Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem

Supplementary Material

Junyu Cao Wei Sun

Proposition 4 The optimal product offering S^* to the optimization problem (3.1) in each tier is a profit-ordered set. In addition, S^* is profit-ordered by tier.

Proof. To show S_1^* is profit-ordered, we will first prove that for any $i \in S_1^*$, $r_i \ge E[R(\mathbf{S}^*)]$. Suppose there exists $i \in S_1^*$ and $r_i < E[R(\mathbf{S}^*)]$, it implies that,

$$\begin{split} r_i < E[R(\mathbf{S}^*)] &= \frac{\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + r_i v_i + E[R(S_2^*)]}{1 + \sum_{k \in S_1^* \backslash \{i\}} v_k + v_i} \\ \Leftrightarrow \left(1 + \sum_{k \in S_1^* \backslash \{i\}} v_k\right) r_i < \sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)] \\ \Leftrightarrow \left(1 + \sum_{k \in S_1^* \backslash \{i\}} v_k\right) r_i v_i + \left(\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)]\right) \left(1 + \sum_{k \in S_1^* \backslash \{i\}} v_k\right) \\ < v_i \left(\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)]\right) + \left(\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)]\right) \left(1 + \sum_{k \in S_1^* \backslash \{i\}} v_k\right) \\ \Leftrightarrow \left(1 + \sum_{k \in S_1^* \backslash \{i\}} v_k\right) \left(r_i v_i + \sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)]\right) \\ < \left(1 + \sum_{k \in S_1^* \backslash \{i\}} v_k + v_i\right) \left(\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)]\right) \\ \Leftrightarrow \frac{\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + r_i v_i + E[R(S_2^*)]}{1 + \sum_{k \in S_1^* \backslash \{i\}} v_k + v_i} < \frac{\sum_{k \in S_1^* \backslash \{i\}} v_k r_k + E[R(S_2^*)]}{1 + \sum_{k \in S_1^* \backslash \{i\}} v_k}. \end{split}$$

The last inequality suggests that removing i from S_1^* will improve the expected profit. It is a contradiction that \mathbf{S}^* is optimal. Similarly we can prove that for any $i \notin S_1^*$, $r_i \leq E[R(\mathbf{S}^*)]$, otherwise adding i to S_1^* will improve the expected profit. The proof follows similarly for S_2^* .

To prove \mathbf{S}^* is profit-ordered by level, notice that the expected profit of the tiered assortment is at least as large as only offering S_2 since $\mathbf{S} = (\emptyset, S_2)$ is also a feasible solution. That is, $E[R(S_2^*)] \leq E[R(\mathbf{S}^*)]$. Therefore, $r_i \leq E[R(S_2^*)] \leq E[R(\mathbf{S}^*)] \leq r_j$ for any $i \notin S_2^*, j \in S_1^*$. Thus, we reach the desired result. \blacksquare

Proposition 5 Denote the optimal recommendation before and after including a new product with profit r_m to a candidate set as $\mathbf{S}^* = (S_1^*, S_2^*, \dots, S_W^*)$ and $\hat{\mathbf{S}}^*$, respectively. Define $\mathbf{S}_j^* = (S_j^*, S_{j+1}^*, \dots, S_W^*)$. The following properties holds.

- a.) $E[R(\hat{\mathbf{S}}_{i}^{*})] \geq E[R(\hat{\mathbf{S}}_{i+1}^{*})]$ for any $j = 1, \dots, W 1$.
- b.) If $E[R(\mathbf{S}_{i}^{*})] < r_{m} < E[R(\mathbf{S}_{i-1}^{*})]$ for some j, then $m \in \hat{\mathbf{S}}^{*}$ but $m \notin \hat{S}_{1}^{*} \cup \hat{S}_{2}^{*} \cup \cdots \cup \hat{S}_{i-1}^{*}$.
- c.) If $r_m < E[R(S_W^*)]$, then $m \notin \hat{\mathbf{S}}^*$.

Proof. First note the relation between $E[R(\hat{\mathbf{S}}_{i}^{*})]$ and $E[R(\hat{\mathbf{S}}_{i+1}^{*})]$, where

$$E[R(\hat{\mathbf{S}}_{j}^{*})] = \frac{\sum_{i \in \hat{\mathbf{S}}_{j}^{*}} r_{i} v_{i} + E[R(\hat{\mathbf{S}}_{j+1}^{*})]}{1 + \sum_{i \in \hat{\mathbf{S}}_{j}^{*}} v_{i}}.$$

Therefore, for any j, we have $E[R(\hat{\mathbf{S}}_{j}^*)] \geq E[R(\hat{\mathbf{S}}_{j+1}^*)]$, otherwise $\mathbf{S} = (\hat{S}_1^*, \dots, \hat{S}_{j-1}^*, \emptyset, \hat{\mathbf{S}}_{j+1}^*)$ would be a feasible solution whose expected profit is higher than $E[R(\hat{\mathbf{S}}^*)]$. It is a contradiction to the fact that $\hat{\mathbf{S}}^*$ is optimal. This proves a).

Note that $E[R(\hat{\mathbf{S}}_{j}^{*})] \geq E[R(\mathbf{S}_{j}^{*})]$ for any j since $\hat{\mathbf{S}}_{j}^{*}$ comes from a larger candidate pool. Following the similar procedure in the proof for Proposition 4, if the new product m is included in tier k where $k \leq j-1$ but $r_m < E[R(\mathbf{S}_{j-1}^{*})] \leq E[R(\mathbf{S}_{k}^{*})] \leq E[R(\hat{\mathbf{S}}_{k}^{*})]$, we prove b) and c) by contradiction. That is, removing product m in tier k will make the expected profit higher. It implies that $m \notin \hat{S}_1^* \cup \hat{S}_2^* \cup \cdots \cup \hat{S}_{j-1}^*$. On the other hand, if m is not included in tier j, \dots, W , then we have $E[R(\mathbf{S}_i^*)] = E[R(\hat{\mathbf{S}}_i^*)]$ for all $i = j, \dots, W$. Therefore if $r_m > E[R(\mathbf{S}_j^*)] = E[R(\hat{\mathbf{S}}_j^*)] \geq \cdots \geq E[R(\mathbf{S}_W^*)] = E[R(\hat{\mathbf{S}}_W^*)]$, then adding m to any one of the tier j, \dots, W would increase the expected profit, which is also a contradiction to the fact that $\hat{\mathbf{S}}^*$ is optimal. It concludes the proof for b) and c). \blacksquare

Lemma 7 $\hat{v}_{i,l}^{(k)}$ are i.i.d. geometric random variables with parameter $\frac{1}{1+v_i}$ for any l and k=1,2. Therefore, they are unbiased i.i.d. estimators of v_i .

Proof. Lemma 7 can be derived directly from Lemma 12 which is stated and shown next.

Lemma 12 The moment generating function of the estimator conditioned on S_1^l and S_2^l , $\hat{v}_{i,l}^{(k)}$, is given by

$$E_{\pi} \left[e^{\theta \hat{v}_{i,l}^{(k)}} \right] = \frac{1}{1 - v_i(e^{\theta} - 1)}$$

for all $i \in S_k^l$, $\theta \le \log \frac{1+v_i}{v_i}$, and k = 1, 2.

Proof. Let N_k^l denote the number of customers who enter tier k in epoch $l \in \mathcal{L}_k$ before no purchase in S_k^l occurs. The probability of no purchase for S_k^l conditioned on entering tier k is

$$p_0(S_k^l) = \frac{1}{1 + \sum_{j \in S_k^l} v_j}.$$

Given any fixed value of N_k^l , $\hat{v}_{i,l}^{(k)}$ is a binomial random variable with N_k^l trials and the success probability (i.e., exiting without choosing any product from current tier) is given by

$$q_i^{(k)}(S_k^l) = P(\mbox{choose}~i~\mbox{from}~S_k^l|\mbox{choose}$$
 at least one product)

$$= \frac{v_i}{1 + \sum_{j \in S_k^l} v_j} / \left(1 - \frac{1}{1 + \sum_{j \in S_k^l} v_j}\right) = \frac{v_i}{\sum_{j \in S_k^l} v_j}.$$

Since the moment generating function for a binomial random variable with parameters n, p is $(pe^{\theta} + 1 - p)^n$, we have

$$E_{\pi}\left[e^{\theta\hat{v}_{i,l}}|N_{k}^{l}\right] = E_{N_{k}^{l}}\left[(q_{i}^{(k)}e^{\theta} + 1 - q_{i}^{(k)})^{N_{k}^{l}}\right].$$

Therefore,

$$\begin{split} E_{\pi} \left[e^{\theta \hat{v}_{i,l}} \right] &= E \left[E_{N_k^l} \left[(q_i^{(k)} e^{\theta} + 1 - q_i^{(k)})^{N_k^l} \right] \right] \\ &= \frac{p_0(S_k^l)}{1 - (q_i^{(k)} e^{\theta} + 1 - q_i^{(k)})(1 - p_0(S_k^l))} \\ &= \frac{1}{1 - v_i(e^{\theta} - 1)} \text{ for all } \theta < \log \frac{1 + v_i}{v_i}. \end{split}$$

Lemma 8 Assume $0 \le v_i \le v_i^{UCB}$ for all $i=1,\cdots,K$. Suppose \mathbf{S}^* is an optimal tiered recommendation when the parameters of SMNL model are given by \mathbf{v} . Then $E[R(\mathbf{S}^*, \mathbf{v}^{UCB})] \ge E[R(\mathbf{S}^*, \mathbf{v})]$.

Proof. For any product $i \in S_2^*$, we have $r_i \geq E[R(S_2^*, \mathbf{v})]$ where

$$E[R(S_2^*, \mathbf{v})] = \frac{\sum_{j \in S_2^*} r_j v_j}{1 + \sum_{j \in S_2^*} v_j},$$

otherwise removing it from S_2^* will improve the expected profit. Let $\Delta v_i = v_i^{UCB} - v_i$, then we have

$$E[R(S_2^*, \mathbf{v}^{UCB})] = \frac{\sum_{j \in S_2^*} r_j v_j + \sum_{j \in S_2^*} r_j \Delta v_j}{1 + \sum_{j \in S_2^*} v_j + \sum_{j \in S_2^*} \Delta v_j}.$$

Since $r_j \geq E[R(S_2^*, \mathbf{v})]$ for $j \in S_2^*$, we have

$$\sum_{j \in S_2^*} r_j \Delta v_j \ge \sum_{j \in S_2^*} \Delta v_j E[R(S_2^*, \mathbf{v})],$$

which implies that

$$\sum_{j \in S_2^*} r_j \Delta v_j \left(1 + \sum_{j \in S_2^*} v_j \right) \ge \left(\sum_{j \in S_2^*} r_j v_j \right) \left(\sum_{j \in S_2^*} \Delta v_j \right).$$

Adding $\left(1 + \sum_{j \in S_2^*} v_j\right) \left(\sum_{j \in S_2^*} r_j v_j\right)$ to both sides,

$$\sum_{j \in S_2^*} r_j \Delta v_j \left(1 + \sum_{j \in S_2^*} v_j \right) + \left(1 + \sum_{j \in S_2^*} v_j \right) \left(\sum_{j \in S_2^*} r_j v_j \right)$$

$$\geq \left(\sum_{j \in S_2^*} r_j v_j\right) \left(\sum_{j \in S_2^*} \Delta v_j\right) + \left(1 + \sum_{j \in S_2^*} v_j\right) \left(\sum_{j \in S_2^*} r_j v_j\right) = \left(\sum_{j \in S_2^*} r_j v_j\right) \left(1 + \sum_{j \in S_2^*} v_j + \sum_{j \in S_2^*} \Delta v_j\right).$$

Therefore, we obtain the following

$$\left(\sum_{j \in S_2^*} r_j v_j + \sum_{j \in S_2^*} r_j \Delta v_j\right) \left(1 + \sum_{j \in S_2^*} v_j\right) \ge \left(\sum_{j \in S_2^*} r_j v_j\right) \left(1 + \sum_{j \in S_2^*} v_j + \sum_{j \in S_2^*} \Delta v_j\right).$$

It implies that

$$E[R(S_2^*, \mathbf{v}^{UCB})] = \frac{\sum_{j \in S_2^*} r_j v_j + \sum_{j \in S_2^*} r_j \Delta v_j}{1 + \sum_{j \in S_2^*} v_j + \sum_{j \in S_2^*} \Delta v_j} \ge \frac{\sum_{j \in S_2^*} r_j v_j}{1 + \sum_{j \in S_2^*} v_j} = E[R(S_2^*, \mathbf{v})].$$

Similarly we can prove that

$$\frac{\sum_{j \in S_1^*} r_j v_j + \sum_{j \in S_1^*} r_j \Delta v_j + E[R(S_2^*, \mathbf{v})]}{1 + \sum_{j \in S_1^*} v_j + \sum_{j \in S_1^*} \Delta v_j} \geq \frac{\sum_{j \in S_1^*} r_j v_j + E[R(S_2^*, \mathbf{v})]}{1 + \sum_{j \in S_1^*} v_j} = E[R(\mathbf{S}^*, \mathbf{v})]$$

for $\Delta v_j > 0$. Combining both results, we have

$$E[R(\mathbf{S}^*, \mathbf{v}^{UCB})] = \frac{\sum_{j \in S_1^*} r_j v_j + \sum_{j \in S_1^*} r_j \Delta v_j + E[R(S_2^*, \mathbf{v}^{UCB})]}{1 + \sum_{j \in S_1^*} v_j + \sum_{j \in S_1^*} \Delta v_j}$$

$$\geq \frac{\sum_{j \in S_1^*} r_j v_j + \sum_{j \in S_1^*} r_j \Delta v_j + E[R(S_2^*, \mathbf{v})]}{1 + \sum_{j \in S_1^*} v_j + \sum_{j \in S_1^*} \Delta v_j} \geq E[R(\mathbf{S}^*, \mathbf{v})].$$

The following lemma is a straightforward derivation from Corollary D.1 from Agrawal et al., 2017a.

Lemma 13 (Concentration bound of geometric random variable) For n i.i.d. geometric random variables X_1, \dots, X_n with parameter $\frac{1}{1+v_i}$ with $v_i \leq 1$, we have

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-v_{i}\right|>\sqrt{\frac{48\log(\lambda+1)}{n}}+\frac{48\log(\lambda+1)}{n}\right)\leq\frac{4}{\lambda^{2}}$$

for any $\lambda > 0$ and all $n \in \mathbb{N}^+$.

Lemma 9 (Minimum learning criterion) For any ϵ and $\alpha > 0$, if the number of epochs $M \ge \frac{192 \log(2/\alpha+1)}{(-1+\sqrt{1+4\epsilon})^2}$, then \bar{v}_i is within the ϵ -confidence bound of v_i with probability at least $1-\alpha$. That is,

$$P(|\bar{v}_{i,l} - v_i| > \epsilon) < 1 - \alpha$$

if
$$T_i(l) > \frac{192 \log(2/\alpha + 1)}{(-1 + \sqrt{1 + 4\epsilon})^2}$$
.

Proof. Set $\lambda = 2/\alpha$. Since $f(t) = t^2 + t - \epsilon$ is negative on $\left[\frac{-1 - \sqrt{-1 + 4\epsilon}}{2}, \frac{-1 + \sqrt{-1 + 4\epsilon}}{2}\right]$ and

$$0<\sqrt{\frac{48\log(\lambda+1)}{M}}\leq \frac{-1+\sqrt{-1+4\epsilon}}{2},$$

we have

$$\sqrt{\frac{48\log(\lambda+1)}{M}} + \frac{48\log(\lambda+1)}{M} \le \epsilon.$$

Therefore, applying Lemma 13, we have

$$P\left(|\hat{v}_i - v_i| > \epsilon\right) \le P\left(|\hat{v}_i - v_i| > \sqrt{\frac{48\log(\lambda + 1)}{M}} + \frac{48\log(\lambda + 1)}{M}\right) \le \frac{4}{\lambda^2} = \alpha.$$

Therefore,

$$P(|\hat{v}_i - v_i| < \epsilon) \ge 1 - \alpha.$$

Lemma 14 The expected profits during one learning epoch, conditioned on S', S'', and v, for the two strategies are

$$E\left[\sum_{t=1}^{N_1} R_t(\mathbf{S}')\right] = \sum_{j \in S_1} r_j v_j + r_m v_m + \frac{\sum_{j \in S_2} r_j v_j}{1 + \sum_{j \in S_2} v_j}$$

and

$$E\left[\sum_{t=1}^{N_2} R_t(\mathbf{S}'')\right] = \left(1 + \sum_{j \in S_2} v_j + v_m\right) \sum_{j \in S_1} r_j v_j + \sum_{j \in S_2} r_j v_j + r_m v_m.$$

Proof. Conditioned on N_1 , the probability of choosing product $j \in S'_1$ at the time before N_1 is

$$\frac{v_j}{1 + \sum_{i \in S_1'} v_i} / \left(1 - \frac{1}{1 + \sum_{i \in S_1'} v_i}\right),$$

and the expected profit to obtain at time N_1 is $\frac{\sum_{j \in S_2} r_j v_j}{1 + \sum_{j \in S_2} v_j}$. Thus the expected profit obtained during the process of getting one sample is

$$\begin{split} E\left[\sum_{t=1}^{N_{1}}R_{t}(\mathbf{S}')\right] &= E\left[E\left[\sum_{t=1}^{N_{1}}R_{t}(\mathbf{S}')\middle|N_{1}\right]\right] \\ &= E\left[\sum_{i=1}^{N_{1}-1}\frac{1}{1+\sum_{j\in S_{1}}v_{j}+v_{m}}\left(\sum_{j\in S_{1}}r_{j}v_{j}+r_{m}v_{m}\right)\middle/\left(1-\frac{1}{1+\sum_{j\in S_{1}}v_{j}+v_{m}}\right)\right] + \frac{\sum_{j\in S_{2}}r_{j}v_{j}}{1+\sum_{j\in S_{2}}v_{j}} \\ &= E\left[\sum_{i=1}^{N_{1}-1}\frac{1}{\sum_{j\in S_{1}}v_{j}+v_{m}}\left(\sum_{j\in S_{1}}r_{j}v_{j}+r_{m}v_{m}\right)\right] + \frac{\sum_{j\in S_{2}}r_{j}v_{j}}{1+\sum_{j\in S_{2}}v_{j}} \end{split}$$

$$= \sum_{j \in S_1} r_j v_j + r_m v_m + \frac{\sum_{j \in S_2} r_j v_j}{1 + \sum_{j \in S_2} v_j},$$

where the last equality follows from the fact that N_1 is a geometric random variable with mean $1 + \sum_{j \in S_1} v_j + v_m$ so $E[N_1 - 1] = \sum_{j \in S_1} v_j + v_m$. Alternatively, since N_1 is a stopping time, the above result can be computed through Wald's equation

$$E\left[\sum_{t=1}^{N_1} R_t(\mathbf{S}')\right] = E[N_1]E[R(\mathbf{S}')] = \sum_{j \in S_1} r_j v_j + r_m v_m + \frac{\sum_{j \in S_2} r_j v_j}{1 + \sum_{j \in S_2} v_j}.$$

If we add the new product to S_2 . Then the expected profit gained during the process of one sample obtained is

$$E\left[\sum_{t=1}^{N_2} R_t(\mathbf{S}'')\right] = E\left[E\left[\sum_{t=1}^{N_2-1} R_t(\mathbf{S}'') \middle| N_2\right]\right]$$

$$= E\left[\sum_{t=1}^{N_2-1} \frac{1}{1 + \sum_{j \in S_1} v_j} \left(\sum_{j \in S_1} r_j v_j + \frac{\sum_{j \in S_2} r_j v_j + r_m v_m}{1 + \sum_{j \in S_2} v_j + v_m}\right)\right/$$

$$\left(1 - \frac{1}{(1 + \sum_{j \in S_1} v_j)(1 + \sum_{j \in S_2} v_j + v_m)}\right)\right]$$

$$= \left(1 + \sum_{j \in S_2} v_j + v_m\right) \left(\sum_{j \in S_1} r_j v_j + \frac{\sum_{j \in S_2} r_j v_j + r_m v_m}{1 + \sum_{j \in S_2} v_j + v_m}\right)$$

$$= \left(1 + \sum_{j \in S_2} v_j + v_m\right) \sum_{j \in S_1} r_j v_j + \sum_{j \in S_2} r_j v_j + r_m v_m,$$

where the second last equality follows from the fact that N_2 is a geometric random variable with mean $\left(1 + \sum_{j \in S_1} v_j\right) \left(1 + \sum_{j \in S_2} v_j + v_m\right)$.

Theorem 10 The optimal solution to $G^{(1)}$ and $G^{(2)}$ is the same as S^* . That is,

$$\mathbf{Q}^* = \mathbf{Q}'^* = \mathbf{S}^*.$$

In addition, we have

$$G^{(1)}(\mathbf{S}^*, \mathbf{v}) \ge G^{(2)}(\mathbf{S}^*, \mathbf{v}) = v_m(E[R(S_2^*)] - r_m).$$

Proof. Let \mathbf{Q}^* and \mathbf{Q}'^* denote the optimal tiered recommendation solution that minimizes the regret $G^{(1)}$ and $G^{(2)}$, respectively. Note that

$$G^{(1)}(\mathbf{Q}, \mathbf{v}) = E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in Q_1} v_j + v_m \right) - \left(\sum_{j \in Q_1} r_j v_j + r_m v_m + \frac{\sum_{j \in Q_2} r_j v_j}{1 + \sum_{j \in Q_2} v_j} \right).$$

Let \mathbf{Q}^* denote the optimal solution. The optimal recommendation $\mathbf{Q}^* = (Q_1^*, Q_2^*)$ satisfies

$$Q_1^* = \underset{Q_1}{\operatorname{argmin}} \sum_{j \in Q_1} v_j (E[R(\mathbf{S}^*)] - r_j),$$

and

$$Q_2^* = \underset{Q_2}{\operatorname{argmin}} - \frac{\sum_{j \in Q_2} r_j v_j}{1 + \sum_{j \in Q_2} v_j}.$$

From the above equation, $j \in Q_1^*$ if and only if $r_j > E[R(\mathbf{S}^*)]$. As is shown in Proposition 4, it implies that $Q_1^* = S_1^*$. The second equality implies that $Q_2^* = S_2^*$ so $\mathbf{Q}^* = \mathbf{S}^*$.

Note that

$$G^{(2)}(\mathbf{Q}', \mathbf{v}) = E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in Q_1'} v_j \right) \left(1 + \sum_{j \in Q_2'} v_j + v_m \right)$$
$$- \left(1 + \sum_{j \in Q_2'} v_j + v_m \right) \sum_{j \in Q_1'} r_j v_j - \sum_{j \in Q_2'} r_j v_j - r_m v_m.$$

Minimizing $G^{(2)}(\mathbf{Q}',\mathbf{v})$ is equivalent to solving the optimization problem

$$\max_{\mathbf{Q'}} \left(1 + \sum_{j \in Q'_2} v_j \right) \left(1 + \sum_{j \in Q'_1} v_j \right) (E[R(\mathbf{Q'})] - E[R(\mathbf{S^*})]) + v_m \left(1 + \sum_{j \in Q'_1} v_j \right) (E[R(Q'_1)] - E[R(\mathbf{S^*})]).$$
(1)

For any fixed set Q'_2 , to find the optimal Q'_1 , note that

$$Eq(1) = \left(1 + \sum_{j \in Q'_2} v_j\right) \left(\sum_{j \in Q'_1} r_j v_j + E[R(Q'_2)]\right) + v_m \left(\sum_{j \in Q'_1} r_j v_j + E[R(Q'_2)]\right)$$

$$- \left(1 + \sum_{j \in Q'_2} v_j + v_m\right) \left(1 + \sum_{j \in Q'_1} v_j\right) E[R(\mathbf{S}^*)]$$

$$= \left(1 + \sum_{j \in Q'_2} v_j + v_m\right) \sum_{j \in Q'_1} r_j v_j - E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in Q'_2} v_j + v_m\right) \left(\sum_{j \in Q'_1} v_j\right)$$

$$+ (E[R(Q'_2)] - E[R(\mathbf{S}^*)]) \left(1 + \sum_{j \in Q'_2} v_j + v_m\right).$$

Therefore

$$Q_1'^* = \max_{Q_1'} \quad \left(1 + \sum_{j \in Q_2'} v_j + v_m\right) \sum_{j \in Q_1'} r_j v_j - E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in Q_2'} v_j + v_m\right) \left(\sum_{j \in Q_1'} v_j\right)$$

$$= \max_{Q_1'} \sum_{j \in Q_1'} r_j v_j - E[R(\mathbf{S}^*)] \left(\sum_{j \in Q_1'} v_j \right).$$

It implies that $j \in Q_1^{'*}$ if and only if $r_j \geq E[R(\mathbf{S}^*)]$. For any $i \in S_1^*$, we have $r_i \geq E[R(\mathbf{S}^*)]$, which implies that $S_1^* \subset Q_1^{'*}$. Also, for any product that $r_i \geq E[R(\mathbf{S}^*)]$ and $i \in X_1$, it is included in $Q_1^{'*}$. It implies that the optimal $Q_1^{'*}$ is S_1^* . For the fixed set S_1^* , we find the optimal $Q_2^{'}$. Note that the second term in Eq 1 is not dependent on $Q_2^{'}$, and the first term with $Q_1^{'} = S_1^*$ equals

$$\left(1 + \sum_{j \in Q_2'} v_j\right) \left(1 + \sum_{j \in S_1^*} v_j\right) \left(E[R((S_1^*, Q_2'))] - E[R(\mathbf{S}^*)]\right)
= \left(1 + \sum_{j \in Q_2'} v_j\right) \left(\sum_{j \in S_1^*} r_j v_j\right) + \sum_{j \in Q_2'} r_j v_j - \left(1 + \sum_{j \in Q_2'} v_j\right) \left(1 + \sum_{j \in S_1^*} v_j\right) E[R(\mathbf{S}^*)]
= \left(\sum_{j \in S_1^*} r_j v_j - \left(1 + \sum_{j \in S_1^*} v_j\right) E[R(\mathbf{S}^*)]\right) \left(\sum_{j \in Q_2'} v_j\right) + \sum_{j \in Q_2'} r_j v_j
+ \sum_{j \in S_1^*} r_j v_j - \left(1 + \sum_{j \in S_1^*} v_j\right) E[R(\mathbf{S}^*)].$$

For the optimal $Q_2^{\prime*}$,

$$\begin{aligned} Q_2'^* &= \operatorname*{argmax}_{Q_2'} \left(\sum_{j \in S_1^*} r_j v_j - \left(1 + \sum_{j \in S_1^*} v_j \right) E[R(\mathbf{S}^*)] \right) \left(\sum_{j \in Q_2'} v_j \right) + \sum_{j \in Q_2'} r_j v_j \\ &= \operatorname*{argmax}_{Q_2'} \left(1 + \sum_{j \in S_1^*} v_j \right) (E[R(S_1^*)] - E[R(\mathbf{S}^*)]) \left(\sum_{j \in Q_2'} v_j \right) + \sum_{j \in Q_2'} r_j v_j. \end{aligned}$$

Therefore $j \in Q_2'$ if and only if

$$r_j > \left(1 + \sum_{j \in S_1^*} v_j\right) \left(E[R(\mathbf{S}^*)] - E[R(S_1^*)]\right) = E[R(S_2^*)].$$

It implies that $Q_2^{\prime *} = S_2^*$ so $\mathbf{Q}^{\prime *} = \mathbf{S}^*$.

For $G^{(1)}(\mathbf{S}^*, \mathbf{v})$, we have

$$G^{(1)}(\mathbf{S}^*, \mathbf{v}) = E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in S_1^*} v_j + v_m \right) - \left(\sum_{j \in S_1^*} r_j v_j + r_m v_m + \frac{\sum_{j \in S_2^*} r_j v_j}{1 + \sum_{j \in S_2^*} v_j} \right)$$

$$= E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in S_1^*} v_j \right) - \left(\sum_{j \in S_1^*} r_j v_j + \frac{\sum_{j \in S_2^*} r_j v_j}{1 + \sum_{j \in S_2^*} v_j} \right) + E[R(\mathbf{S}^*)] v_m - v_m r_m$$

$$= v_m(E[R(\mathbf{S}^*)] - r_m).$$

Similarly, we have

$$G^{(2)}(\mathbf{S}^*, \mathbf{v}) = E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in S_1^*} v_j \right) \left(1 + \sum_{j \in S_2^*} v_j + v_m \right)$$

$$- \left(1 + \sum_{j \in S_2^*} v_j + v_m \right) \sum_{j \in S_1^*} r_j v_j - \sum_{j \in S_2^*} r_j v_j - r_m v_m$$

$$= \left(1 + \sum_{j \in S_2^*} v_j \right) \left(E[R(\mathbf{S}^*)] \left(1 + \sum_{j \in S_1^*} v_j \right) - \sum_{j \in S_1^*} r_j v_j - \frac{\sum_{j \in S_2^*} r_j v_j}{1 + \sum_{j \in S_2^*} v_j} \right)$$

$$+ v_m \left(1 + \sum_{j \in S_1^*} v_j \right) \left(E[R(\mathbf{S}^*)] - \frac{\sum_{j \in S_1^*} r_j v_j}{1 + \sum_{j \in S_1^*} v_j} \right) - r_m v_m$$

$$= v_m (E[R(S_2^*)] - r_m).$$

Since $E[R(\mathbf{S}^*)] \geq E[R(S_2^*)]$ as shown in Proposition 4, we have $G^{(1)}(\mathbf{S}^*, \mathbf{v}) \geq G^{(2)}(\mathbf{S}^*, \mathbf{v})$. Lemma 15 provides the concentration bound of $v_{i,l}^{UCB}$, which is a straightforward conclusion from Lemma 4.1 from Agrawal et al., 2017a.

Lemma 15 (Concentration bound) For every $l \in \mathcal{L}$, we have

- a.) $v_{i,l}^{UCB} \geq v_i$ with probability at least $1 \frac{6}{K^2 l}$ for all $i = 1, \dots, K$.
- b.) There exists constants C_1 and C_2 such that $v_{i,l}^{UCB} \bar{v}_{i,l} \leq C_1 \sqrt{\frac{v_i \log(Kl+1)}{T_i(l)}} + C_2 \frac{\log(Kl+1)}{T_i(l)}$. with probability at least $1 \frac{7}{K^2l}$.

Theorem 11 (Performance bound for Algorithm 1) The regret during time [0,T] is bounded above by

$$Reg_{\pi}(T; \mathbf{v}) \le CK \log^2(KT) + C\sqrt{TK \log(KT)} + M \sum_{i \in X} v_i(r_{max} - r_i),$$

for some constant C where r_{max} is the highest profit among X, and K is the total number of products.

Proof. Since products are being dynamically launched, the optimal recommendation is changing. Let \mathbf{S}_l^* ($\tilde{\mathbf{S}}^l$) be the optimal recommendation among sets (X_1^l, X_2^l) with value \mathbf{v} (\mathbf{v}_l^{UCB}). The new product is defined as the product whose learning epoch is less than M. Define H_l as the set of new products that are not in \tilde{S}_2^l but are added to the second-tier recommendation at epoch l for $l \in \mathcal{L}_2$.

Also define the function $\kappa(l)$ as a set of epochs on tier 1 which corresponds to epoch $l \in \mathcal{L}_2$. (In the example of Fig 1, $\kappa(0) = \{0, 1\}$, $\kappa(3) = \{3, 4\}$.) The summation of the regret until time T is

$$Reg_{\pi}(T; \mathbf{v}) = E_{\pi} \left\{ \sum_{l \in \mathcal{L}_2} \sum_{j \in \kappa(l)} \sum_{t \in \varepsilon_j^1} \left(R_t(\mathbf{S}_j^*, \mathbf{v}) - R_t \left((\tilde{S}_1^j, \tilde{S}_2^l \cup H_l), \mathbf{v} \right) \right) \right\},$$

where R_t denotes the profit obtained at time t. Define \mathcal{F}_l as the filtration associated with the policy up to epoch l. Since

$$E_{\pi} \left\{ \sum_{l \in \mathcal{L}_2} \sum_{j \in \kappa(l)} \sum_{t \in \varepsilon_j^1} R_t \left((\tilde{S}_1^j, (\tilde{S}_2^l \cup H_l)), \mathbf{v} \right) \right\}$$

$$= E_{\pi} \left\{ \sum_{l \in \mathcal{L}_2} \sum_{j \in \kappa(l)} \sum_{t \in \varepsilon_j^1} R_t \left(\tilde{S}_1^j, \mathbf{v} \right) + \sum_{l \in \mathcal{L}_2} \sum_{t \in \varepsilon_j^2} R_t (\tilde{S}_2^l \cup H_l, \mathbf{v}) \right\},$$

we have

$$Reg_{\pi}(T; \mathbf{v}) = E_{\pi} \left\{ \sum_{l \in \mathcal{L}_2} \left(\left(\sum_{j \in \kappa(l)} \sum_{t \in \varepsilon_j^1} R_t(\mathbf{S}_j^*, \mathbf{v}) - R_t(\tilde{S}_1^j, \mathbf{v}) \right) - \sum_{t \in \varepsilon_2^l} R_t(\tilde{S}_2^l \cup H_l, \mathbf{v}) \right) \right\}.$$

For all $l = 1, \dots, |\mathcal{L}|$, define the event A_l as

$$A_{l} = \bigcap_{i=1}^{K} \left\{ v_{i,l}^{UCB} - C_{1} \sqrt{\frac{v_{i} \log(K(l-l_{i,0})+1)}{T_{i}(l)}} + C_{2} \frac{\log(K(l-l_{i,0})+1)}{T_{i}(l)} < v_{i} < v_{i,l}^{UCB} \right\}.$$

For products not launched before epoch l, we assume they directly fall into this confidence bound in epoch l. Conditional on A_jA_l for $j \in \mathcal{L}_1$ and $l \in \mathcal{L}_2$, according to Lemma 8, we have

$$E[R(\tilde{\mathbf{S}}^l, \mathbf{v})] \le E[R(\mathbf{S}^*, \mathbf{v})] \le E[R(\mathbf{S}^*, \mathbf{v}_l^{UCB})] \le E[R(\tilde{\mathbf{S}}^l, \mathbf{v}_l^{UCB})],$$

so $E[R(\mathbf{S}^*, \mathbf{v})] - E[R(\tilde{\mathbf{S}}^l, \mathbf{v})]$ can be bounded from above by $E_{\pi}[R(\tilde{\mathbf{S}}_j, \mathbf{v}_j^{UCB} \oplus \mathbf{v}_l^{UCB})] - E_{\pi}[R(\mathbf{S}_j^*, \mathbf{v})]$ where $\mathbf{v}_j^{UCB} \oplus \mathbf{v}_l^{UCB}$ denotes using \mathbf{v}_j^{UCB} and \mathbf{v}_l^{UCB} to calculate the first- and second-tier recommendation, respectively. Then we have for a given $l \in \mathcal{L}_2$,

$$E_{\pi} \left\{ \left(\left(\sum_{j \in \kappa(l)} \sum_{t \in \varepsilon_{j}^{1}} R_{t}(\mathbf{S}_{j}^{*}, \mathbf{v}) - R_{t}(\tilde{S}_{1}^{j}, \mathbf{v}) \right) - \sum_{t \in \varepsilon_{2}^{l}} R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) \right) 1(A_{l}) \right\}$$

$$\leq E_{\pi} \left\{ \sum_{j \in \kappa(l)} \left(\sum_{t \in \varepsilon_{j}^{1}} R_{t}(\mathbf{S}_{j}^{*}, \mathbf{v}) - R_{t}(\tilde{S}_{1}^{j}, \mathbf{v}) \right) 1(A_{j}A_{l}) - \sum_{t \in \varepsilon_{l}^{2}} R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) 1(A_{l}) + \sum_{j \in \kappa(l)} 1(A_{j}^{c}) \sum_{t \in \varepsilon_{j}^{1}} r_{max} \right\}$$

$$\leq E_{\pi} \left\{ \sum_{j \in \kappa(l)} \left(\sum_{t \in \varepsilon_{j}^{1}} R_{t}(\tilde{\mathbf{S}}^{j}, \mathbf{v}_{j}^{UCB} \oplus \mathbf{v}_{l}^{UCB}) - R_{t}(\tilde{S}_{1}^{j}, \mathbf{v}) \right) 1(A_{j}A_{l}) \right\}$$

$$-\sum_{t \in \varepsilon_{l}^{2}} R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) 1(A_{l}) + \sum_{j \in \kappa(l)} 1(A_{j}^{c}) E_{\pi} \left[\sum_{t \in \varepsilon_{j}^{1}} r_{max} | \mathcal{F}_{j-1} \right] \right\}$$

$$\leq E_{\pi} \left\{ \sum_{j \in \kappa(l)} 1(A_{j}A_{l}) E\left[\sum_{t \in \varepsilon_{j}^{1}} R_{t}(\tilde{\mathbf{S}}^{j}, \mathbf{v}_{j}^{UCB} \oplus \mathbf{v}_{l}^{UCB}) - R_{t}(\tilde{S}_{1}^{j}, \mathbf{v}) \middle| \mathcal{F}_{j-1} \right] - \sum_{t \in \varepsilon_{l}^{2}} R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) 1(A_{l}) + r_{max}(1 + K) \sum_{j \in \kappa(l)} 1(A_{j}^{c}) \right\},$$

where r_{max} is the maximum profit among all products in X. Since on the event A_jA_l , we have

$$E\left[\sum_{t \in \mathcal{E}_{j}^{1}} R_{t}(\tilde{\mathbf{S}}^{j}, \mathbf{v}_{j}^{UCB} \oplus \mathbf{v}_{l}^{UCB}) - R_{t}(\tilde{S}_{1}^{j}, \mathbf{v}) \middle| \mathcal{F}_{j-1}\right]$$

$$= \left(1 + \sum_{i \in \tilde{S}_{1}^{j}} v_{i}\right) \frac{\sum_{i \in \tilde{S}_{1}^{j}} r_{i} v_{i,j}^{UCB} + \frac{\sum_{i \in \tilde{S}_{2}} r_{i} v_{i,l}^{UCB}}{1 + \sum_{i \in \tilde{S}_{1}^{j}} v_{i,j}^{UCB}} - \sum_{i \in \tilde{S}_{1}^{j}} r_{i} v_{i}\right]$$

$$\leq \sum_{i \in \tilde{S}_{1}^{j}} r_{i} (v_{i,j}^{UCB} - v_{i}) + E[R(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB}) | \mathcal{F}_{l-1}],$$

where the first equality uses Wald's equation and the fact that $|\epsilon_j^1|$ follows the geometric distribution with mean $(1 + \sum_{i \in \tilde{S}_i^j} v_i)$. Therefore, we have

$$\begin{aligned} Reg_{\pi}(T; \mathbf{v}) &\leq E_{\pi} \left\{ \sum_{l \in \mathcal{L}_{2}} \sum_{j \in \kappa(l)} \sum_{i \in \tilde{S}_{1}^{j}} r_{i}(v_{i,j}^{UCB} - v_{i}) \mathbf{1}(A_{j}) \right. \\ &+ \sum_{l \in \mathcal{L}_{2}} \sum_{t \in \varepsilon_{l}^{2}} \left(E[R_{t}(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB}) | \mathcal{F}_{l-1}] - R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) \right) \mathbf{1}(A_{l}) \\ &+ r_{max}(1 + K) \sum_{l \in \mathcal{L}_{2}} \sum_{j \in \kappa(l)} \mathbf{1}(A_{j}^{c}) + r_{max} \sum_{l \in \mathcal{L}_{2}} \sum_{j \in \kappa(l)} \sum_{t \in \varepsilon_{l}^{j}} \mathbf{1}(A_{l}^{c}) \right\} \\ &\leq E_{\pi} \left\{ \sum_{l \in \mathcal{L}_{2}} \sum_{j \in \kappa(l)} \sum_{i \in \tilde{S}_{1}^{j}} r_{i}(v_{i,j}^{UCB} - v_{i}) \mathbf{1}(A_{j}) \right. \\ &+ \sum_{l \in \mathcal{L}_{2}} \sum_{t \in \varepsilon_{l}^{2}} \left(E[R_{t}(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB}) | \mathcal{F}_{l-1}] - R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) \right) \mathbf{1}(A_{l}) \\ &+ r_{max}(1 + K) \sum_{j \in \mathcal{L}_{1}} \mathbf{1}(A_{j}^{c}) + r_{max}(1 + K)^{2} \sum_{l \in \mathcal{L}_{2}} \mathbf{1}(A_{l}^{c}) \right\}. \end{aligned}$$

Since

$$E_{\pi} \left\{ \sum_{l \in \mathcal{L}_{2}} \sum_{t \in \mathcal{E}_{l}^{2}} \left(E[R_{t}(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB}) | \mathcal{F}_{l-1}] - R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) \right) 1(A_{l}) \right\}$$

$$= E_{\pi} \left\{ \sum_{l \in \mathcal{L}_{2}} 1(A_{l}) E\left[\sum_{t \in \mathcal{E}_{l}^{2}} \left(R_{t}(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB}) - R_{t}(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) \right) \middle| \mathcal{F}_{l-1} \right] \right\}$$

$$\leq E_{\pi} \left\{ \sum_{l \in \mathcal{L}_{2}} \left(1 + \sum_{i \in \tilde{S}_{2}^{l}} v_{i} + \sum_{i \in H_{l}} v_{i} \right) \left(E[R(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB}) - R(\tilde{S}_{2}^{l} \cup H_{l}, \mathbf{v}) | \mathcal{F}_{l-1}] \right) 1(A_{l}) \right\}$$

$$= E_{\pi} \left\{ \sum_{l \in \mathcal{L}_{2}} \left(\sum_{i \in \tilde{S}_{2}^{l}} r_{i}(v_{i,l}^{UCB} - v_{i}) + \sum_{i \in H_{l}} v_{i}(E[R(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB})] - r_{i}) \right) 1(A_{l}) \right\}$$

$$= E_{\pi} \left[\sum_{l \in \mathcal{L}_{2}} \sum_{i \in \tilde{S}_{2}^{l}} r_{i}(v_{i,l}^{UCB} - v_{i}) 1(A_{l}) \right] + E_{\pi} \left[\sum_{l \in \mathcal{L}_{2}} \sum_{i \in H_{l}} v_{i}(E[R(\tilde{S}_{2}^{l}, \mathbf{v}_{l}^{UCB})] - r_{i}) 1(A_{l}) \right],$$

and

$$E_{\pi} \left[\sum_{l \in \mathcal{L}_2} \sum_{i \in H_l} v_i(E[R(\tilde{S}_2^l, \mathbf{v}_l^{UCB})] - r_i) 1(A_l) \right] \le M \sum_{i \in X} v_i(r_{max} - r_i).$$

The above inequality holds since any product will be included in H for at most M times. Thus, we have

$$Reg_{\pi}(T; \mathbf{v}) \le E_{\pi} \left[\Delta R + r_{max}(1+K) \sum_{l \in \mathcal{L}_1} 1(A_l^c) + r_{max}(1+K)^2 \sum_{l \in \mathcal{L}_2} 1(A_l^c) \right] + M \sum_{i \in X} v_i (r_{max} - r_i),$$

where

$$\Delta R = \sum_{l \in \mathcal{L}_1} \sum_{i \in \tilde{S}_1^l} r_i (v_{i,l}^{UCB} - v_i) 1(A_l) + \sum_{l \in \mathcal{L}_2} \sum_{i \in \tilde{S}_2^l} r_i (v_{i,l}^{UCB} - v_i) 1(A_l).$$

According to Lemma 15, we have

$$P(A_l^c) \le \sum_{i \in X} \frac{13}{K^2(l - l_{i,0})} 1(l > l_{i,0}),$$

which implies that

$$E_{\pi} \left[(1+K) \sum_{l \in \mathcal{L}_{1}} 1(A_{l}^{c}) + (1+K)^{2} \sum_{l \in \mathcal{L}_{2}} 1(A_{l}^{c}) \right]$$

$$\leq E_{\pi} \left[(1+K) \sum_{l \in \mathcal{L}_{1}} \sum_{i \in X} \frac{13}{K^{2}(l-l_{i,0})} 1(l>l_{i,0}) + (1+K)^{2} \sum_{l \in \mathcal{L}_{2}} \sum_{i \in X} \frac{13}{K^{2}(l-l_{i,0})} 1(l>l_{i,0}) \right]$$

$$\leq \left(\frac{1+K}{K^2} + \frac{(1+K)^2}{K^2}\right) \sum_{t=1}^{2T} K \frac{13}{t} \leq C_3 K \log(T)$$

for some constant C_3 . Since

$$\begin{split} \Delta R &\leq \sum_{l \in \mathcal{L}_2} \sum_{i \in \tilde{S}_2^l} \left(C_1 \sqrt{\frac{v_i \log(K(l - l_{i,0}) + 1)}{T_i(l)}} + C_2 \frac{\log(K(l - l_{i,0}) + 1)}{T_i(l)} \right) \\ &+ \sum_{l \in \mathcal{L}_1} \sum_{i \in \tilde{S}_1^l} \left(C_1 \sqrt{\frac{v_i \log(K(l - l_{i,0}) + 1)}{T_i(l)}} + C_2 \frac{\log(K(l - l_{i,0}) + 1)}{T_i(l)} \right) \\ &\leq 2 \sum_{i = 1}^K \sum_{t = 1}^{T_i} \left(C_1 \sqrt{\frac{v_i \log(KT + 1)}{t}} + C_2 \frac{\log(KT + 1)}{t} \right), \end{split}$$

where T_i is total number of epochs for product i at time T, we have

$$Reg_{\pi}(T; \mathbf{v}) \leq 2E_{\pi} \left[\sum_{i=1}^{K} \sum_{t=1}^{T_{i}} \left(C_{1} \sqrt{\frac{v_{i} \log(KT+1)}{t}} + C_{2} \frac{\log(KT+1)}{t} \right) \right]$$

$$+ r_{max} E_{\pi} \left[(1+K) \sum_{l \in \mathcal{L}_{1}} 1(A_{l}^{c}) + (1+K)^{2} \sum_{l \in \mathcal{L}_{2}} 1(A_{l}^{c}) \right] + M \sum_{i \in X} v_{i} (r_{max} - r_{i})$$

$$\leq C_{4} K \log^{2}(KT) + C_{4} \sum_{i=1}^{K} E_{\pi} \left[\sqrt{v_{i} T_{i} \log(KT)} \right] + C_{4} K \log T + M \sum_{i \in X} v_{i} (r_{max} - r_{i})$$

$$\leq C_{4} K \log^{2}(KT) + C_{4} \sum_{i=1}^{K} \sqrt{v_{i} E_{\pi}[T_{i}] \log(KT)} + C_{4} K \log T + M \sum_{i \in X} v_{i} (r_{max} - r_{i}).$$

Since

$$E_{\pi} \left[\sum_{l \in \mathcal{L}_1} |\varepsilon_l^1| + \sum_{l \in \mathcal{L}_2} |\varepsilon_l^2| \right] \le 4T,$$

and

$$E_{\pi} \left[\sum_{k=1}^{2} \sum_{l \in \mathcal{L}_{k}} |\varepsilon_{l}^{k}| \right] = E_{\pi} \left[\sum_{k=1}^{2} \sum_{l \in \mathcal{L}_{k}} E\left[|\varepsilon_{l}^{k}| \middle| \mathcal{F} \right] \right]$$

$$\geq E_{\pi} \left[\sum_{k=1}^{2} \sum_{l \in \mathcal{L}_{k}} \left(1 + \sum_{i \in S_{k}^{l}} v_{i} \right) \right] \geq \sum_{i=1}^{K} E_{\pi}[T_{i}]v_{i},$$

where \mathcal{F} is the filtration corresponding to the recommendation offered in each epoch. To obtain the worst-case bound, we have

$$\max \sum_{i=1}^{K} \sqrt{v_i E[T_i] \log(KT)}$$

$$s.t. \quad \sum_{i=1}^{K} E[T_i]v_i \le 4T.$$

The maximum possible objective value is $2\sqrt{TK\log(KT)}$. Therefore we conclude that

$$Reg_{\pi}(T; \mathbf{v}) \le CK \log^2(KT) + C\sqrt{TK \log(KT)} + M \sum_{i \in X} v_i(r_{max} - r_i)$$

for some constant C.

Remark: The regret bound can be extended to multiple tiers. Similar to the proof for Theorem 11, define the function $\kappa_r(l)$ as a set of epochs on tier r which corresponds to epoch $l \in \mathcal{L}_{r+1}$. Then the summation of the regret until time T is

$$Reg_{\pi}(T; \mathbf{v})$$

$$= E_{\pi} \left\{ \sum_{l_{W} \in \mathcal{L}_{W}} \sum_{l_{W-1} \in \kappa_{W-1}(l_{W})} \cdots \sum_{l_{1} \in \kappa_{1}(l_{2})} \sum_{t \in \varepsilon_{l_{1}}^{1}} \left(R_{t}(\mathbf{S}_{j}^{*}, \mathbf{v}) - R_{t} \left((\tilde{S}_{1}^{l_{1}}, \tilde{S}_{2}^{l_{2}}, \cdots, \tilde{S}_{W}^{l_{W}} \cup H_{l_{W}}), \mathbf{v} \right) \right) \right\},$$

and the remaining analysis follows similarly.