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Abstract
Momentum methods such as Polyak’s heavy ball
(HB) method, Nesterov’s accelerated gradient
(AG) as well as accelerated projected gradient
(APG) method have been commonly used in ma-
chine learning practice, but their performance is
quite sensitive to noise in the gradients. We study
these methods under a first-order stochastic ora-
cle model where noisy estimates of the gradients
are available. For strongly convex problems, we
show that the distribution of the iterates of AG
converges with the accelerated O(

√
κ log(1/ε))

linear rate to a ball of radius ε centered at a unique
invariant distribution in the 1-Wasserstein metric
where κ is the condition number as long as the
noise variance is smaller than an explicit upper
bound we can provide. Our analysis also certi-
fies linear convergence rates as a function of the
stepsize, momentum parameter and the noise vari-
ance; recovering the accelerated rates in the noise-
less case and quantifying the level of noise that
can be tolerated to achieve a given performance.
To the best of our knowledge, these are the first
linear convergence results for stochastic momen-
tum methods under the stochastic oracle model.
We also develop finer results for the special case
of quadratic objectives, extend our results to the
APG method and weakly convex functions show-
ing accelerated rates when the noise magnitude is
sufficiently small.

1. Introduction
Many key problems in machine learning can be formulated
as convex optimization problems. Prominent examples in
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supervised learning include linear and non-linear regression
problems, support vector machines, logistic regression or
more generally risk minimization problems (Vapnik, 2013).
Accelerated first-order optimization methods based on mo-
mentum averaging and their stochastic and proximal vari-
ants have been of significant interest in the machine learning
community due to their scalability to large-scale problems
and good performance in practice both in convex and non-
convex settings, including deep learning (see e.g. Sutskever
et al. (2013); Nitanda (2014); Hu et al. (2009); Xiao (2010)).

Accelerated optimization methods for unconstrained prob-
lems based on momentum averaging techniques go back to
Polyak who proposed the heavy ball (HB) method (Polyak,
1964) and are closely related to Tschebyshev accelera-
tion, conjugate gradient and under-relaxation methods from
numerical linear algebra (Varga, 2009; Karimi & Vava-
sis, 2017). Another popular momentum-based method is
the Nesterov’s accelerated gradient (AG) method (Nes-
terov, 2004). For deterministic strongly convex problems,
with access to the gradients of the objective, there is a
well-established convergence theory for momentum meth-
ods. In particular, for minimizing strongly convex smooth
objectives with Lipschitz gradients AG method requires
O(
√
κ log(1/ε)) iterations to find an ε-optimal solution

where κ is the condition number, this improves significantly
over the O(κ log(1/ε)) complexity of the gradient descent
(GD) method. HB method also achieves a similar acceler-
ated rate asymptotically in a local neighborhood around the
global minimum. Also, for the special case of quadratic
objectives, HB method can achieve the accelerated linear
rate globally. In the absence of strong convexity, for con-
vex functions, AG has an iteration complexity of O(1/

√
ε)

in function values which accelerates the standard O(1/ε)
convergence rate of GD. In particular, it can be argued that
AG method achieves an optimal convergence rate among
all the methods that has access to only first-order informa-
tion (Nesterov, 2004). For constrained problems, a variant
of AG, the accelerated projected gradient (APG) method
(O’Donoghue & Candes, 2015) can also achieve similar
accelerated rates (Nesterov, 2004; Fazlyab et al., 2017).

On the other hand, in many applications, the true gradient
of the objective function∇f(x) is not available but we have
access to a noisy but unbiased estimated gradient ∇̂f(x)
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of the true gradient instead. The common choice of the
noise that arises frequently in (stochastic oracle) models
is the centered, statistically independent noise with a finite
variance where for every x ∈ X ,

(H1) E
[
∇̂f(x)

∣∣x] = ∇f(x),

(H2) E
[
‖∇̂f(x)−∇f(x)‖2

∣∣x] ≤ σ2,

(see e.g. Bubeck (2014); Lan (2012)). A standard example
of this in machine learning is the familiar prediction scenario
when f(x) = Eθ`(x, θ) where `(x, θ) is the (instantaneous)
loss of the predictor x on the example θ with an unknown
underlying distribution where the goal is to find a predictor
with the best expected loss. In this case, given x, the stochas-
tic oracle draws a random sample θ from the unknown under-
lying distribution, and outputs ∇̂f(x) = ∇x`(x, θ) which
is an unbiased estimator of the gradient. In fact, linear re-
gression, support vector machine and logistic regression
problems correspond to particular choices of this loss func-
tion ` (see e.g. Vapnik (2013)). A second example is where
an independent identically distributed (i.i.d.) Gaussian noise
with a controlled magnitude is added to the gradients of the
objective intentionally, for instance in private risk minimiza-
tion to guarantee privacy of the users’ data (Bassily et al.,
2014), to escape a local minimum (Ge et al., 2015) or to
steer the iterates towards a global minimum for non-convex
problems (Gao et al., 2018a;b; Raginsky et al., 2017). Such
additive gradient noise arises also naturally when gradients
are estimated from noisy data (Cohen et al., 2018; Birand
et al., 2013) or the true gradient is estimated from a sub-
set of its components as in (mini-batch) stochastic gradient
descent (SGD) methods and their variants.

It is well recognized that momentum-based accelerated
methods are quite sensitive to gradient noise (Hardt, 2014;
Devolder et al., 2014; Flammarion & Bach, 2015; Devolder
et al., 2013), and need higher accuracy of the gradients to
perform well (d’Aspremont, 2008; Devolder et al., 2014)
compared to standard methods like GD. In fact, with the
standard choice of their stepsize and momentum parameter,
numerical experiments show that they lose their superiority
over a simple method like GD in the noisy setting (Hardt,
2014), yet alone they can diverge (Flammarion & Bach,
2015). On the other hand, numerical studies have also
shown that carefully tuned constant stepsize and momen-
tum parameters can lead to good practical performance for
both HB and AG under noisy gradients in deep learning
(Sutskever et al., 2013). Overall, there has been a growing
interest for obtaining convergence guarantees for stochastic
momentum methods, i.e. momentum methods subject to
noise in the gradients.

Several works provided sublinear convergence rates for
stochastic momentum methods. Lan (2012); Ghadimi &
Lan (2012) developed the AC-SA method which is an adap-

tation of the AG method to the stochastic composite convex
and strongly convex optimization problems and obtained an
optimal O(1/

√
k) for the convex case. In a follow-up paper,

Ghadimi & Lan (2013) obtained an optimal O(1/k) conver-
gence bound for the constrained strongly convex optimiza-
tion employing a domain shrinking procedure. However,
these results do not apply to stochastic HB (SHB). Yang
et al. (2016) provided a uniform analysis of SHB and accel-
erated stochastic gradient (ASG) showing O(1/

√
k) conver-

gence rate for weakly convex stochastic optimization. Gadat
et al. (2018) obtained a number of sublinear convergence
guarantees for SHB, showing that with decaying stepsize
αk = O(1/kθ) for some θ ∈ (0, 1], SHB method converges
with rate O(1/kθ). Several other works focused on proper
averaging for reducing the variance of the gradient error in
the iterates for strongly convex linear regression problems
(Jain et al., 2017; Flammarion & Bach, 2015; Dieuleveut
et al., 2017b) and obtained a O(1/k) convergence rate that
achieves the minimax estimation rate. Recently, Loizou &
Richtárik (2017) studied the SHB algorithm for optimizing
the least squares problems arising in the solution of consis-
tent linear systems where the gradient noise comes from
sampling the rows of the associated linear system and there-
fore the gradient errors have a multiplicative form vanishing
at the optimum (see Loizou & Richtárik (2017, Sec 2.5)),
in which case SGD enjoys linear rates to the optimum with
constant stepsize. The authors show that using a constant
stepsize the expected SHB iterates converge linearly to a
global minimizer with the accelerated rate and provide a
first linear (but not an accelerated linear) rate for the ex-
pected suboptimality in function values, however the rate
provided is not better than the linear rate of SGD and does
not reflect the acceleration behavior compared to SGD. We
note however that the results of this paper do not apply to
our setting as our noise assumptions (H1)–(H2) are more
general. In our setting, due to the persistence of the noise,
it is not possible for the iterates of stochastic momentum
methods converge to a global minimum, but rather converge
to a stationary distribution around the global minimum. To
our knowledge, a linear convergence result for momentum-
based methods has never been established under this setting.
For SGD, Dieuleveut et al. (2017a) showed that when f is
strongly convex, the distribution of the SGD iterates with
constant stepsize converges linearly to a unique station-
ary distribution πα in the 2-Wasserstein distance requiring
O(κ log(1/ε)) iterations to be ε close to the stationary dis-
tribution when α = 1/L which is similar to the iteration
complexity of (deterministic) gradient descent. A natural
question is whether stochastic momentum methods admit
a stationary distribution, if so whether the convergence to
this distribution can happen faster compared to SGD. As
the momentum methods are quite sensitive to gradient noise
(Hardt, 2014; Cohen et al., 2018) in terms of performance; a
precise characterization of how much noise can be tolerated
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to achieve accelerated convergence rates under stochastic
momentum methods remains understudied.

Contributions: We obtain a number of accelerated conver-
gence guarantees for the SHB, ASG and accelerated stochas-
tic projected gradient (ASPG) methods on both (weakly)
convex and strongly convex smooth problems. We note
that existing convergence bounds obtained for finite-sum
problems that approximate stochastic optimization problems
(Nitanda, 2014) do not apply to our setting as our noise is
more general, allowing us to deal directly with the stochastic
optimization problem itself.

First, for illustrative reasons, we focus on the special case
when f is a strongly convex quadratic on X = Rd and
the gradient noise is additive, statistically independent and
i.i.d. with a finite variance σ2. We obtain accelerated linear
convergence results for the ASG method in the weighted 2-
Wasserstein distances. Building on the framework of Hu &
Lessard (2017) which simplifies the analysis of momentum-
based deterministic methods, our analysis shows that all
the existing convergence rates and constants can be trans-
lated from the deterministic setting to the stochastic setting.
Building on novel non-asymptotic convergence guarantees
in function values we develop for both the deterministic
HB and AG methods, we show that the Markov chain cor-
responding to the stochastic HB and AG iterates is geo-
metrically ergodic and the distribution of the iterates con-
verges to a unique equilibrium distribution (whose first two
moments we can estimate) with the accelerated linear rate
O(
√
κ log(1/ε)) in the p-Wasserstein distance for any p ≥ 1

with explicit constants. The convergence results hold regard-
less of the noise magnitude σ, although σ scales the standard
deviation of the equilibrium distribution linearly. We also
provide improved non-asymptotic estimates for the subop-
timality of the HB and AG methods both for deterministic
and stochastic settings.

Second, we consider (non-quadratic) stochastic strongly
convex optimization problems on Rd under the stochastic
oracle model (H1)–(H2). We derive explicit bounds on the
noise variance σ2 so that ASG method converges linearly to
a unique stationary distribution with the accelerated linear
rate O(

√
κ log(1/ε)) in the 1-Wasserstein distance. Our

results provide convergence rates as a function of α, β and
σ2 that recovers the convergence rate of the AG algorithm
as the noise level σ2 goes to zero. Therefore, for different
parameter choices, we can provide bounds on how much
noise can be tolerated to maintain linear convergence.

Third, we focus on the accelerated stochastic projected gra-
dient (ASPG) algorithm for constrained stochastic strongly
convex optimization on a bounded domain. We obtain fast
accelerated convergence rate to a stationary distribution in
the p-Wasserstein distance for any p ≥ 1. Finally, we extend
our results to the weakly convex setting where we show an

accelerated O( 1√
ε

log(1/ε)) convergence rate as long as the
noise level is smaller than explicit bounds we provide. To
our knowledge, accelerated rates in the presence of non-zero
noise was not reported in the literature before.

2. Preliminaries
2.1. Notation

We use the notation Id and 0d to denote the d×d identity and
zero matrices. The entry at row i and column j of a matrixA
is denoted by A(i, j). Kronecker product of two matrices A
and B are denoted by A⊗B. A continuously differentiable
function f : Rd → R is called L-smooth if its gradient
is Lipschitz with constant L. A function f : Rd → R is
µ-strongly convex if the function x 7→ f(x) − µ

2 ‖x‖
2 is

convex for some µ > 0, where ‖ · ‖ denotes the Euclidean
norm. Following the literature, let S0,L denote the class of
functions that are convex and L-smooth for some L > 0.
We use Sµ,L to denote functions that are both L-smooth and
µ-strongly convex for 0 < µ < L (we exclude the trivial
case µ = L in which case the Hessian of f is proportional
to the identity matrix where both deterministic gradient
descent, HB and AG can converge in one iteration with
proper choice of parameters). The ratio κ := L/µ is known
as the condition number. We denote the global minimum
of f on Rd by f∗ and the minimizer of f on Rd by x∗,
which is unique by strong convexity. For any p ≥ 1, define
Pp(R2d) as the space consisting of all the Borel probability
measures ν on R2d with the finite p-th moment (based on the
Euclidean norm). For any two Borel probability measures
ν1, ν2 ∈ Pp(R2d), we define the standard p-Wasserstein
metric (see e.g. Villani (2009)):

Wp(ν1, ν2) :=

(
inf

Z1∼ν1,Z2∼ν2
E[‖Z1 − Z2‖p]

)1/p

.

Let S ∈ R2d×2d be a symmetric positive definite matrix.
For any two vectors z1, z2 ∈ R2d, consider the following
weighted L2 norm:

‖z1 − z2‖S :=
(
(z1 − z2)TS(z1 − z2)

)1/2
.

Define P2,S(R2d) as the space consisting of all the Borel
probability measures ν on R2d with the finite second mo-
ment (based on the ‖·‖S norm). For any two Borel probabil-
ity measures ν1 and ν2 in the spaceP2,S(R2d), the weighted
2-Wasserstein distance is defined as

W2,S(ν1, ν2) :=

(
inf

Z1∼ν1,Z2∼ν2
E
[
‖Z1 − Z2‖2S

])1/2

,

(1)
where the infimum is taken over all random couples (Z1, Z2)
taking values in R2d × R2d with marginals ν1 and ν2.
Equipped with the 2-Wasserstein distance (1), P2,S(R2d)
forms a complete metric space (see e.g. Villani (2009)).
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Let Pα,β(z, ·) be a Markov transition kernel (with parame-
ters α, β) associated to a time-homogeneous Markov chain
{ξk}k≥0 on R2d. A Markov transition kernel is the analogue
of the transition matrix for finite state spaces. In particular,
if ξ0 has probability law ν0 then we use the notation that
ξk has probability law Pkα,βν0. Given a Borel measurable
function ϕ : R2d → [0,+∞], we also define

(Pα,βϕ)(z) =

∫
R2d

ϕ(y)Pα,β(z, dy).

Therefore, it holds that E[ϕ(ξk+1)|ξk = z] = (Pα,βϕ)(z).
We refer the readers to Çınlar (2011) for more on the basic
theory of Markov chains.

2.2. AG method

For f ∈ Sµ,L, the deterministic AG method consists of the
iterations

xk+1 = yk − α∇f(yk), yk = (1 + β)xk − βxk−1, (2)

starting from the initial points x0, x−1 ∈ Rd, where α >
0 is the stepsize and β > 0 is the momentum parameter
(Nesterov, 2004). Since the AG iterate xk+1 depends on
both xk and xk−1, it is standard to define the state vector

ξk :=
(
xTk xTk−1

)T ∈ R2d, (3)

and rewrite the AG iterations in terms of ξk. To simplify the
presentation and the analysis, we build on the representation
of optimization algorithms as a dynamical system from Hu
& Lessard (2017) and rewrite the AG iterations as

ξk+1 = Aξk +Bwk,

where A = Ã⊗ Id and B = B̃ ⊗ Id with

Ã :=

(
(1 + β) −β

1 0

)
, B̃ :=

(
−α
0

)
, (4)

and wk := ∇f ((1 + β)xk − βxk−1). The standard analy-
sis of deterministic AG is based on the following Lyapunov
function that combines the state vector and function values:

VP (ξk) := (ξk − ξ∗)TP (ξk − ξ∗) + f(xk)− f∗, (5)

where ξ∗ = (xT∗ x
T
∗ )T and P ∈ R2d×2d is positive semi-

definite matrix to be appropriately chosen. In particular,
a linear convergence f(ξk+1) − f(ξ∗) ≤ VP (ξk+1) ≤
ρVP (ξk) with rate ρ can be guaranteed if P satisfies a cer-
tain matrix inequality precised as follows.

Theorem 1. (Hu & Lessard, 2017) Let ρ ∈ [0, 1) be given.
If there exists a symmetric positive semi-definite 2×2 matrix
P̃ (that may depend on ρ) such that(

ÃT P̃ Ã− ρP̃ ÃT P̃ B̃

B̃T P̃ Ã B̃T P̃ B̃

)
− X̃ � 0, (6)

where X̃ := ρX̃1 + (1− ρ)X̃2 ∈ R3×3 with

X̃1 :=

 β2µ
2

−β2µ
2

−β
2

−β2µ
2

β2µ
2

β
2

−β
2

β
2

α(2−Lα)
2

 ,

X̃2 :=

 (1+β)2µ
2

−β(1+β)µ
2

−(1+β)
2

−β(1+β)µ
2

β2µ
2

β
2

−(1+β)
2

β
2

α(2−Lα)
2

 ,

and Ã, B̃ are given by (4), then the deterministic AG iterates
defined by (2) for minimizing f ∈ Sµ,L satisfies f(xk) −
f(x∗) ≤ VP (ξk) ≤ ρkVP (ξ0) where VP is defined by (5)
and P = P̃ ⊗ Id.

In particular, Theorem 1 can recover existing convergence
rate results for deterministic AG. For example, for the par-
ticular choice of

PAG := P̃AG ⊗ Id, P̃AG := ũũT , (7)

ũ :=
(√

L/2
√
µ/2−

√
L/2

)T
,

and (α, β) = (αAG, βAG) with

αAG :=
1

L
, βAG :=

√
κ− 1√
κ+ 1

, (8)

in Theorem 1, we obtain the accelerated convergence rate of

ρAG := 1−
√
µ/L = 1− 1/

√
κ. (9)

However, as outlined in the introduction, in a variety of ap-
plications in machine learning and stochastic optimization,
we do not have access to the true gradient∇f(yk) as in the
deterministic AG iterations but we have access to a (noisy)
stochastic version ∇̂f(yk) = ∇f(yk) + εk+1, where εk+1

is the random gradient noise. AG algorithm with stochastic
gradients has the form

xk+1 = yk − α[∇f(yk) + εk+1], (10)
yk = (1 + β)xk − βxk−1,

which is called the accelerated stochastic gradient (ASG)
method (see e.g. Jain et al. (2017)). We note that due to the
existence of noise, the standard Lyapunov analysis from the
literature (see e.g. Wilson et al. (2016); Su et al. (2014))
does not apply directly. We make the assumption that the
random gradient errors are centered, statistically indepen-
dent from the past iterates and have a finite second moment
following the literature (Cohen et al., 2018; Hardt, 2014;
Neelakantan et al., 2015; Aybat et al., 2018; Flammarion &
Bach, 2015). The following assumption is a more formal
statement of (H1)–(H2) adapting to the iterations ξk.
Assumption 2 (Formal statement of (H1)–(H2)). On some
probability space (Ω,F ,P) with a filtration Fk the noise
εk’s are Fk-measurable, stationary and

E[εk|Fk−1] = 0 and E[‖εk‖2|Fk−1] ≤ σ2.
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Under Assumption 2, the iterations ξk forms a time-
homogeneous Markov chain which we will study further in
Sections 3 and 4.

2.3. HB method

For f ∈ Sµ,L, the HB method was proposed by Polyak
(1964). It consists of the iterations

xk+1 = xk − α∇f(xk) + β(xk − xk−1), (11)

where α > 0 is the step size and β is the momentum param-
eter. The following asymptotic convergence rate result for
HB is well known.

Theorem 3 (Polyak (1987), see also Recht (2012)). Let the
objective function f ∈ Sµ,L be a strongly convex quadratic
function. Consider the deterministic HB iterations {xk}k≥0

defined by the recursion (11) from an initial point x0 ∈ Rd
with parameters (α, β) = (αHB , βHB) where

αHB :=
4

(
√
µ+
√
L)2

, βHB :=

(√
L/µ− 1√
L/µ+ 1

)2

.

(12)
Then, ‖xk − x∗‖ ≤ (ρHB + δk)k · ‖ξ0 − ξ∗‖, where δk is a
non-negative sequence that goes to zero and

ρHB :=

√
κ− 1√
κ+ 1

= 1− 2√
κ+ 1

. (13)

Furthermore, f(xk)−f(x∗) ≤ L
2 (ρHB+δk)2k ·‖ξ0−ξ∗‖2.

This result has an asymptotic nature as the sequence δk is
not explicit. There exist non-asymptotic linear convergence
results for HB, but to our knowledge, known linear rate
guarantees are slower than the accelerated rate ρHB ; with a
rate similar to the rate of gradient descent (Ghadimi et al.,
2014). In Section 3.2, we will derive a new non-asymptotic
version of this theorem that can guarantee suboptimality
for finite k with explicit constants and the accelerated rate
ρHB . Note that the asymptotic rate ρHB of HB in (13)
on quadratic problems is strictly (smaller) faster than the
rate ρAG of AG from (9) in general (except in the particular
special case of κ = 1, we have ρAG = ρHB = 0). However,
for strongly convex functions, HB iterates given by (11) is
not globally convergent with parameters αHB and βHB
(Lessard et al., 2016), but if the iterates are started in a
small enough neighborhood around the global minimum
of a strongly convex function, this rate can be achieved
asymptotically (Polyak, 1987). Since known guarantees
for deterministic AG is stronger than deterministic HB on
non-quadratic strongly convex functions, we will focus on
the AG method for non-quadratic objectives in our paper.

We will analyze the HB method under noisy gradients:

xk+1 = xk −α (∇f(xk) + εk+1) + β(xk − xk−1), (14)

where the noise satisfies Assumption 2. This method is
called the stochastic HB method (Gadat et al., 2018; Loizou
& Richtárik, 2018; Flåm, 2004).

In the next section, we show that stochastic momentum
methods admit an invariant distribution towards which they
converge linearly in a sense we make precise. For illustrative
purposes, we first analyze the special case when the objec-
tive is a quadratic function, and then move on to the more
general case when f is smooth and strongly convex. Also,
for quadratic functions we can obtain stronger guarantees
exploiting the linearity properties of the gradients.

3. Special case: strongly convex quadratics
First, we assume that the objective f ∈ Sµ,L and is a
quadratic function of the form

f(x) =
1

2
xTQx+ aTx+ b, (15)

where x ∈ Rd, Q ∈ Rd×d is symmetric positive definite,
a ∈ Rd is a column vector and b ∈ R is a scalar. We also
assume µId � Q � LId so that f ∈ Sµ,L. In this sec-
tion, we assume the noise εk are i.i.d. which is a special
case of Assumption 2. We next show that both accelerated
stochastic gradient and stochastic HB admit a unique invari-
ant distribution towards which the iterates converge linearly
in the 2-Wasserstein metric.

3.1. Accelerated linear convergence of AG and ASG

Given vectors, z1, z2 ∈ R2d, we consider

‖z1 − z2‖Sα,β :=
(
(z1 − z2)TSα,β(z1 − z2)

)1/2
. (16)

where Sα,β ∈ R2d×2d is defined as the symmetric matrix

Sα,β := Pα,β +

(
1
2Q 0d
0d 0d

)
, (17)

where Pα,β := P̃α,β ⊗ Id and P̃α,β is a non-zero symmet-
ric positive definite 2 × 2 matrix (that may depend on the
parameters α and β) with the entry P̃α,β(2, 2) 6= 0. It can
be shown that Sα,β is positive definite on R2d (see Lemma
18 in the supplementary file), even though P̃α,β can be rank
deficient. In this case, due to the positive definiteness of
Sα,β , (16) defines a weighted L2 norm on R2d. Therefore,
if we set Sα,β in (1), we can consider the 2-Wasserstein
distance between two Borel probability measures ν1 and ν2

defined on R2d with finite second moments (based on the
‖ · ‖Sα,β norm.

The ASG iterates {ξk}k≥0 defined by (3) and (10) forms
a time-homogeneous Markov chain on R2d. Consider the
Markov kernel Pα,β associated to this chain. Recall that if
ν is the distribution of ξ0, the distribution of ξk is denoted
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by Pkα,βν. The following theorem shows that this Markov
Chain admits a unique equilibrium distribution πα,β and
the distribution of the ASG iterates converges to this distri-
bution exponentially fast with (linear) rate ρα,β . This rate
achieved by ASG is the same as the rate of the determin-
istic AG method, except that it is achieved in a different
notion (with respect to convergence inW2,Sα,β ). The proof
is given in the supplementary file and it is based on studying
the contractivity properties of the map ν 7→ Pkα,βν in the
Wasserstein space.1

Theorem 4. Let f ∈ Sµ,L be a quadratic function (15).
Consider the Markov chain {ξk}k≥0 defined by the ASG re-
cursion (10) with parameters α and β and let νk,α,β denote
the distribution of ξk with ν0,α,β ∈ P2,Sα,β (R2d). Let any
convergence rate ρα,β ∈ [0, 1) be given. If there exists a
matrix P̃α,β with P̃α,β(2, 2) 6= 0 satisfying inequality (6)
with P = Pα,β and ρ = ρα,β , then there exists a unique
stationary distribution πα,β .

W2,Sα,β (νk,α,β , πα,β) ≤ ρkα,βW2,Sα,β (ν0,α,β , πα,β),

whereW2,Sα,β is the 2-Wasserstein distance (1) equipped
with the ‖ · ‖Sα,β norm. In particular, with (α, β) =
(αAG, βAG) and P = PAG with PAG defined in (7), we
obtain the optimal accelerated linear rate of convergence:

W2
2,Sα,β

(νk,α,β , πα,β) ≤ ρkAGW2
2,Sα,β

(ν0,α,β , πα,β),
(18)

with ρAG = 1− 1√
κ

as in (9).

For the AG method, the choice of (α, β) = (αAG, βAG) is
popular in practice, however a faster rate can be achieved
asymptotically if

α∗AG :=
4

3L+ µ
, β∗AG :=

√
3κ+ 1− 2√
3κ+ 1 + 2

, (19)

so that the asymptotic linear convergence rate in distance to
the optimality becomes ρ∗AG := 1− 2√

3κ+1
, which translates

into the rate (ρ∗AG)2 in function values that is (smaller) faster
than ρAG (Lessard et al., 2016); improving the iteration
complexity by a factor of 4/

√
3 ≈ 2.3 when κ is large.

However, these results are asymptotic. Below we provide a
first non-asymptotic bound with the faster rate ρ∗AG.

Theorem 5. Let f ∈ Sµ,L be a quadratic function (15).
Consider the deterministic AG iterations {xk}k≥0 defined
by the recursion (3) with initialization x0, x−1 ∈ Rd and
parameters (α, β) = (α∗AG, β

∗
AG) as in (19). Then,

‖xk − x∗‖ ≤C∗k(ρ∗AG)k · ‖ξ0 − ξ∗‖, (20)

f(xk)− f(x∗) ≤
L

2
(C∗k)2(ρ∗AG)2k · ‖ξ0 − ξ∗‖2,

1We also provide numerical experiments in the supplementary
file to illustrate the results of Theorem 4.

where ρ∗AG = 1− 2√
3κ+1

and

C∗k := max

{
C̄∗,

√
k2((ρ∗AG)2 + 1)2 + 2(ρ∗AG)2

}
,

(21)
with C̄∗ :=

√
3κ+1+2

2 ((ρ∗AG)2 + 1)C̃∗ and

C̃∗ := max
i:µ<λi<L,λi 6= 3L+µ

4

√
µ(3L+ µ)√

(λi − µ)|3L+ µ− 4λi|
,

where {λi}di=1 are the eigenvalues of the Hessian Q.

Remark 6. The constantsC∗k grows linearly with k in Theo-
rem 5 and this dependency is tight in the sense that there are
examples achieving it (see the proof in the supplementary
file). Our bounds improves the existing results that provide
a slower rate ρAG with bounded constants in front of the
linear rate (Nesterov, 2004; Bubeck, 2014), if k is large
enough (larger than a constant that can be made explicit).

Building on this non-asymptotic convergence result for
the deterministic AG method, we obtain similar non-
asymptotic convergence guarantees for the ASG method
in p-Wasserstein distances towards convergence to a station-
ary distribution.

Theorem 7. Let f ∈ Sµ,L be a quadratic function (15).
Consider the ASG iterations {xk}k≥0 defined by the re-
cursion (10). Let νk,α,β be the distribution of the k-th
iterate ξk for k ≥ 0, where ξTk := (xTk , x

T
k−1) and pa-

rameters (α, β) = (α∗AG, β
∗
AG) as in (19). Also assume

that ν0,α∗AG,β
∗
AG
∈ Pp(R2d) and the noise εk has finite p-th

moment. Then, there exists a unique stationary distribution
πα,β and for any p ≥ 1,

Wp (νk,α,β , πα,β) ≤ C∗k(ρ∗AG)k · Wp (ν0,α,β , πα,β) ,
(22)

where ρ∗AG = 1− 2√
3κ+1

, C∗k is defined in (21) andWp is
the standard the p-Wasserstein distance.

We can also control the expected suboptimality E[f(xk)]−
f(x∗) after k iterations.

Theorem 8. With the same assumptions as in Theorem 7,

E[f(xk)]−f(x∗) ≤
L

2
Tr(X∗AG)+V ∗AG(ξ0)(C∗k)2(ρ∗AG)2k,

(23)
where ρ∗AG = 1− 2√

3κ+1
, C∗k is defined in (21), X∗AG is the

covariance matrix of ξ∞ − ξ∗ and V ∗AG(ξ0) is a constant
depending on any initial state ξ0 and both X and V ∗AG(ξ0)
will be spelled out in explicit form in the supplementary file.

3.2. Accelerated linear convergence of HB and SHB

We first give a non-asymptotic convergence result for the
deterministic HB method with explicit constants, which also
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implies a bound on the suboptimality f(xk)− f(x∗). This
refines the asymptotic results in the literature (Theorem 3).
Theorem 9. Let f ∈ Sµ,L be a quadratic function (15).
Consider the deterministic HB iterations {xk}k≥0 defined
by the recursion (11) with initialization x0, x−1 ∈ Rd and
parameters (α, β) = (αHB , βHB) as in (12). Then,

‖xk − x∗‖ ≤CkρkHB · ‖ξ0 − ξ∗‖, (24)

f(xk)− f(x∗) ≤
L

2
C2
kρ

2k
HB · ‖ξ0 − ξ∗‖2,

where ρHB is defined by (13) and

Ck := max

{
C̄,

√
4k2

(
L+ µ

L− µ

)2

+ 2

}
, (25)

with C̄ := maxi:µ<λi<L
µ+L

2
√

(λi−µ)(L−λi)
, where {λi}di=1

are the eigenvalues of the Hessian matrix of f .
Remark 10. It is clear from the definition of Ck in Theorem
9 that the leading coefficient Ck grows at most linearly in
the number of iterates k and this dependency cannot be
removed in the sense that there are some examples achiev-
ing our upper bounds in terms of k dependency (see the
supplementary file).

Building on this non-asymptotic convergence result for the
deterministic HB method, we obtain similar non-asymptotic
convergence guarantees for the SHB method in Wasserstein
distances towards convergence to a stationary distribution.
Theorem 11. Let f ∈ Sµ,L be a quadratic function (15).
Consider the HB iterations {xk}k≥0 defined by the recur-
sion (14). Let νk,α,β be the distribution of the k-th iterate
ξk for k ≥ 0, where ξTk := (xTk , x

T
k−1) and parameters

(α, β) = (αHB , βHB) where (αHB , βHB) is defined as in
(12). Also assume that ν0,αHB ,βHB ∈ Pp(R2d) and the
noise εk has finite p-th moment. Then, there exists a unique
stationary distribution πα,β and for any p ≥ 1,

Wp (νk,α,β , πα,β) ≤ CkρkHB · Wp (ν0,α,β , πα,β) , (26)

where ρHB = 1 − 2√
k+1

as defined in (13), Ck is defined
in (25) andWp is the standard the p-Wasserstein distance.

Similarly, for SHB we can show that the suboptimality
E[f(xk)] − f(x∗) decays linearly in k with the fast rate
ρHB to a constant determined by the variance of the equi-
librium distribution.
Theorem 12. With the same assumptions as in Theorem 11,

E[f(xk)]− f(x∗) ≤
L

2
Tr(XHB) + VHB(ξ0) · C2

k · ρ2k
HB ,

(27)
where ρHB = 1 − 2√

κ+1
as in (13), Ck is defined in (25),

XHB is the covariance matrix of ξ∞ − ξ∗, VHB(ξ0) is
a constant depending on any initial state ξ0 and both X
and VHB(ξ0) will be spelled out in explicit form in the
supplementary file.

4. Strongly convex smooth optimization
In this section, we study the more general case when the
objective function f is strongly convex, but not necessarily
a quadratic. The proof technique we use for Wasserstein
distances can be adapted to obtain a linear rate for a strongly
convex objective but this approach does not yield the accel-
erated rates ρAG with a

√
κ dependency to the condition

number even if the noise magnitude is small. However, we
can show accelerated rates in the following alternative met-
ric which implies convergence in the 1-Wasserstein metric.
For any two probability measures µ1, µ2 on R2d, and any
positive constant ψ, we define the weighted total variation
distance (introduced by Hairer & Mattingly (2011)) as

dψ(µ1, µ2) :=

∫
R2d

(1 + ψVP (ξ))|µ1 − µ2|(dξ).

where VP is the Lyapunov function defined in (5). More-
over, since ψ and VP are non-negative, dψ(µ1, µ2) ≥
2‖µ1 − µ2‖TV , where ‖ · ‖TV is the standard total vari-
ation norm. Moreover, when P̃ (2, 2) 6= 0, we will show in
the supplementary file (Lemma 27 and Proposition 26) that

W1(µ1, µ2) ≤ c−1
0 dψ(µ1, µ2),

for some explicit constant c0 (to be given in the supplemen-
tary file), whereW1 is the standard 1-Wasserstein distance.

We will consider the accelerated stochastic gradient (ASG)
method for unconstrained optimization problems. We will
also assume in this section that the random gradient error
εk admits a continuous density so that conditional on ξk =
(xTk , x

T
k−1)T , xk+1 also admits a continuous density, i.e.

P(xk+1 ∈ dx|ξk = ξ) = p(ξ, x)dx, where p(ξ, x) > 0 is
continuous in both ξ and x.

4.1. Accelerated linear convergence of ASG

For the ASG method with any given α, β so that ρα,β , Pα,β
satisfy the LMI inequality (6). Let νk,α,β be the distribution
of the k-th iterate ξk for k ≥ 0, where ξTk := (xTk , x

T
k−1)

and the iterates xk are given in (10) so that E[VPα,β (ξ0)]
is finite. The next result gives a bound of k-th iterate
to stationary distribution in the weighted total variation
distance dψ. We also control the expected suboptimality
E[f(xk)]− f(x∗) after k iterations.

Theorem 13. Given any η ∈ (0, 1) and M > 0 so that∫
‖x−x∗‖≤M p(ξ∗, x)dx ≥ √η, and any R > 0 so that

inf
ξ∈R2d,x∈Rd:VPα,β (ξ)≤R,‖x−x∗‖≤M

p(ξ, x)

p(ξ∗, x)
≥ √η.

Then there is a unique stationary distribution πα,β so that

W1(νk,α,β , πα,β) ≤ c−1
0 dψ(νk,α,β , πα,β)

≤ (1− η̄)kc−1
0 dψ(ν0,α,β , πα,β),
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where W1 is the standard 1-Wasserstein distance and
ψ := η

2Kα,β
, Kα,β :=

(
L
2 + P̃α,β(1, 1)

)
α2σ2 and η̄ :=

min
{
η
2 ,
(

1
2 −

ρα,β
2 − Kα,β

R

)
Rη

4Kα,β+Rη

}
.

Next, we obtain the optimal convergence rate and provide a
bound on the expected suboptimality by choosing (α, β) =
(αAG, βAG).

Proposition 14. Given (α, β) = (αAG, βAG). Define M
and R as in Theorem 13 with η = 1/κ1/2. Also assume that
the noise has small variance, i.e. σ2 ≤ RL/(4

√
κ). Then,

with ψ := L
2
√
κσ2 , we have

W1(νk,α,β , πα,β) ≤ c−1
0 dψ(νk,α,β , πα,β) (28)

≤
(

1− 1

8
√
κ

)k
c−1
0 dψ(ν0,α,β , πα,β),

whereW1 is the standard 1-Wasserstein distance and for
any initial state ξ0,

E[f(xk)]− f(x∗) ≤ VPAG(ξ0)

(
1− 1√

κ

)k
+

√
κσ2

L
.

(29)
The bound (29) is similar in spirit to Corollary 4.7. in
Aybat et al. (2018) but with a different assumption on noise.
We can see that the expected value of the objective with
respect to the k-th iterate is close to the true minimum of
the objective if k is large, and the variance of the noise σ2 is
small. In the special case when the noise are i.i.d. Gaussian,
one can compute the constants in closed-form.

Corollary 15. If the noise εk are i.i.d. Gaussian N (0,Σ),
where Σ ≺ L2Id. Then, Proposition 14 holds with

M :=

(
−2 log

((
1− 1

κ1/4

)√
det(Id − L−2Σ)

))1/2

,

R :=

(
−M +

√
M2 +

log(L/µ)

2L2‖Σ−1‖

)2

(L− µ)2

8(3
√
L−√µ)3

.

If we take µ = Θ(1), then L = Θ(κ) and it follows that we
have M = O(κ−1/8) and R = O

(
κ−13/4 log2(κ)

)
.

We note that Proposition 14 and Corollary 15 provide ex-
plicit bounds on the admissable noise level σ2 to ensure
accelerated convergence with respect to Wasserstein dis-
tances and expected suboptimality after k iterations.

5. ASPG and the weakly convex setting
Constrained optimization and ASPG. Our analysis for
AG can be adapted to study the accelerated stochastic pro-
jected gradient (ASPG) method for constrained optimiza-
tion problems minx∈C f(x), where C ⊂ Rd is a compact

set with diameter DC := supx,y∈C ‖x − y‖2. Theorem
13, Proposition 14 and Corollary 15 extends to ASPG in
a natural fashion with modified constants that reflect the
diameter of the constraint set (see the supplementary file).
Furthermore, due to the finiteness of the diameter, it can be
shown that the metric dψ implies the standard p-Wasserstein
metric for any p ≥ 1. We also provide bounds in expected
suboptimality for ASPG.

Weakly convex functions. If the objective is (weakly) con-
vex but not strongly convex and the constraint set is bounded,
our analysis for the strongly convex case can be adapted
with minor modifications. Following standard regularization
techniques (see e.g. Lessard et al. (2016); Bubeck (2014)),
that allow to approximate a weakly convex function with a
strongly convex function, we provide explicit bounds on the
noise level to obtain the accelerated O(ε−1/2) rate up to a
log factor on ε in expected suboptimality in function values
(see the supplementary file).

6. Conclusion
We have studied accelerated convergence guarantees for
a number of stochastic momentum methods (SHB, ASG,
ASPG) for strongly and (weakly) convex smooth problems.
First, we studied the special case when the objective is
quadratic and the gradient noise is additive and i.i.d. with a
finite second moment. Non-asymptotic guarantees for accel-
erated linear convergence are obtained for the deterministic
and stochastic AG and HB methods for any p-Wasserstein
distance (p ≥ 1), and also for the ASG method in the
weighted 2-Wasserstein distance, which builds on the dissi-
pativity theory from the deterministic setting. Our analysis
for HB and AG also leads to improved non-asymptotic con-
vergence bounds in suboptimality after k iterations for both
deterministic and stochastic settings which is of independent
interest. Second, we studied the (non-quadratic) strongly
convex optimization under the stochastic oracle model (H1)–
(H2). Accelerated linear convergence rate is obtained for the
ASG method in the 1-Wasserstein distance. Third, we stud-
ied the ASPG method for constrained stochastic strongly
convex optimization on a bounded domain. Accelerated
linear convergence rate is obtained in any p-Wasserstein
distance (p ≥ 1), and extension to the (weakly) convex
setting will be discussed in the supplementary file. Our
results provide performance bounds for stochastic momen-
tum methods in expected suboptimality and in Wasserstein
distances. Finally, the proofs of all the results in our paper
will be given in the supplementary file.
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