u> +2
VL + /i in<hi<L 2,/(N; — ) (L — ) L—p
Recall that X
T — Ty o A+ Pl —aQ —plg Ty — Ty
Tho1 — Ty ) Iy 04 Ty —xy )’
and the proof is complete by applying (83). O

Before we state the proof of Theorem 11, let us state the following result, which is built on Theorem 9.

Lemma 25. Let us consider two couplings (x,, (1 ))k>0 and (x,; (2 ))kzo with the common noise (€j41) k>0 that starts from xél)

(2).

and
ity = o) = aVf) + Bl - o) + enin, (84)
oy = o = aV i) + A —a2) + e, (85)
where f is quadratic and f(x) = ﬂcTQx +aTx + b. Then, we have

L _ @ .
") | < Curd
Ly — T

where pg g and Cy. are defined by (13) and (25) respectively.

NOBNC
20— (2)

Proof of Lemma 25. We can compute that

k
T i ) _ ( (1+8)Ls—aQ Bl > 2f) — 2
an(gl) - Ii(f Ta Oa x(()l) m(()g)
It follows from the estimate (83) in the proof of Theorem 9 and the definitions of pg p and C}, in (13) and (25) that we have

< Crplip-

H( (1+B8)a—aQ —Bl >
Id Od

The proof is complete. O
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Proof of Theorem 11. We recall from Lemma 25 that for any coupling z(!) and z(?

VE= g\ (-l
(2) VL + /i 21— 2@

Following from the proof of Theorem 4, we can show by constructing a Cauchy sequence that there exists a unique stationary

distribution 7, g. Finally, we assume that (acél)7 x(li) starts from the given (o, x_1) distributed as v o, g and (:1:52), ;v(QE)

starts from the stationary distribution 7, g so that their L,, distance is exactly the W, distance. Then we get

:U'gcl) - x§€2)
M —2®
VL - /I
VL + i

p
W2 (Vka,6: Ta,8) < E

) Wy (¥0,0,6, Ta8) »
and the proof is complete by taking the power 1/p in the above equation. O

Before we state the proof of Theorem 12, let us spell out X and V(&) in the statement of Theorem 12 explicitly here.
We will show that Theorem 12 holds with V(&) given by

Vip(&) :=E [|[(é0 — &)(& — &)T] + O‘HBiHZ”’

i
where ¥ := E[ezel] and X = E[(§o — &) (§oo — &)7] satisfies the discrete Lyapunov equation:
Oz2 b)) Od
Xpp =AqXupAH + ( %’: 0, |-

and

A = (14 Bup)la —anp®@ —Pusla
@ Iq 04 ’

In the special case ¥ = c?I for some constant ¢ > 0, we obtain

d
201+ BuB)
t(Xyp) = c? § 86

HE) p (1= Bup)Ni(2+2Bup — auphi)’ (86)

where {)\;}%_, are the eigenvalues of Q.

Now, we are ready to prove Theorem 12.
Proof of Theorem 12. For the stochastic heavy ball method

Tr1 = o — AV f(an) + pg1) + Blar — zp-1),
where we consider the quadratic objective f(x) = %mTQa: + a”x 4 b so that

Tpt1 = T — (Qxy + a + ept1) + Blog, — Tp—1),

and the minimizer x,. satisfies:
v = 2, — a(Qr. +a) + Blr. —z.),
so that
(Tht1 — 2x) = (T — 24) — AQ(Tk — ) + €p11) + B((T — T4) — (Tp—1 — 7)),

Tk — Tx _ (1+8)a—aQ —PBl4 Tp—1 — Tx T —QEg
Tp—1 — T ) I 0q Th—2 — Tx 0q ’

and
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and with > := E[exel], we get

2
E [(6k — &)(& — 6)"] = AQE [(§h—1 — o) (§h—1 — 2.) ] A5 + < aof gg ) , (87)
where
o [ O+BLi—aQ —Bl,
Q= Iy 04 /-
Therefore,

X=E [(goo - 5*)(500 - 5*)T]

satisfies the discrete Lyapunov equation:

2
_ T ay Od
X_AQXAQ+< 0, Od)'

Next by iterating equation (87) over k, we immediately obtain
T k T T\ k = i OZ2E 04 T\J
B (6~ €06~ €)7] = (o) B[(60 — €60~ €] (48)" + 1 (o) (0 o) s,
so that
E [(& — &)(& — &)T]
= E [(€o0 — €)(Eoo — £)7] + (40)"E [(€0 — £)(60 — £)7] (45)" = 3 (40)’ ( o ) (45)’,
=k

2
d
J
which implies that

Tr (E [(& — &)(& — &)7])
= Tr (B [(0 — &6 — £)7]) + (40) E (60 — £)(60 — £)"] (48)" = 3 (4o’ ( agf y ) (43

=k

i 2
< T(X) + [[ 45| E € — €€ — €07I + Y || 4] eI
j=k

2k
P
< Tr(X) + CRpifpE [[(§0 — &) (& — &) I] + I CF 25— _Hp’i :
HB

where we used the estimate ||A’(5 | < Crp% 5 from the proof of Theorem 9.

Finally, since V f is L-Lipschtiz,

E[f(x1)] — f(2.) < CBlles — 2. < TE|6 — &2 = ST (B [(6 — £)(E — £)7]).

The proof of (27) is complete. To show (86), we can adapt the proof technique of Aybat et al. (2018, Proposition 3.2) for
gradient descent to HB. Without loss of generality, due to the scaling of the Lyapunov equation, we can assume ¢ = 1.
Consider the eigenvalue decomposition Ag = VAVT where Q is orthogonal and A is diagonal with A(4,i) = ;. We can
write

Ag = VANVT,

= V. 04 B (l-i-ﬁ)Id—OzA —ﬁ[d
= (o V) = (T )

where
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Futhermore, following Recht (2012), let P € R24*24 be the permutation matrix with entries

1 ifiisodd,j =1,
P(i,j) =<1 ifiiseven,j=2d+1,
0 otherwise.

Then, we have

My 04 ... 04
0g My ... 04 . o

Ay = PANPT = | . . where M, = <(1 +ﬂi ak; OB) c R2x2,
04 Og ... M,y

If we define Y := UXU ! for the orthogonal matrix U = PVT it solves

2
T _ _ plals Oa\ o7
AY AL, Y + S =0, S._P< 0, Od>P :

where the latter matrix S is a 2d x 2d diagonal matrix with entries S(i,7) = o2 if i is odd, and zero if i is even. Due to the
special structure of S and A/, the solution Y has the structure

Y: 04 ... Og
04 Yo ... 04
Y=1. . A I
04 04 ... Yy

where Y; solves the 2 x 2 Lyapunov equation

2
v T_ : 0] O o
MY M, 1@+<0 0) o

Yi  w;

with scalars z;, y; and w;, this equation is equivalent to the linear system

If we write

a?—1 2ab b? T; —a?
a b—1 0 Yi - 0 )
1 0 -1 w; 0

with
a=1+8—a\, b=-p0.
After a simple computation, we obtain
a2(b—1) a(1+8)

Z‘i:wi: =

b+1)(a—b+D)a+b—1) (1-Br(Z+28—ar)

Therefore we obtain

d

d d 20(1 + 3
Tr(X) =Tr(Y) = Z;Tr(Yi) = 2;%‘ = Z (1 —ﬂ))\i(<2+25)—04)\i)7

which completes the proof.
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D. Proofs of Results in Section 4

Before we proceed to prove the main results in Section 4, let us first show that the weighted total variation distance d,, upper
bounds the standard 1-Wasserstein distance.

Proposition 26. Assume P(2,2) # 0. Then,

Wl (,LL17 /142) S Caldw(ul7 /’L2)u
where W, is the standard 1-Wasserstein distance and
¢o := min{ége), 1}, (88)

where Cq is the smallest positive eigenvalue of

~ Er 0
54d d
P®Id+( 04 0d>'

Proof. By applying the Kantorovich-Rubinstein duality for the Wasserstein metric (see e.g. Villani (2009)), we get

Wi, o) = sup { B(E) (pr — o) (dE) : s 1-Lipschitz}
peL (dpy) \JR2a

— e { [ 010 = Se) 0  pa)(ag) o 1-Lipschitz}

¢EL(dp1)

— &, — d.
< [ €= €l = el
<t [0 V(€ — pallde) = ey (),

where we used 1 + ¢¥Vp (&) > ¢o]|§ — &« from Lemma 27. O

Lemma 27. Assume P(2,2) # 0. Then,
1+ 9Vp(§) = coll€ — &l

for any & € R?4, where cy = min{égi, 1}, where ¢ is the smallest positive eigenvalue of

~ kT 0
54d d
P®Id+( 04 Od).

Proof. Let €T = (x7,yT). If ||€ — &.|| < 1, then ¢y = 1 works. Otherwise,

Ve(§) = f(x) = fla.) + (€= €)TP(E~ &)
> (6 - &)TPE— &) + Slle — .|

~ 22
~e-erPane-e)+e-e (B ) -
The proof is complete. O

For constrained optimization on a compact set C, we have the following result.

Proposition 28. For any i1, jto on the product space C? := C x C,

W, (11, p2) < 2P Deallpir — pio| 38 < Deadl (ur. io),

where De2 is the diameter of C2.
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Proof. The second inequality in Proposition 28 follows from dy, (1, o) > 2||p1 — p2|lryv - So it suffices to prove the first
inequality. We can compute that

W21, pe) = inf B[] X1 — Xa?
plunspe) = inf  R[|X) — Xo7]

<Dh'  inf  E[X: - Xo]

Xir~opr, Xor~p

= D% Wi (1, o)

- Dg;l sup : {/RM(QS(Q — 0(&)) (1 — p2)(dE) = pis l—Lipschitz}

pEL (dpy

<D [ el - pal(de) < 2D — il
R2d

D.1. Proofs of Results in Section 4.1

Throughout Section 4, the noise ¢, are assumed to satisfy Assumption 2. Our proof of Theorem 13 relies on the geometric
ergodicity and convergence theory of Markov chains. Geometric ergodicity and convergence of Markov chains has been
well studied in the literature. Harris’ ergodic theorem of Markov chains essentially states that a Markov chain is ergodic
if it admits a small set that is visited infinitely often (Harris, 1956). Such a result often relies on finding an appropriate
Lyapunov function (Meyn & Tweedie, 1993). The transition probabilities converge exponentially fast towards the unique
invariant measure, and the prefactor is controlled by the Lyapunov function (Meyn & Tweedie, 1993). Computable bounds
for geometric convergence rates of Markov chains has been obtained in e.g. Meyn & Tweedie (1994); Hairer & Mattingly
(2011). In the following, we state the results from Hairer & Mattingly (2011). Before we proceed, let us introduce some
definitions and notations.

Let X be a measurable space and P(x, -) be a Markov transition kernel on X. For any measurable function ¢ : X — [0, +00],
we define:

(Pp)(z) = /X o(y)P(z,dy).

Assumption 29 (Drift Condition). There exists a function V : X — [0, 00) and some constants K > 0 and v € (0,1) so
that
(PV)(z) <V (z) + K,

forallz € X.

Assumption 30 (Minorization Condition). There exists some constant 1) € (0, 1) and a probability measure v so that

inf P )" > )
IGX:%/n(m)SR (37 ) - ny( )

for some R > 2K /(1 — ).

Let us recall the definition of the weighted total variation distance:

Ay (ns pi3) — / (14 9V (@)l — pal(de).

It is noted in Hairer & Mattingly (2011) that d,, has the following alternative expression. Define the weighted supremum
norm for any ¢ > 0:

lolly = sup —2@_
reX 1 + ¢V($)

and its associated dual metric d,;, on probability measures:

dy (1, p2) = ¢:|S;ﬁp<1/x<p(x)(m — piz)(dz).
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It is also noted in Hairer & Mattingly (2011) that d,, can also be expressed as:

dy(un, p2) = sup / (@) (1 — o) (),

eilllelle <1

where

o P@) — )]
llellly := m;}; 2+9Viz)+9V(y)

Lemma 31 (Theorem 1.3. Hairer & Mattingly (2011)). If the drift condition (Assumption 29) and minorization condition
(Assumption 30) hold, then there exists 7j € (0,1) and ¢ > 0 so that

dy (P, Puz) < ndy(pi1, p12)

for any probability measures 1, ps on X. In particular, for any ng € (0,1) and vo € (v + 2K/R, 1) one can choose
Y =mno/K and = (1 —(n—mn9))V (2+ Ry)/(2 + Rip).

Lemma 32 (Theorem 1.2. Hairer & Mattingly (2011)). If the drift condition (Assumption 29) and minorization condition
(Assumption 30) hold, then P admits a unique invariant measure iy, i.e. Pl = [is.

The drift condition has indeed been obtained in Aybat et al. (2018). The AG method follows the dynamics

§ev1 = A + B(Vf(yx) + ext1), (89)
Y = C&, (90)
where . ; ; .
A= ( (ot D =l ) B = ( o ) Ci= (4B —BlL ).

Define g := y — x, and ék = & — &, where &, = A&, and x, = C&,. Let us recall the Lyapunov function from (5)

Ve (&) = (& — &) P&k — &) + fax) — fr,
where £, = (4, T4).

Next, let us prove that the drift condition holds. The proof is mainly built on Corollary 4.2. and Lemma 4.5. in Aybat et al.
(2018).

Lemma 33.
(Pa.gVEy 5)(€) < Va5 VP, 5 (&) + Ka g,

where ;
Yo = Py  Kap:i= (2 + Pas(l, 1)> ot

Proof. By Corollary 4.2. and its proof in Aybat et al. (2018) (In Aybat et al. (2018), the noise are assumed to be independent.
But a closer look at the proof of Corollary 4.2. reveals that our Assumption 2 suffices), we have

E[V (&et1)] — pE[V ()] 1)
~ T ~

_ 3 ATPA—-pP ATPB 3

=k [( Vf(kyk) ) ( BTPA B'PB ) ( Vf(kyk) >

V(€)= (¢ _5*)TP(€ — &)

+E [ef,,B" PBej]

where

A closer look at the proof of Corollary 4.2. in Aybat et al. (2018) reveals that the following equality also holds:
E[V (&k41)1€k] — pV (&) (92)

~ T ~
B £ ATPA—pP ATPB 13
B < Vf(kyk) ) ( BTPA  BTPB ) ( Vf(kyk) ) +E [k BT PBen].
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When f € S, 1 is strongly convex, Lemma 4.5. in Aybat et al. (2018) states that for any p € (0, 1),

& g &
( V£ ue) ) * ( V£ () )
< p(F(w) — £) — (o) — £ + o el — a1 - LoV f() e,

where X := pX; + (1 — p) X3, where

1 Buly  —B%uly —B1q
)<1:==§' —B%uly  B*uly Bl ,
—pBlq Bla a2 La)ly
L +B?uly =B+ Bpuls —(1+B)la
)(2:=:§' —B(1+ B)plq B uly Blq
—(1+ﬁ)]d ,BId Oz(Q—LOJ)Id

Taking expectation w.r.t. the noise €1 only in (93), we get

& T I3 e B LQQUQ
( Viyr) ) X( V£ (yx) ) < p(f(@r) = fo) = (f(@hsr) = fu) + =07

With the definition of p, g, P s by Lemma 21, we get

ATPa ﬂA — Pa /BPOC B ATPB
; Bl - X =
( BTPO(,BA BTPO(,BB X 20.
Then, combining (92) and (96), applying (97) and the definition of Vp, ,, we get

2
Lo*

B[V, s (&e+1)I8k] < pa.sVe 5 (&) +E [ehy 1 BT PagBepy1] + —

~ L
= pasVi, 5 (6) T E [e10? Pas(L ) Ligis | + “5-0
2

5 La
< Pa,8Vp. 5 (&) + a* Py 5(1,1)0” + 702

It follows that
L ~
(PaVi )E) < pusVi s O+ (5 + PapllD)) .

In the special case (o, ) = (vaq, fac), we obtain the following result.

Lemma 34. Given (o, B) = (aaq, Bag)-

(Pa,5VPAG)(§) <YVpPua (E) + K,

where

where pac =1 —1/+/k.
Proof. By letting (o, f) = (aag, Bac) in Lemma 33, we get

(Pa,5VPAG)(§) < 'VVPAG (6) + K,

93)

(94)

95)

(96)

7



Stochastic Momentum Methods

where

L -
Y = pac, K= (2 + Pac(1, 1)) a%qo’,

where pag =1—1//k and PAG(L 1) is the (1, 1)-entry of P4c. Notice that

Pjr = \/% L Z_ /L
Pac \/g_\/g (\/; 2 2)’

and hence
Pag = Pag® 1 2l (5 - 5) 1
AG — I"AG d — 2
VEL _ L (vE-VI) ’
(% - 5) la =1
which implies that Pag(1,1) = £. O

Next, let us verify the minorization condition. Assume that the noise admits a continuous probability density function, then
the Markov transition kernel P, g also admits a continuous probability density function for x4 conditional on x; and
x)—1, which we denote by p(&, z), that is, P(zr4+1 € dz|(z], 2l ) = &T) = p(€, z)dx. Also note that when we transit
from (z, 21 )" to (¥k41, k), the value of zy, follows a Dirac delta distribution. We aim to show that for any Borel
measurable sets A, B

inf P yTE_1), , € Ax B) > A x B),
(@hs_1)ER Vi (0,55 -1)) <R (@4 @), (@41, @) ) 2 el )

for some probability measure v». Let us define:
Bp:={zeR': 3y e R Vp(z,y) < R}.

We define v such that v5(A x B) = 0 for any B that does not contain Bg, and v2(A x B) = v;(A) for some probability
measure v; and for any B that contains Bg.Then, it suffices for us to show that

inf >
56R2d,1\Iflp(£)§Rp(£’ z) = nv(x),

where v(x) is the probability density function for some probability measure v ().
Lemma 35. Forany n € (0, 1), there exists some R > 0 such that

inf > .
&R%}‘I}P(OSRP(E, x) > nv(z)

Proof. Let us take:
Ljo—a. <

T || <M p(g*v x)dx’

l/(CE) = p(E*, :U) ’ f”x_

where M > 0 is sufficiently large so that the denominator in the above equation is positive.When ||z — z.| > M,
infecpaa v, (e)<r P(E, ©) > 0 automatically holds. Thus, we only need to focus on ||z — z.|| < M.

Note that for sufficiently large M, fHFI <M p(&«, x)dx can get arbitrarily close to 1. Fix M, by the continuity of p(¢, x)
in both £ and z, we can find 7’ € (0, 1) such that uniformly in ||z — z.| < M,

" ) —
fede}xrflp(s)ng(g’x) Z1'p(&s, ) = ny (@),

where we can take

7= 77’/ p(&s, x)dx,
o=z || <M
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which can be arbitrarily close to 1 if we take R > 0 to be sufficiently small. In particular, if we fix n € (0, 1), then we can
take M > 0 such that

/ P&, 2)dz > 7,
[[z—z. || <M

and similarly with fixed 1 and M, we take R > 0 such that uniformly in ||z — z.| < M,

(& 2) = Vip(&s, ).

inf P
EER?2,Vp(§)<R

Finally, we are ready to state the proof of Theorem 13 and Proposition 14.

Proof of Theorem 13. According to the proof of Lemma 35, for any fixed n > 0, we can define:

Mzinf{m>0:/ p(g*,x)dx:\/ﬁ},
lz—zs || <m

and

R<sup<r>0: inf ,x) > « x) forevery ||z —z.|| < M ;.
< p{ EERZWPW(@SRP(f ) = /(e ) y |l I }

Then, we have

p(&,2) = ().

inf
EER2,Vp, (<R

Let us recall that
(Pa.sVeo 5)(€) < Va.5Vpy 5 (€) + Ka -
By Lemma 31 and Lemma 32,
dy(Vh,a,8, o) < 7y (V0,0,8, Tap)

where 7 = (1 — (7 —no)) V (2 + Ryy0) /(2 + Rep) and ¢ = 19/ K, g, Where 19 € (0,7) and 79 € (Va5 + 2Ka /R, 1).
In particular, we can choose

- n - 1 + 1 + K@ﬁ
o = 2) Yo = 2’7@76 2 R .
Therefore,
_ n 11 Kap\ Ry
= I :
K max{ 2’ <2 21" "R ) 24 Ri
where 1) 1= 57! - S0 that
_ n L1 Kap Rn
= 1—-—-1-(=-—-= - .
= max { 2 (2 2798 T TR ) 4K. 5+ Ry
The proof is complete. O

Proof of Proposition 14. Letus recall thaty =p =1 — ﬁ and K = %2 Recall that 7 satisfies vo € (v + 2K/R, 1) and
R

/e then we can take

let us assume that K is sufficiently small so that K <

1
=1——.
0 N/
We also recall that ¢ = )y /K and

_ 2+R¢Wo} { K+R77070}
=max4l—n+n, ———p=maxs1l—n+n,———— ¢ .
n X{ = "o 2+ Ry X n-"o K + R
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We have discussed before that we can take 7 to be arbitrarily close to 1 by taking M sufficiently large, and for fixed M take
R sufficiently small. Let us take

1 1 1
=1-p=—F, 5= 57
and then .
1-— =1-—.
0 2k
If we take K < Rng = %, then
K + R’I]Q’)/O 1— 1
K+ Rﬂ() 8\/E
Hence, we can take K < %, that is,
= 4K
so that )
n<l——.
N
Finally, we want to take R > 0 and M > 0 such that
. v(z)
inf ,x) > nu(z) =
ena o P68) Z (@) = "
holds for the choice of
Lje—a.|<m

v(z) = p(&s @) - TR

It is easy to see that we can take M so that

1
p(&s, v)dr > —,
/Ix—ﬂc*ISM (& 2) K1/

and take R such that for any ||z — .|| < M,

1
inf x) > —p(&a, ).
§€R2d7\/1}£1AG(£)§Rp(§ '75) = K1/4p(f LL‘)

Hence, by applying Lemma 31, we conclude that for any two probability measures /i1, f12 on R?%:

1 k
dy (P4 g1, Pa ghtz) < (1 - 8\/E> dy (11, p2)-

Recall that vy, o g denotes the law of the iterates ;. By Lemma 32, the Markov chain ¢, admits a unique invariant
distribution 7, g. By letting (11 = 19, 5 and pg = m, g, we conclude that

k
1
d o,py o < 1*7 d a,By "o )
» (Vk, ,BW,B)—( 8\/E> »(V0,0,85 T, 8)

where
770 1 L

K~ 2JrK  2ko?

Finally, let us prove (29). Given («, 5) = (xaq, Bag), wehave po g = 1 — ﬁ, a= % It follows from Lemma 34 and its

P =

proof that

E[Vpig(€kt+1)] < pacE[Ve,q (k)] + \/EUQ.
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By induction on k, we can show that for every k,

E[VPAG (€k+1)] < VPAG (fO)karl + %\/EUQ.

By the definition of Vp, it follows that

E[f(xk+1)] - f(x*) < Vpag (§0)pk+1 + = \fO’ =Vpaq (fO)pk-H + %\/EU?

Thus, we get

k
ELf ()] — £(22) < Viro (€0) (1 - \}) N

The proof is complete. O

Remark 36. In Proposition 14, the amount of noise that can be tolerated is limited. Nevertheless, in applications where the
gradient is estimated from noisy measurements, such results would be applicable if the noise level is mild (Birand et al.,
2013).

Proof of Corollary 15. Tf the noise ¢y, are i.i.d. Gaussian N (0, X), then conditional on xy = xp_1 = x, in the AG method,
with stepsize v = 1/L, 2y is distributed as A (x,, L~2%) with X < L21,. Therefore, for v > 0 sufficiently small,

Vdet (I; — 2yL—2Y)

By Chebychev’s inequality, letting v = 1/2, for any m > 0, we get

m2

Nl

P([|zp1 — zoll = mlzg = 2p—1 = 24) <

det([d — )

ot = (e ((1- o) v _L_zm))”?

Conditional on (zf,z1 )T =¢= (5(71), f(TQ))T, where Vp (&) < r for some r > 0, then, x4 is Gaussian distributed:

Hence, we can take

Trr|(@r, zr1) = (£a), &@)) ~ N (e, LT25),

2 2
pe = \F\/flf(l) \\?4_15(2) L7'Vf (\/E\/flg(l) -

Thus, uniformly in ||z — z.|| < M,

where

(98)

VE—1
i)

PET) i) TIPS @)+ (=) LIS (o)

p(&ss )

Note that Vp, . (£) < r implies that
T
§(1) = s ) ( €1 — )
P <r.
( §(2) — N\t —a ) 7
By the definition of Py, we get

( Sy — @ >T \/gjd \@Id T( §1) = T« > <,
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so that VD)2
L 2]
5”5(1) - 95*||2 + %Hﬁ@) - 30*||2 <,
which implies that
var Var
1€y =2l < —=, [ 2l € =
&) VL (2) VI — Vi

Moreover,

B A )

= \/E+1(£(1) —Ty) — §+1(5(2) )
—L7! (Vf (\/E\Clﬁ(l) - ﬁ:i(m) -V/ <\/2E\/flx* - élixO) '

SR
VE+1

Since V f is L-Lipschitz,

2R
VE+1
<o 2K \ﬁ+ VE-1_Var

VE+1VL  VE+1VL- \/u

G 2VE VI VE-L Vo
T VERIWL-yp VERIVL-n

3vE—1  V2r
_2\/E+1\E—\/ﬁ' (99)

Thus, uniformly in ||z — z.|| < M,

1€y — @l + (1 + L71L) ||§ — o ||

lpe = zall < L+ L7 L) —=——

5= 1 P e = ) + o - 0 PR o)

=5l = 2 27l = pell + [l — I*II)}

Vv
]
i

go)

=5 e — 2 IL2 IS (e — @l + 2]z — w*ll)}

1
L2||=~ 1||(||u§—90*||2+21‘4||/~t.s—fff*|)} = WA

Vv

@

»

o]
/—/E\I_JH/—/H/—’H
N)\»—l w\»—l l\J\H mm—l

if we have

log()
e — @ <_M+\/M2+2L2|2_1||' (100)

Combining (99) and (100), we can take

(M#MQ log (s >2<\/E+1)2(ﬁ—\/ﬁ)2

2022 Bvk —1)?

_ log(L/p) (L —p)?
‘( M*\/M“wnz 1||> SGVE i
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For the remaining of the proof, without loss of generality assume that = ©(1) and L = ©(k).? It is straightforward to see
from the Taylor expansion of M that M = O(x~'/®) and

(M)z ,
2L =] (L — 1)
2
RN Prn R
1 ( log(L/p) )2 (L — p)?
M2\ 2L2|S7M| ) 8(3VL — /)3

=0 (Ffl?’/‘* 10g2(5)> .

R =

S —

O
D.2. Proofs of Results in Section A
Consider the constrained optimization problem
min f(z),
where C C R? is compact. The projected AG method consists of the iterations
Tr1 = Pe (e — AV F(Gr) + €rs1)) (101)
gk = (L + B)Tk, — Bik-1, (102)

where ¢, is the random gradient error satisfying Assumption 2, «, 3 > 0 are the stepsize and momentum parameter and the
projection onto the convex compact set C' with diameter D¢ can be written as

(1 )
= — |z — h
Pe(z) arg min <2allw yll” + (y))

where the function i : RY — R U {+0o0} is the indicator function, defined to be zero if y € C and infinity otherwise.
Let us recall that we assumed that the random gradient error €5 admits a continuous density so that conditional on
& = (:Tcg, ffil)T, Tk 1 also admits a continuous density, i.e.

P(Zg41 € df\gk = f) = ﬁ(é,i’)dﬂ?,
where [)(é , @) > 0 is continuous in both 5 and .

For the function f(z), the gradient mapping g : R? — R which replaces the gradient for constrained optimization problems
is defined as

! (y—=Pely—aVf(y), a>0.

g(y) = o

Due to the noise in the gradients, we also define the perturbed gradient mapping, g.(y) : R? — R as

1
9-() =~ (y=Pe(y —Vf@W) +2))), a>0, ccR"
Due to the non-expansiveness property of the projection operator, we have (see e.g. Combettes & Wajs (2005, Lemma 2.4))

Ac(y) =g:() —9(), IAW)|* < lell?, forevery y € R (103)

Following a similar approach to Hu & Lessard (2017); Fazlyab et al. (2017), we reformulate the projected AG iterations as a
linear dynamical system as

Jch—‘rl = (1 + ﬁ)i'k - Bik—l — Ofep 41 (gk) 5
g = (1+B)T — BTp-1,

2Given two scalar-valued functions f and g, we say f = ©(g), if the ratio f(2)/g(z) lies in an interval [c1, c2] for every x and
somecy, ca > 0.
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which is equivalent to

k1 = A&y + By, (104)
Gx = C&, Ty = Eé, (105)
ak = g(gk) +A€k+1 (gk)a (106)
with &, = [#1 7,7, and
1+ 8)I; —BI —al
A:(( If)d oﬂdd)’ B:( gdd> C=(1+p)l —BL), E=(Is 04). (107)

We see that é , forms a time-homogeneous Markov chain. To this chain, we can associate a Markov kernel 75047 3, following a
similar approach to the Markov kernel P, 3 we defined for AG. We have the following result.

Lemma 37.

(75%,3‘/13&,;3)(5) < pa,,@VPa,B(g) + [N((x,,ﬁv
where

- L
Rosp 1= a0(2Del Pasl + Gar) + 0% (IPasll 45 ).

if there exists a matrix P, g € R?>¥24 such that

— Pa,X1 — (1 — pa,p)Xe + X3 <0, (108)
where
1 BPuly  —p*uly —pBIq 1 (14 8)ula  —BA+PB)uls —(1+46)14
X, = 3 —B%uly  BPuly Blq , Xo = 3 —B(1+ B)ulq B2uly Blg ;
—5Id B-Td 01(2 — La)Id —(]. + B)Id ﬁ]d a(2 — La)Id
and

x. — (AT PapA = papsPos ATPogB
3 BTP, 3A BTP,3B)’

where G := maxgec ||V f(2)]].

In particular, with p =1 — ﬁ, b= V-l o= % where Kk = % Then (108) holds with the matrix

P=(0 =Vl VL) (L= VRla Vil).

Proof. We follow the proof technique of Fazlyab et al. (2017) for deterministic proximal AG which is based on Nesterov
(2004, Lemma 2.4) and adapt this proof technique to accelerated stochastic projected gradient. Defining the error at step k

éx =[G — &) (9(ik) — 9(@))"I",

where £, := [2T 7] and g(7,) = 0 due to the first order optimality conditions where §, := &, is the unique minimum of

f over C. Let Fy, be the natural filtration for the iterations of the algorithm until and including step k so that x, yx and é
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are Jj-measurable. Similar to the analysis of AG, we estimate

E | f(@ks1) — f (Tx) ]:k:| = E {f (I — ageryy (k) — f (Zk) ]:k] (109)
- E {f (5 — ag () — adhay 1, (31)) — f (B2) fk} (110)
< E {f (G — g () + Vf Gk — ag @Gi)" aler,, (G1) (111)
2L
+7||Ask+1(17k)\|2 — f (@) }-k::| (112)

2L
<l o)~ £ @)+ oGl n )] + e 7| a1

. N . oL
< fOk—ag (@) — f (@) + aGrpo + - 7 (114)

where in the first inequality we used the fact that the gradient of f is L-smooth which implies that

F) = 12 S VI (s =)+ Sy~ 2, forevery y,z € R

(see e.g. (Bubeck, 2014)) and second inequality follows from Jensen’s inequality.Finally, the last step is a consequence of
(103) and Assumption 2 on the noise. It follows from a similar computation that

2

E [f(i‘k_H) — f(Z4) ]:k:| < f(gk — ag(gjk)) — f(&:) + aGpo + %02, (115)

‘We note that the matrices X and X5 can be written as

Xlz—l(—u(C—E)T(C—E) (C-E)T > X, — -1 (—MCTC cr ) (116)

2 C—-F (La? —2a)1, 2 C (La? —2a)1,

where A, B, C, E are defined by (107). Using Fazlyab et al. (2017, eqn. (36)—(37)) and Lemma 38, we have
£ — ag(r)) — f(@r) < —é Xaéy, (117
F (@ — ag(@r)) — f(2.) < —& Xoér. (118)
Plugging these into (114) and (115), we obtain

2
a’L 4

E [f(i"k-&-l) — f(@x) ]:k] < —& X16x +aGryo + - (119)
~ ~ ~T ~ 0'2L 2
E {f(xkﬂ) — f(&4) ]:k] < —6; Xoép + aGpo + Ta . (120)
It also follows from (104)— (106) and the facts that AS, = &, and Bi, = 0 that
Gt — &= A (& — &) + B (@ — @) + BAuy (1) = G + Bdey, (), (121)

where

Ck :=A(ék—é*)+B(ak—a*).

R2d>< 2d

For any symmetric positive semi-definite matrix P, g € , we define the quadratic function

QPQ,B (g) = éTPa,ﬂg-
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We can estimate that
E [QPM (5}#1) |]:k}
=E |:(£k+1 — é)TPa,g (ék—i—l — &) |-7:k]
= (L Pa gl +E (2061 = &) Pa g BBy, (50) + BT Ay, (50) Po g B, (50)| Fi
< (Fre™y Bres) @+ E[2aDe: 1Pasl: lewarll + ool - lennl*V7
= (st pre )t 2Pcac | Pasl + 00| Ful
Therefore,

E[Qr.s (8ei1) = Qros (&) | 7] = & Xai + 2Dcac||Pa gl + 0?0 Pagl) (122)

Considering the Lyapunov function Vp, , (€r) = f(@r) — f(Zs) + EF P pEx, we have

Vews (801) = pasVens (&) = o (£ (Eern) = £ (8)) + (0= fa) (£ (G0) - £ (&) (123)

+Qr.s (G —E) = Qr., (G- E). (124)
(125)

Taking conditional expectations and inserting (119)—(120),

E[Ve (Gon) |[Fe] < pasVe, (&) +ef ( — X1 — (1= fap) Xo + Xg)ék (126)
2 2 L
+2Dcac|Pogll + 0% (1Pl + 5 ) (127
i . ) s L
< pa,BVPa,ﬁ (fk) + OzJ(?'DcHPang +Gu) +a’o (|Pa,5|| + 2) , (128)
which completes the proof. O

Lemma 38 (Fazlyab et al. 2017). Using the notations as in the proof of Lemma 37, we have the following two inequalities:

f @k — ag(i)) — f(@r) < —€f X1éx, (129)
F(k — ag(@)) — f(@) < &L X6y (130)

Proof. Recall that f satisfies following inequalities,
T L 2
F@) = fW) = V) -y + 5 ly ==l (131)
1) = (@) V@)~ @) = Slly - 2l (132)
Choosing z = g — ag(¥r), v = Uk and x = Ty, yields,
L
Pk = ag(un)) — Flax) < V)T (ur — 2x — aglue)) + 5 lagu) 12 = Sy — 2| (133)
2 2
Additionally let Oh(z) := {v € R% : h(z) — h(y) < vT(z — y)Vy € R} then by optimality condition, 0 € 9(Pc(w)) —

L(Pc(w) — w) (e.g. (Beck, 2017) theorem 6.39). In particular there exists a Tj,(w) € Oh(z) such that g(w) =
Vf(w) 4+ Tp(w). Choose w = y;, and note that y, = (1 + S)xp — Bak—1 and C is a convex set thus y, € C. So
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if Ty, (yx) € Oh(ys) then either 0 < T}, (yx)T (yx — ) or —oo < T, (yr )T (yr. — z) therefore 0 < T}, (yx )T (yi — x) implying
that V£ ()T (y — 2) < g(y)T (y — 2) for all z € R%. Combining this result with (133) we obtain,

Floe —aglmn)) — fe) < VF@T (e~ ox — aglyn)) + S0 lalnll? — 5 82en — 2 ?

= o)) ~ o) < Bl (ox o) + (5o~ ) o) P

~ 58 (i =l = 2ok = 2) (@5m1 = 2) + ans = 2.]?)
This proves (117). Finally, (118) can also be obtained if we take x = z, and follow similar steps. O]

Lemma 39. Given oo = % 8= g:& where k. = L/u, we have

(PoéyﬁVPaﬁ)(g) S :YVPOM; (5) + K,

where )
- 1 ~ o o° [ L
=1-—= K = = (Dep((1 — Vk)? G — | 5((1 = Vk)? =).
7im1- o, 7 (Den(1 ~ VR + )+ Gur) + 0 ({1 = v+ )+ £
Proof. Note that 3 3 } }
(PasVe, 5)(€) < papVe, 5(6) + Kap,
where
_ L
Ry i= a0(20e Pogll + Gun) + % (Pl + 5 ).
and withaw = 1, 8 = ﬁ;}, we have
T
Pay =5 (0= VRl VEL)" (1= VRl VL),
so that ’ . u
1Pasll < £ (0= vAILe VEL)"| - (= VAL VEL)| =51 = VR +5).
Hence,
- o 9 a? [ 9 L
Kap <7 (Dep((1 = VE)* + K) + Gur) + 73 5((1—\/E) —|—Ii)—|—§ .
O
Proof of Theorem 16. The proof is similar to the proof of Theorem 13 and the proof of (29). We obtain
- - - s Ko,
E[f@0)] = £(&) < Ve, (Q)iep + 75—
The conclusion then follows from the defintiion of 7, 5 and K, g. O
Proof of Proposition 17. The proof is similar as the proof of Proposition 14. We can take K < %, that is,
o o (1 L R
— (D 1— 2 — [ =((1- 2 - | < —
7 Dol = VR )+ Gar) + 75 (510 -V 40+ 5 ) < 1

which implies

—by 1
o< — +

R
— (b2 +a
- 2aq 2aq 1 !

ﬁ,
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where

o=z (5= VRPE 0+ 5 ) b= T (Penl = VAP ) + G).

As in the proof of Proposition 14, we can take
1

WEK
Finally, the proof of (35) is similar as the proof of (33). We obtain

)=

K
1-5

E[f(-%k)] - f(j*) < Vpae (£0>'§/k +
The conclusion then follows from the definition of K and 7. O

E. Numerical Illustrations

In this section, we illustrate some of our theoretical results over some simple functions with numerical experiments. On
the left panel of Figure 1, we compare ASG for the quadratic objective f(z) = x?/2 in dimension one with additive i.i.d.
Gaussian noise on the gradients for different noise levels o € {0.01,0.1,1,2}. The plots show performance with respect
to expected suboptimality using 10* sample paths. As expected, the performance deteriorates when o increases. The fact
that the performance stabilizes after a certain number of iterations supports the claim that a stationary distribution exists, a
claim that was proved in Theorem 4. In the middle panel, we repeat the experiment in dimension d = 10 over the quadratic
objective f(z) = %xTQa:, where () is a diagonal matrix with diagonal entries ();; = 1/i. We observe similar patterns.
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Figure 1. Performance comparison of ASG for different noise levels o on quadratic functions. Left panel: f(x) = %xQ in dimension one.

Middle panel: f(z) = %mTQm in dimension d = 10. Right panel: Histogram of f(x) for different values of k where f(x) = %mTQ:c
in dimension d = 10.

Finally, on the right panel of Figure 1, we estimate the distribution of f(zy) for k € {5,25,125,625}. For this purpose, we
plot the histograms of f(zy) over 10* sample paths for every fixed k. We observe that the histograms for k¥ = 125 and 625
are similar, illustrating the fact that ASG admits a stationary distribution.



