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Abstract
We present a novel technique for tailoring
Bayesian quadrature (BQ) to model selection. The
state-of-the-art for comparing the evidence of
multiple models relies on Monte Carlo methods,
which converge slowly and are unreliable for com-
putationally expensive models. Although previ-
ous research has shown that BQ offers sample
efficiency superior to Monte Carlo in computing
the evidence of an individual model, applying BQ
directly to model comparison may waste computa-
tion producing an overly-accurate estimate for the
evidence of a clearly poor model. We propose an
automated and efficient algorithm for computing
the most-relevant quantity for model selection:
the posterior model probability. Our technique
maximizes the mutual information between this
quantity and observations of the models’ likeli-
hoods, yielding efficient sample acquisition across
disparate model spaces when likelihood observa-
tions are limited. Our method produces more-
accurate posterior estimates using fewer likeli-
hood evaluations than standard Bayesian quadra-
ture and Monte Carlo estimators, as we demon-
strate on synthetic and real-world examples.

1. Introduction
Model selection is a fundamental problem that arises in
the course of scientific inquiry: which of several candidate
models best explains an observed dataset D? The Bayesian
approach to model selection involves computing posterior
model probabilities, the probability that each model gener-
ated the observations. This approach requires computing
model evidences, which can be expressed as integrals of the
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form Z =
∫
f(D | θ)π(θ) dθ, where θ is a vector of model

parameters, f(D | θ) is a likelihood, and π(θ) is a prior.

Unfortunately, for many real-world model selection tasks,
these integrals are computationally intractable and must
be estimated numerically. Numerous commonly-used tech-
niques to estimate such integrals rely on Monte Carlo es-
timators (Metropolis et al., 1953; Hastings, 1970). These
methods converge slowly in terms of the number of required
integrand samples as they do not incorporate knowledge
about sample locations. This makes such methods ill-suited
for settings where the integrand is expensive to evaluate.

One alternative is Bayesian quadrature (BQ) (Larkin, 1972;
Diaconis, 1988; O’Hagan, 1991; Rasmussen & Ghahramani,
2003), which relies on a probabilistic belief on the integrand
that can be conditioned on observations to derive a posterior
belief about the value of the integral. The theoretical prop-
erties of kernel quadrature methods (including BQ) have
been studied at length: these methods can achieve faster
convergence rates than Monte Carlo estimators (Briol et al.,
2015; Bach, 2017; Karvonen et al., 2018), even when the
underlying model is misspecified (Kanagawa et al., 2016;
2017), a commonly-cited pitfall of kernel-based methods.

There has been significant work investigating how tradi-
tional, Monte Carlo based methods can be adapted to ef-
ficiently estimate posterior model probabilities for model
selection (Neal, 2001; Green, 1995; Carlin & Chib, 1995;
Meng & Wong, 1996; Godsill, 2001; Skilling, 2004). How-
ever, no analogous work has appeared to adapt BQ for this
important task. That is our goal in this work.

We propose a principled adaptation of BQ designed to auto-
mate model selection. Specifically, we define a novel acqui-
sition function for active selection of locations to observe
model likelihoods. This acquisition function corresponds to
the mutual information between observations of the model
likelihood and a quantity specifically relevant to the task
of model selection: the posterior model probabilities. This
allows our method to automatically select informative sam-
ple locations across multiple model parameter spaces unlike
previous active BQ approaches to model selection (Osborne
et al., 2012; Gunter et al., 2014; Chai & Garnett, 2019),
which focused on accurately estimating individual model ev-
idences. We illustrate the shortcomings of such approaches
using a toy motivating example. Experiments conducted on
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real-world and synthetic data demonstrate that our proposed
method can outperform existing BQ techniques and special-
ized Monte Carlo methods in terms of efficiently reaching
accurate estimates of posterior model probabilities.

2. Related Work
Much work has been devoted to developing Monte Carlo
methods specifically designed for model selection. Broadly
speaking, these methods can be broken down into two
groups: within-model approaches, such as annealed im-
portance sampling (AIS) (Neal, 2001), nested sampling
(Skilling, 2004), and bridge sampling (Bennett, 1976; Meng
& Wong, 1996), and trans-dimensional approaches such as
Green’s (1995) reversible jump MCMC and Godsill’s (2001)
composite model space framework, a generalization of the
product-space approach proposed by Carlin & Chib (1995).
Within-model approaches estimate each model’s model ev-
idence separately, whereas trans-dimensional approaches
directly estimate posterior model probabilities.

In our experiments we compare our method against one
prominent Monte Carlo method from each category: bridge
sampling (within-model) and reversible jump MCMC (trans-
dimensional). All commonly used Monte Carlo methods for
model selection have pros and cons, and their performance
on specific tasks can be greatly affected by open-ended mod-
eling choices such as the choice of intermediate densities
for AIS or the choice of pseudo-priors for the composite
model space framework of Godsill (2001). It is beyond the
scope of this work to comprehensively analyze all widely
used Monte Carlo model selection methods; however, we
believe the chosen benchmarks to be reasonable and com-
petitive. In particular, the design choices associated with
bridge sampling are easily justified and give rise to greater
transparency in our experimental design as opposed to many
possible alternatives.

Among the commonly used trans-dimensional methods, the
original product space approach of Carlin & Chib (1995)
made use of a Gibbs sampler, which requires conjugate con-
ditional likelihoods that do not exist in many model selection
settings. Godsill (2001) showed that replacing the Gibbs
sampler in their composite space model with a Metropolis–
Hastings proposal mechanism gives rise to Green’s (1995)
reversible jump MCMC. Godsill (2001) also claimed that
the use of such a Metropolis–Hastings proposal mechanism
is preferable to the use of a Gibbs sampler in nested model
settings, that is, settings where there is an overlap in model
parameter spaces. As our real-world experimental setting is
a model selection task between nested models, the choice to
compare against reversible jump MCMC is well justified.

Previous work has been done on adapting BQ to situations
where the integrand of an intractable integral is known to

be nonnegative a priori (Osborne et al., 2012; Gunter et al.,
2014; Chai & Garnett, 2019). Such integrals occur fre-
quently in machine learning tasks, including model selec-
tion: the model evidence is an integral of probability distri-
butions, which are nonnegative everywhere. These methods
make use of warped Gaussian processes (GPs) (Snelson
et al., 2004) to weakly enforce the nonnegativity constraint.
They have been shown to outperform BQ algorithms that
are agnostic to a priori information on a variety of model
selection tasks. However, we will show that our method
can lead to even greater improvements. Furthermore, our
methodology is compatible with the use of warped GPs; in
fact, our proposed method can be seen as an instantiation
of the framework laid out by Chai & Garnett (2019) with a
novel acquisition function.

As a final note, our focus in this manuscript is on the tradi-
tional Bayesian approach to model selection, which involves
the computation of model posteriors. We acknowledge
the existence of several alternative approaches to Bayesian
model selection (Bernardo & Smith, 1994; Vehtari, 2001;
Watanabe, 2010). An extension of our proposed method to
these alternatives is a potential line of future inquiry.

3. Background
3.1. Bayesian Model Selection

For the purposes of this work, a model is defined as a para-
metric family of probability distributions that can be used
to explain some observed dataset, D. Given a finite set of
candidate models {M1, . . . ,Mk}, the Bayesian approach
to inference in this setting is to reason about the conditional
or posterior distribution over models via Bayes theorem:

Pr(Mi | D) =
Pr(D | Mi) Pr(Mi)

Pr(D)

=
Pr(D | Mi) Pr(Mi)∑k
j=1 Pr(D | Mj) Pr(Mj)

(1)

where Pr(Mi | D) is known as the posterior probability of
modelMi, Pr(D | Mi) is the model evidence of model
Mi and Pr(Mi) is the prior probability of modelMi. The
computation of model evidences requires integrating out
the model parameters that control the likelihood of a given
model generating the observed data:

Pr(D | Mi) =

∫
Pr(D | Mi, θi) Pr(θi) dθi (2)

where θi is the vector of model parameters corresponding
to modelMi, Pr(D | Mi, θi) is the likelihood of D under
Mi parameterized by θi, and Pr(θi) is the prior probability
of the model parameters θi.

Given posterior model probabilities, one common practice is
to findM∗ = arg maxM Pr(Mi | D) and then treatM∗
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as the true, data-generating model for the purpose of future
inference tasks. We will refer to this variant of the model
selection task as model choice. An alternative to model
choice is model averaging: instead of simply using the
single, most-likely candidate model, model averaging takes
a fully-Bayesian viewpoint by using the posterior model
probabilities to marginalize out the choice of model for
subsequent inference tasks.

3.2. Mutual Information

The mutual information between two random variables is a
measure of how much information observing the value of
one provides about the other. Formally, given two random
variables X and Y , the mutual information of X and Y is

I(X;Y ) = H(X)−H(X | Y ), (3)

where H(X) is the entropy of X , and H(X | Y ) is the
conditional entropy of X given Y . If X is discrete with
PMF p and domain X , then the entropy is defined to be

H(X) = −
∑
x∈X

p(x) log p(x) (4)

and if X is continuous with PDF p and domain X , then we
instead use the differential entropy:

H(X) = −
∫
X
p(x) log p(x) dx. (5)

The conditional entropy H(X | Y ) is defined to be the
expected (differential) entropy of the posterior distribution
p(X | Y ), where the expectation is taken with respect to Y .
Therefore the mutual information can be interpreted as the
expected information gained about X (that is, the expected
reduction in entropy) when measuring Y .

3.3. Bayesian Quadrature

Given some intractable integral Z =
∫
f(θ)π(θ) dθ,

Bayesian quadrature places a Gaussian process (GP) prior
belief on the function f(θ) (or occasionally on the prod-
uct f(θ)π(θ) directly). A GP specifies a probability dis-
tribution over functions, where the joint distribution of
the function’s value at finitely many locations is multi-
variate normal. A GP is fully specified by its first two
moments: a mean function µ(x) and a covariance func-
tion Σ(x, x′). Given a set of observations at locations
xD = {x1, . . . , xn} with corresponding function values
f(xD), a GP can be conditioned on these observations
to arrive at a posterior GP with mean µD(x) = µ(x) +
Σ(x, xD)Σ(xD, xD)−1(f(xD) − µ(xD)) and covariance
ΣD(x, x′) = Σ(x, x′)−Σ(x, xD)Σ(xD, xD)−1Σ(xD, x

′).
For a comprehensive overview of GPs, see (Rasmussen &
Williams, 2006).

Bayesian quadrature makes use of the fact that GPs are
closed under linear functionals (Rasmussen & Ghahramani,
2003), meaning that a GP belief on f induces a Gaussian
belief on L[f ], where L is any linear functional. As integra-
tion against a probability distribution is such a functional, if
p(f) = GP(f ;µ,Σ), then p(Z) = N (Z;m,K), where

m =

∫
µ(x)π(x) dx ; (6)

K =

∫∫
Σ(x, x′)π(x)π(x′) dx dx′ . (7)

A design choice that must be addressed when using BQ is
where to observe the integrand f . One natural approach is to
select sample locations so as to minimize one’s uncertainty
about Z which is equivalent to minimizing the entropy of
Z. Because the posterior variance of a GP does not depend
on the observed function values (see above), if a GP prior is
placed directly on f , then an optimal sampling design (w.r.t.
this objective) can be specified in advance (Minka, 2000).
However, it is often appropriate to specify a GP prior not on
f but on an affine transformation of f in order to incorporate
some a priori information. Doing so introduces a depen-
dency between the posterior variance and observed function
values. Thus, the optimal sampling sequence cannot be
precomputed. One option in this setting is to sequentially
select sample locations in order to minimize the expected
entropy of Z as proposed by Osborne et al. (2012). As an
alternative, Gunter et al. (2014) propose an active sampling
mechanism that iteratively minimizes the entropy of the
integrand instead of the value of the integral as doing so is
more computationally efficient and numerically stable.

4. Motivation
Consider the task of selecting between two models,M1 and
M2, given data D. Suppose that BQ is used to estimate the
model evidences for both models. After some number of
iterations of BQ, the posterior beliefs (implicitly conditioned
on BQ evaluations) on the model evidences are plotted on
the same axis; as an example, see Figure 1.

Figure 1 depicts a situation where there is high uncertainty
about both model evidences; however, the uncertainty in
the posterior model probabilities is low. In particular, for
this toy example, Pr(M1 | D) is almost certainly close to
one, while Pr(M2 | D) is almost certainly close to zero.
This example illustrates the fact that it is not necessary to
have low-entropy estimates of model evidences to have low-
entropy estimates of posterior model probabilities and thus,
methods that aim to achieve accurate estimates of model
evidences may be inefficiently sampling observations when
the goal to is to achieve accurate estimates of the posterior
model probabilities.
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Figure 1. A toy example of the posteriors for two model evidences;
observe that both posterior beliefs are Gaussian, a direct result of
the closure of GPs under linear functionals (see (6) and (7))

5. Methods
We propose an adaptation of the standard BQ algorithm to
the task of model selection. The principal novelty of our pro-
posed method is in selecting where to observe the likelihood
functions of the models involved. Rather than selecting lo-
cations with the goal of achieving accurate estimates of the
model evidences, as previous work has considered at length
(Osborne et al., 2012; Gunter et al., 2014), our method
seeks to achieve accurate estimates of posterior model prob-
abilities, a more essential quantity to model selection. Our
method makes use of the mutual information between model
likelihood observations and posterior model probabilities, al-
lowing them to choose informative sample locations across
multiple model parameter spaces simultaneously.

Suppose that we have observed some dataset D and have
k candidate models {M1, . . . ,Mk}, to explain D. Let
`i(θi) = p(D | θi,Mi) be the likelihood for Mi. We
assume that these likelihoods have mutually independent
Gaussian process priors: p(`i) = GP(`i;µi,Σi). Now the
model evidence ofMi:

ai =

∫
Θi

`i(θi)πi(θi) dθi (8)

is normally distributed as p(ai) = N (ai;mi,Ki), where
mi and Ki are given by the BQ identities (6) and (7). The
posterior probability ofMi can be expressed as:

zi =
ai∑k
j=1 aj

. (9)

Formally, we consider the mutual information between
`i(θi) and z = [z1, . . . , zk]:

I
(
`i(θi); z

)
= H

(
`i(θi)

)
−H

(
`i(θi) | z

)
. (10)

Here `i(θi) is just a univariate Gaussian and its entropy is
H
(
`i(θi)

)
= 1

2 log 2πeΣi(θi, θi). Interestingly, the condi-
tional random variable `i(θi) | z is also a univariate Gaus-
sian. To see this, consider the joint density between `i(θi)

and b−i = [b1, . . . , bi−1, bi+1, . . . , bk] where

bj = z̄jaj + zj
∑

j′∈[k] ,j′ 6=j

aj′ , (11)

z̄j = zj − 1 , [k] = {1, . . . , k} .

As all ai are independent and Gaussian, b−i follows a mul-
tivariate Gaussian distribution. We will denote the mean
of bj by βj , the variance of bj by sj,j and the covariance
between bj and bj′ by sj,j′ where

βj = z̄jmj + zj
∑

j′∈[k] ,j′ 6=j

mj′ , (12)

sj,j = z̄2
jKj + z2

j

∑
j′∈[k] ,j′ 6=j

Kj′ , (13)

sj,j′ = z̄jzj′Kj + zj z̄j′Kj′ + zjzj′
∑

j′′∈[k] , j′′ 6=j,j′
Kj′′ . (14)

Furthermore, `i(θi) is jointly Gaussian with b−i; the co-
variance between `i(θi) and bj is zjLi(θi) where

Li(θi) =

∫
Θi

Σi(θi, θ
′
i)πi(θ

′
i) dθ′i , (15)

a result that follows from our assumption that all GP priors
are mutually independent and the fact that GPs are closed
under integration.

Lastly, we note that observing z is equivalent to observ-
ing that b−i = 0; in essence, this follows because an
observation of z collapses the joint Gaussian distribution
between all model evidences down to a hyperplane, where
each point with support under the conditional belief satis-
fies the invariant that bj = z̄jaj + zj

∑
j′∈[k] ,j′ 6=j aj′ = 0

∀ j ∈ [k]. Thus, we can conclude that `i(θi) | z and
`i(θi) | b−i = 0 have the same distribution. Using the fact
that Gaussians are closed under conditioning, it follows that
`i(θi) | z is a Gaussian random variable and its entropy is
H
(
`i(θi) | z

)
= 1

2 log 2πeΣi|z(θi, θi) where

Σi|z(θi, θi) = Σi(θi, θi)−

z1Li(θi)
...

zi−1Li(θi)
zi+1Li(θi)

...
zkLi(θi)



T 

s1,1 . . . s1,k

...
. . .

...
si−1,1 . . . si−1,k

si+1,1 . . . si+1,k

...
. . .

...
sk1 . . . skk



−1 

z1Li(θi)
...

zi−1Li(θi)
zi+1Li(θi)

...
zkLi(θi)


.

(16)

The mutual information between `i(θi) and z can now be
framed as an expectation over z:

I(`i(θi); z) = 1
2 log Σi(θi, θi)

− 1
2

∫
log
(
Σi|z(θi, θi)

)
p(z) dz. (17)
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To design our next observation, we choose to evaluate the
likelihood at the point maximizing the expected information
gain about z, where we maximize over the parameter spaces
of all models. Formally, we choose to observe the likelihood
`i∗(θ

∗
i∗) where

θ∗i = arg max
θi∈Θi

I
(
`i(θi); z

)
, (18)

i∗ = arg max
i∈{1,...,k}

θ∗i . (19)

Unfortunately, the integral in (17) is intractable. Luckily, it
can be accurately and efficiently estimated using standard
numerical techniques. Specifically, we can generates sam-
ples of z by drawing from the posterior distribution over
a = [a1, . . . , ak] using (9). Also note that this estimation is
only performed as a means of selecting likelihood observa-
tion locations; the effect of inaccuracies in this estimate on
the estimated model evidences will be negligible.

As a final note, observe that it is imperative to omit an ele-
ment from the vector b−i as specifying k−1 of the k model
posteriors fully determines the last one: the covariance ma-
trix of the full random vector b = [b1, . . . , bk] is singular,
making the square matrix in (16) non-invertible. The choice
to omit bi is largely arbitrary, although it does simplify the
notation slightly.

6. Experiments
We perform experiments on synthetic and real-world data in
which we compare our proposed method against round-
robin BQ, where likelihood evaluations are evenly dis-
tributed between all model parameter spaces, and two Monte
Carlo based benchmarks: bridge sampling (Meng & Wong,
1996) and reversible jump MCMC (Green, 1995). Our im-
plementation of bridge sampling follows the one described
by Gronau et al. (2017): specifically, we use the optimal
bridge function defined by Meng & Wong (1996) and a
Gaussian proposal distribution with moments fit to samples
from the true posterior distribution (as suggested by Over-
stall & Forster (2010)). Our choice of diffeomorphism for
reversible jump MCMC varies by experimental setting and is
described in the relevant sections below. For all BQ methods,
constant-mean GP priors with Matérn covariance functions
(ν = 3/2) were placed on the log of the model likelihoods
and all GP hyperparameters were fit in accordance with the
framework defined by Chai & Garnett (2019). Our imple-
mentation of round-robin BQ uses uncertainty sampling to
select locations to observe log-likelihoods, as proposed by
Gunter et al. (2014).

6.1. Synthetic Experiments

For our synthetic experiments, we consider a model selec-
tion task between two zero-mean GP models: one chosen

to have a squared exponential covariance and one chosen
to have a Matérn covariance with ν = 5/2. The observed
dataset D consists of 5d observations from a d-dimensional,
zero-mean GP with a squared exponential covariance. Each
model is parameterized by the d length-scales of their re-
spective covariance functions (for the sake of simplicity, all
other GP hyperparameters were set to be the same as the
true, data-generating GP’s). In this setting, prior knowledge
of the experimental setting suggests that the two likelihood
functions are similar. Thus an appropriate choice of diffeo-
morphism is the identity function and the corresponding
Jacobian is always 1. The intractable integrals associated
with our proposed method are estimated using 10 000 sim-
ple Monte Carlo (SMC) samples, i.e., samples drawn from
the probability distribution being integrated against.

We allot a budget of 50d total likelihood evaluations and
initialize each BQ based method with 5d randomly sampled
likelihood observations from both model parameter spaces.
We run experiments with d ranging from 1 to 4 and for each
value of d, we consider 100 different, randomly sampled ob-
served datasets. All methods are evaluated on the fractional
error of their z1 estimates with ground truth values being
determined by exhaustive SMC.

As Figure 2 shows, our proposed method outperforms all
benchmarks compared against. Furthermore, the difference
in performance between our proposed method and both
round-robin BQ and bridge sampling is significant at the
1% significance level across all dimensions according to a
one-sided paired t-test; the difference between our proposed
method and reversible jump MCMC is significant at the 1%
significance level for d =1, 2, and 3.

6.2. Real-World Experiments

Our real-world application is a model selection problem
from the field of astrophysics. Given spectrographic observa-
tions of quasar emissions, astrophysicts are interested in in-
ferring the existence of damped Lyman-α absorbers (DLAs)
between the quasar and earth. DLAs are large gaseous clouds
containing neutral hydrogen at high densities. The distri-
bution of DLAs throughout the universe is of interest as it
informs galaxy formation models. Their location and size
can be inferred from quasar spectra as they cause distinc-
tive dips in the observed flux at well-defined wavelengths.
Garnett et al. (2017) developed a model that specifies the
likelihood that a quasar emission spectrum contains arbi-
trarily many DLAs. Their likelihood model for n DLAs is
parameterized by 2n parameters, two for each putative DLA:
one that corresponds to its size and one that corresponds to
its distance from earth. Garnett et al. (2017) also specified
a data-driven prior over these parameters; computing the
model evidence for any number of DLAs requires integrating
the likelihood against this prior, an intractable integral.
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Figure 2. Fractional errors of z1 for all tested methods as a function of the total number of model likelihood observations

For both of the experiments below, the diffeomorphism as-
sociated with our implementation of reversible jump MCMC
is again the identity function and the corresponding Ja-
cobian factor is 1. The intractable integrals associated
with our proposed method are estimated using quasi-Monte
Carlo (Caflisch, 1998). We evaluated all methods on the
absolute error of their estimates of the log Bayes factor:
logBij = log zi − log zj (Jeffreys, 1961; Kass & Raftery,
1995), another potential quantity of interest in model selec-
tion tasks. We consider the absolute error instead of the
fractional error as the target quantity is a log value. We
make use of Bartolucci et al. (2006)’s work to translate the
output Markov chain into a log odds estimate.

6.2.1. TWO MODELS

In our first experiment on this dataset, we consider two can-
didate models for each quasar emission spectrum: the first
corresponding to a single DLA and the second correspond-
ing to two DLAs. In this experimental setting, we use the

data-driven prior of Garnett et al. (2017) as the proposal
distribution for the two additional parameters when transi-
tioning from the single DLA model to the two DLA model.
We select 20 spectra from phase III of the Sloan Digital Sky
Survey (SDSS–III) (Eisenstein et al., 2011) where the model
posteriors for the above models are known a priori to be
between 0.4 and 0.6; this choice makes the model selection
task difficult in some sense. We allot a budget of 150 total
likelihood evaluations and initialize each BQ based method
with 25 randomly sampled likelihood observations from
both model parameter spaces. We repeat the experiment 5
times for each spectra, using a different initialization for
each trial.

As Figure 3 shows, our proposed method outperforms all
benchmarks compared against. The difference in perfor-
mance between our proposed method and both Monte Carlo
based benchmarks is significant at the 1% significance level
according to a one-sided paired t-test.
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Figure 3. Absolute errors of log odds for all tested methods as
a function of the total number of model likelihood observations.
This figure shares a legend with Figure 2

6.2.2. THREE MODELS

To demonstrate the ability of our method to generalize to
greater than two models, we ran an additional experiment on
this dataset where we consider three candidate models for
a quasar emission spectrum known to contain three DLAs:
in addition to the two models from the previous section,
we consider a third model that corresponds to the presence
of three DLAs. We again use the data-driven prior of Gar-
nett et al. (2017) as the proposal distribution for the two
additional parameters when transitioning from the two DLA
model to the three DLA model. We allot a budget of 180 total
likelihood evaluations and initialize each BQ based method
with 25 randomly sampled likelihood observations from
each model parameter spaces. We repeat the experiment 10
times, using a different initialization for each trial.

As Figure 4 shows, our proposed method once again outper-
forms all benchmarks compared against. The difference in
performance between our proposed method and both Monte
Carlo based benchmarks is significant at the 5% significance
level according to a one-sided paired t-test.

6.3. Model Choice Experiments

In situations where one is performing model choice as op-
posed to model averaging, the quantity of interest is not the
model posterior probabilities but rather the model with the
highest posterior probability, a related but different object.
We considered an alternative acquisition function that tar-
gets this quantity, which we briefly present here. Given two
candidate modelsM1 andM2, the goal in model choice
is to determine the value of the indicator random variable
[z1 > z2], where we have adopted the Iverson bracket nota-
tion. Therefore, instead of considering the mutual informa-
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Figure 4. Absolute errors of log odds against M3 for all tested
methods as a function of the total number of model likelihood
observations. This figure shares a legend with Figure 2

tion between `i(θi) and z, one could conceivably consider
the mutual information between `i(θi) and [z1 > z2] di-
rectly. Formally, this quantity can be expressed as

I
(
[z1 > z2]; `i(θi)

)
=

H
(
[z1 > z2]

)
−H

(
[z1 > z2] | `i(θi)

)
. (20)

Much like our proposed method, this alternative acquisition
function searches over both models’ parameter spaces for
the next evaluation location:

θ∗i = arg max
θi∈Θi

I
(
[z1 > z2]; `i(θi)

)
, (21)

for i ∈ {1, 2}. Because the quantity H
(
[z1 > z2]

)
does not

involve either `1(θ1) or `2(θ2), it can be safely ignored when
searching for this maximum. Unfortunately, the second term
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in the mutual information (20) is intractable, much like the
integral in (17). However, writing

H
(
[z1 > z2] | `i(θi)

)
=∫

H
(

Pr
(
[z1 > z2] | `i(θi)

))
p
(
`i(θi)

)
d`i(θi) , (22)

we may recognize the expression as a one-dimensional inte-
gral that can also be estimated numerically.
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Figure 5. Fractional errors of z1 for all tested methods as well as
an alternative method considered specifically for the task of model
choice. Please refer to Figure 2 for the omitted legend entries.

Despite the arguably more rational choice to target [z1 > z2]
instead of z, this approach did not perform well in our exper-
iments. Figure 5 shows the performance of this method in
the 2-dimensional synthetic experimental setting described
above; this method’s relative performance continues to drop
off as the number of dimensions increases. We also consid-
ered a different performance metric: the fraction of trials
where the model with the higher ground truth posterior prob-
ability is correctly identified. It is reasonable to expect an
acquisition function that targets [z1 > z2] to outperform our
method that targets z when considering this metric. The
results for the 2-dimensional synthetic experimental setting
are shown in Figure 6.

We attribute the poor performance of this alternative acquisi-
tion function to the fact that the implied alternative objective
of this acquisition function, the entropy of [z1 > z2], is less
reliable than the entropy of z and thus, this method has
a tendency to become overly confident too quickly. If at
any point one of the models achieves a much higher poste-
rior model probability, then this method samples the model
likelihoods at functionally uninformative locations until the
budget of evaluations has been expended. This is because
from the perspective of this alternative method, the objective
has already been optimized: Pr(z1 > z2) will either be very
close to zero or very close to one with very little uncertainty.
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Figure 6. Fraction of trials where the “correct” model or model
with the higher ground truth posterior probability would have been
selected for all tested methods as well as an alternative method
considered specifically for the task of model choice. Please refer
to Figure 2 for the omitted legend entries.

In future work, we hope to improve the performance of
this alternative method, potentially by targeting the random
variable z1 − z2 instead of [z1 > z2] as we hypothesize that
incorporating the magnitude of the difference will encour-
age continued exploration of the model parameter spaces.

7. Conclusion
In this paper, we have presented a novel, BQ based method
for automated model selection. Our proposed method makes
use of a novel acquisition function that targets the entropy of
the posterior model probabilities, quantities specifically rel-
evant to the task of model selection. This allows our method
to actively sample locations across multiple model param-
eter spaces simultaneously. Our experiments conducted
on real-world and synthetic data show that our proposed
method can outperform both previously published BQ ap-
proaches to model selection as well as Monte Carlo based
model selection techniques in terms of achieving accurate
posterior model probability estimates.

One exciting line of inquiry that we hope to study in future
work concerns the design of trans-dimensional covariance
functions. In certain settings, our assumption that the model
evidences are independent does not accurately reflect our a
priori knowledge e.g. in model selection tasks with nested
model parameters, we should expect model evidences to
be at least slightly correlated. These types of relationships
could be captured by a multi-task GP (Cressie, 1993; Yu
et al., 2005) where the covariance between model likeli-
hoods is learned alongside individual model likelihoods
simultaneously.
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