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Abstract
We present a generalization of the adversarial
linear bandits framework, where the underlying
losses are kernel functions (with an associated re-
producing kernel Hilbert space) rather than linear
functions. We study a version of the exponential
weights algorithm and bound its regret in this set-
ting. Under conditions on the eigen-decay of the
kernel we provide a sharp characterization of the
regret for this algorithm. When we have polyno-
mial eigen-decay (µj ≤ O(j−β)), we find that
the regret is bounded by Rn ≤ O(nβ/2(β−1)).
While under the assumption of exponential eigen-
decay (µj ≤ O(e−βj)) we get an even tighter
bound on the regret Rn ≤ Õ(n1/2). When
the eigen-decay is polynomial we also show a
non-matching minimax lower bound on the re-
gret of Rn ≥ Ω(n(β+1)/2β) and a lower bound
of Rn ≥ Ω(n1/2) when the decay in the eigen-
values is exponentially fast.

We also study the full information setting when
the underlying losses are kernel functions and
present an adapted exponential weights algorithm
and a conditional gradient descent algorithm.

1. Introduction
In adversarial online learning, a player interacts with an
unknown and arbitary adversary in a sequence of rounds.
At each round, the player chooses an action from an action
space and incurs a loss associated with that chosen action.
The loss functions are determined by the adversary and
are fixed at the beginning of each round. After choosing
an action the player observes some feedback, which can
help guide the choice of actions in subsequent rounds. The
most common feedback model is the full information model,
where the player has access to the entire loss function at
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the end of each round. Another, more challenging feedback
model is the partial information or bandit feedback model
where the player at the end of the round just observes the
loss associated with the action chosen in that particular
round. There are also other feedback models in between
and beyond the full and bandit information models, many
of which have also been studied in detail. A figure of merit
that is often used to judge online learning algorithms is the
notion of regret, which compares the players actions to the
best single action in hindsight (defined formally in Section
1.2).

When the underlying action space is a continuous and com-
pact (possibly convex) set and the losses are linear or convex
functions over this set; there are many algorithms known
that attain sub-linear and sometimes optimal regret in both
these feedback settings. In this work we present a general-
ization of the well studied adversarial online linear learning
framework. In our paper, at each round the player selects an
action a ∈ A ⊂ Rd. This action is mapped to an element
in a reproducing kernel Hilbert space (RKHS) generated
by a mapping K(·, ·). The function K(·, ·) is a kernel map,
that is, it can thought as an inner product of an appropri-
ate Hilbert space H. The kernel map can be expressed as
K(x, y) = 〈Φ(x),Φ(y)〉H, where Φ(·) ∈ RD is the associ-
ated feature map.

Thus at each round the loss is 〈Φ(a), w〉H, where w ∈ H
is the adversary’s action. In the full information setting,
as feedback, the player has access to the entire adversarial
loss function 〈·, w〉H. In the bandit setting the player is just
presented with the value of the loss, 〈Φ(a), w〉H.

Notice that this class of losses is much more general than
ordinary linear losses and includes potentially non-linear
and non-convex losses like:

1. Linear Losses: 〈a,w〉H = a>w. This loss is well
studied in both the bandit and full information setting.
We shall see that our regret bounds will match the
bounds established in the literature for these losses.

2. Quadratic Losses:
〈
φ(a),

(
W
b

)〉
H

= a>Wa + b>a,
where W is a symmetric matrix and b is a vector. Con-
vex quadratic losses have been well studied under full
information feedback as the online eigenvector decom-
position problem. Our work establishes regret bounds
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in the full information setting and also under the mostly
unexplored bandit feedback.

3. Gaussian Losses: 〈Φ(a),Φ(y)〉H =
exp

(
−‖a− y‖22/2σ2

)
. We provide regret bounds

of kernel losses not commonly studied before like
Gaussian losses that provide a different loss profile
than a linear or convex loss.

4. Polynomial Losses: 〈Φ(a),Φ(y)〉H = (1 + a>y)2 for
example. We also provide regret bounds for polyno-
mial kernel losses which are potentially (non-convex)
under both partial and full information settings. Specif-
ically in the full information setting we study posyno-
mial losses (discussion in Section 4.3).

1.1. Related Work

Adversarial online convex bandits that was introduced and
first studied by (33; 22). The problem most closely related
to our work is the case when the losses are linear introduced
earlier by (35; 7). In this setting (20; 18; 13) proposed the
EXP 2 (Expanded Exp) algorithm under different choices of
exploration distributions. (20) worked with the uniform dis-
tribution over the barycentric spanner of the set, in (18) this
distribution was the uniform distribution over the set and in
(13) they use the exploration distribution given by John’s
theorem that leads to a regret bound of O((dn log(N))1/2),
whereN is the number of actions, n is the number of rounds
and d is the dimension of the losses. For this same problem
when the set A is convex and compact, (1) analyzed Mirror
descent to get a regret bound of O(d

√
θn log(n)) for some

θ > 0. For the case with general convex losses with bandit
feedback recently (15) proposed a poly-time algorithm that
has a regret guarantee of Õ(d9.5

√
n), which is optimal in its

dependence on the number of rounds n. Previous work on
this problem includes, (2; 41; 27; 21; 14; 28) in the adver-
sarial setting under different assumptions on the structure
of the convex losses and by (3) who studied this problem
in the stochastic setting1. (46) study stochastic kernelized
contextual bandits with a modified UCB algorithm to obtain
a regret bound similar to ours, Rn ≤

√
d̃n where d̃ is the

effective dimension dependent on the eigen-decay of the
kernel. This problem was also studied previously for loss
functions drawn from Gaussian processes in (44). Online
learning under bandit feedback has also been studied when
the losses are non-parametric, for example when the losses
are Lipschitz (16; 40).

In the full information case, the online optimization frame-
work with convex losses was first introduced by (49). The
conditional gradient descent algorithm (a modification of
which we study in this work) for convex losses in this set-

1For an extended bibliography of the work on online convex
bandits see (15).

ting was introduced and analyzed by (31) and then improved
subsequently by (26). The exponential weights algorithm
which we modify and use multiple times in this paper has a
rich history and has been applied to various online as well as
offline settings. The particular with the losses being convex
quadratic functions has been well studied in the full informa-
tion setting. This problem is also called online eigenvector
decomposition or online PCA. Very recently (4) established
a regret bound of Õ(

√
n) for the problem by presented an

efficient algorithm that achieves this rate – a modified ex-
ponential weights strategy, follow the compressed leader.
Previous results for this problem were established in both
adversarial and stochastic settings by modifications of expo-
nential weights, gradient descent and follow the perturbed
leader algorithms (6; 45; 47; 48; 32; 23).

In the full information setting there has also been work on
analyzing gradient descent and mirror descent in RKHS
spaces (36; 8). However, in these papers the player is al-
lowed to play any action in a bounded set in Hilbert space,
while in our paper the player is constrained to only play
rank one actions, that is the player chooses an action in A
which gets mapped to an action in the RKHS.

CONTRIBUTIONS

Our primary contribution is to extend the linear bandits
framework to more general classes of kernel losses. We
present an algorithm in this setting and provide a regret
bound for the same. We provide a more detailed analysis of
the regret when we make assumptions on the eigen-decay
of the kernel. Particularly when we assume the polynomial
eigen-decay of the kernel (µj ≤ O(j−β)) we can guar-

antee the regret is bounded as Rn ≤ O(n
β

2(β−1) ). Under
exponential eigendecay we can guarantee an even sharper
bound on the regret of Rn ≤ Õ(n1/2). We also provide a
minimax lower bound on the regret ofRn ≥ Ω(n(β+1)/2β)
andRn ≥ Ω(n1/2) under the polynomial and exponential
decay eigen-decay assumptions respectively. We analyze
an exponential weights algorithm and a conditional gradi-
ent algorithm for the full information case where we don’t
need to assume any conditions on the eigen-decay. Finally
we provide a couple of applications of our framework – (i)
general quadratic losses (not necessarily convex) with linear
terms which we can solve efficiently in the full information
setting, (ii) we provide a computationally efficient algorithm
when the underlying losses are posynomial (special class of
polynomials).

ORGANIZATION OF THE PAPER

In the next section we introduce the notation and definitions.
In Section 2 we present our algorithm under bandit feedback
and present regret bounds for this algorithm. In Section 3 we
study the problem in the full information setting. In Section
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4 we present two applications of our framework, and prove
that our algorithms are computationally efficient in these
settings. All the proofs, technical details and experiments
are relegated to the appendix.

1.2. Notation, main definitions and setting

Here we introduce definitions and notational conventions
used throughout the paper.

In each round t = {1, . . . , n}, the player chooses an action
vector {at}nt=1 ∈ A ⊂ Rd. The underlying kernel function
at each round is K(·, ·) which is a map from Rd × Rd → R
such that it is a kernel map and has an associated separable
reproducing kernel Hilbert space (RKHS)H with an inner
product 〈·, ·〉H (for more properties of kernel maps and
RKHS see (42)). Let Φ(·) : Rd 7→ RD denote a feature
map of K(·, ·) such that for every x, y we have K(x, y) =
〈Φ(x),Φ(y)〉H. Note that the dimension of the RKHS, D
could be infinite (for example in the Gaussian kernel over
[0, 1]

d).

We let the adversary choose a vector in H, wt ∈ W ⊂
RD and at each round the loss incurred by the player is
〈Φ(at), wt〉H. We assume that the adversary is oblivious,
that is, it is a function of the previous actions of the player
(a1, . . . , at−1) but unaware of the randomness used to gen-
erate at. We let the size of the sets A,W be bounded2 in
kernel norm, that is,

sup
a∈A
K(a, a) ≤ G2 and, sup

w∈W
〈w,w〉H ≤ G2. (1)

Throughout this paper we assume a rank-one learner, that
is, in each round the player can pick a vector v ∈ H, such
that v = Φ(a) for some a ∈ Rd. We now formally define
the notion of expected regret.

Definition 1 (Expected regret) The expected regret of an
algorithmM after n rounds is defined as

Rn = EM

[
n∑
t=1

〈Φ(at), wt〉H −
n∑
t=1

〈Φ(a∗), wt〉H

]
(2)

where a∗ = infa∈A {
∑n
t=1〈Φ(a), wt〉H} and the expecta-

tion is over the randomness in the algorithm.

Essentially this amounts to comparing against the best single
action a∗ in hindsight. Our hope will be to find a random-
ized strategy such that the regret grows sub-linearly with
the number of rounds n. In what follows we will omit the
subscript H from the subscript of the inner product when-
ever it is clear from the context that it refers to the RKHS
inner product.

2We set the bound on the size of both sets to be the same for
ease of exposition, but they could be different and would only
change the constants in our results.

To establish regret guarantees we will find that it is essential
to work with finite dimensional kernels when working under
bandit feedback (more details regarding this in the proof of
the regret bound of Algorithm 2.3). General kernel maps
can have infinite dimensional feature maps thus we will
require the construction of a finite dimensional kernel that
uniformly approximates the original kernel K(·, ·). This
motivates the definition of ε-approximate kernels.

Definition 2 (ε-approximate kernels) Let K1 and K2 be
two kernels over A × A and let ε > 0. We say K2 is an
ε-approximation of K1 if for all x, y ∈ A, |K1(x, y) −
K2(x, y)| ≤ ε.

2. Bandit Feedback Setting
In this section we present our results on kernel bandits. In
the bandit setting we assume the player knows the underly-
ing kernel function K(·, ·), however, at each round after the
player plays a vector at only the value of the loss associated
with that action is revealed to the player – 〈Φ(at), wt〉H –
and not the action of the adversary wt. We also assume
that the player’s action set A has finite cardinality3.This is a
generalization of the well studied adversarial linear bandits
problem. As we will see in subsequent sections to guarantee
a bound on the regret in the bandit setting our algorithm will
build an estimate of adversary’s action wt. This becomes
impossible if wt is infinite dimensional (D →∞). To cir-
cumvent this, we will construct a finite dimensional proxy
kernel that is an ε-approximation of K.

Whenever no approximate kernel is needed, for example
whenD <∞we allow the adversary to be able to choose an
action wt ∈ W ⊂ RD without imposing extra requirements
on the setW other than being bounded in H norm. When
D is infinite we impose an additional constraint on the
adversary to also select rank-one actions at each round,
that is, wt = Φ(yt) where yt ∈ Rd. Next we present a
discussion of the procedure to construct a finite kernel that
approximates the original kernel well.

2.1. Construction of the finite dimensional kernel

To construct the finite dimensional kernel we will rely cru-
cially on Mercer’s theorem. We first recall a couple of useful
definitions.

Definition 3 Let A ⊂ Rd and P a probability measure sup-
ported over A. We denote by L2(A;P) the space of square
integrable functions over A and measure P, L2(A;P) :=

3This assumption can be relaxed to let A be a compact set
when K is Lipschitz continuous. In this setting we can instead
work with an appropriately fine approximating cover over the set
A.



Online learning with kernel losses{
f : A → R

∣∣∣∣∣ ∫A f2(x)dP(x) <∞

}
.

Definition 4 A kernel K : A × A → R is square
integrable with respect to measure P over A, if∫
A×AK

2(x, y)dP(x)dP(y) <∞.

Now we are ready to present Mercer’s theorem (38) (see
(19)).

Theorem 5 (Mercer’s Theorem) LetA ⊂ Rd be compact
and P be a finite Borel measure with support A. Suppose K
is a continuous square integrable positive definite kernel on
A, and define a positive definite operator TK : L2(A;P) 7→
L2(A;P) by

(TKf) (·) :=

∫
A
K(·, x)f(x) dP.

Then there exists a sequence of eigenfunctions {φi}∞i=1

that form an orthonormal basis of L2(A;P) consisting of
eigenfunctions of TK, and an associated sequence of non-
negative eigenvalues {µj}∞j=1 such that TK(φj) = µjφj for
j = 1, 2, . . .. Moreover the kernel function can be repre-
sented as

K(u, v) =

∞∑
i=1

µiφi(u)φi(v) (3)

where the convergence of the series holds uniformly.

Mercer’s theorem yields a natural way to construct a feature
map Φ(x) forK by defining the ith component of the feature
map to be Φ(x)i :=

√
µiφi(x). With this choice of feature

map the eigenfunctions {φi}∞i=1 are orthogonal under the in-
ner product 〈·, ·〉H4. Armed with Mercer’s theorem we first
present a simple deterministic procedure to obtain a finite
dimensional ε-approximate kernel of K. Essentially when
the eigenfunctions of the kernel are uniformly bounded,
supx∈A|φj(x)| ≤ B for all j, and if the eigenvalues decay
at a suitable rate we can truncate the series in (3) to get a
finite dimensional approximation.

Lemma 6 Given ε > 0, let {µj}∞j=1 be the Mercer opera-
tor eigenvalues of K under a finite Borel measure P with
supportA and eigenfunctions {φj}∞j=1 with µ1 ≥ µ2 ≥ · · · .
Further assume that supj∈N supx∈A|φj(x)| ≤ B for some
B < ∞. Let m(ε) be such that

∑∞
j=m+1 µj ≤

ε
4B2 . Then

the kernel induced by a truncated feature map,

Φom(x) :=

{√
µiφi(x) if i ≤ m

0 o.w.
(4)

4To see this observe that the function φi can be expressed as
a vector in the RKHS as a vector vi with φi in the ith coordinate
and zeros everywhere else. So for any two vi and vj with i 6= j
we have 〈vi, vj〉H = 0.

induces a kernel K̂om := 〈Φom(x),Φom(y)〉H =∑m
j=1 µjφj(x)φj(y), for all (x, y) ∈ A × A that is an

ε/4-approximation of K.

The Hilbert space induced by the K̂om is a subspace of the
original Hilbert space H. The proof of this lemma is a
simple application of Mercer’s theorem and is relegated to
Appendix C. If we have access to the eigenfunctions ofK we
can construct and work with K̂om because as Lemma 6 shows
K̂om is an ε/4-approximation to K. Additionally, K̂om also
has the same first m Mercer eigenvalues and eigenfunctions
under P asK. Unfortunately, in most applications of interest
the analytical computation of the eigenfunctions {φi}∞i=1 is
not possible. We can get around this by building an estimate
of the eigenfunctions using samples from P by leveraging
results from kernel principal component analysis (PCA).

Definition 7 Let Sm be the subspace of H spanned
by the first m eigenvectors of the covariance matrix
Ex∼P

[
Φ(x)Φ(x)>

]
.

This corresponds to the span of the eigenfunctions
φ1, φ2, . . . , φm in H 5 . Define the linear projection op-
erator PSm : H 7→ H that projects onto the subspace Sm;
where P (Sm)(v + v⊥) = v, if v ∈ Sm and v⊥ ∈ S⊥m.

Remark 8 The feature map Φom(x) is a projection of
the complete feature map to this subspace, Φom(x) =
PSm(Φ(x)).

Let x1, x2, . . . , xp ∼ P be p i.i.d. samples and con-
struct the sample (kernel) covariance matrix, Σ̂ :=
1
p

∑p
i=1 Φ(xi)Φ(xi)

>. Let Ŝm be the subspace spanned

by the m top eigenvectors of Σ̂. Define the stochastic
feature map, Φm(x) := PŜm(Φ(x)), the feature map de-
fined by projecting Φ(x) to the random subspace Ŝm. In-
tuitively we would expect that if the number of samples p
is high enough, then the kernel defined by the feature map
Φm(x), K̂m(x, y) = 〈Φm(x),Φm(y)〉H will also be an ε-
approximation for the original kernel K. Formalizing this
claim is the following theorem.

Theorem 9 Let m,P be defined as in Lemma 6. Define the
m-th level eigen-gap as δm = 1

2 (µm − µm+1). Also let

Bm = 2G
δm

(
1 +

√
α
2

)
, 2δm >

√
ε > 0 and p ≥ 2B2

mG
2

√
ε

.

Then the finite dimensional kernels K̂om and K̂m satisfy the
following properties with probability 1− e−α,

1. supx,y∈A |K(x, y)− K̂m(x, y)| ≤ ε.
5This holds as the ith eigenvector of the covariance matrix has

φi as the ith coordinate and zero everywhere else combined with
the fact that {φi}∞i=1 are orthonormal under the L(A;P) inner
product.
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Algorithm 1 Finite dimensional proxy construction
Input :KernelK, effective dimensionm, setA, measure

P, bias tolerance ε > 0, number of samples p.
Function :Finite proxy feature map Φm(·)
sample x1, · · · , xp ∼ P.
construct sample Gram matrix K̂i,j = 1

pK(xi, xj).

calculate the top m eigenvectors of K̂→ {ω1, ω2, . . . , ωm}.
for j = 1, . . . ,m do

Set vj =
∑p
k=1 ωjkΦ(xk), (ωjk is the kth entry of ωj)

end
define the feature map

Φm(·) :=

 〈v1,Φ(x)〉H
...

〈vm,Φ(x)〉H

 =


∑p
k=1 ω1kK(xk, x)

...∑p
k=1 ωmkK(xk, x)

 .

2. The Mercer eigenvalues µ(p)
1 ≥ · · · ≥ µ

(p)
m and

µ1 ≥ · · · ≥ µm of K̂m and K̂om are close,
supi=1,··· ,m |µ

(p)
i − µi| ≤

√
ε/2.

Theorem 9 shows that given ε > 0 the finite dimensional
proxy K̂m is a ε-approximation of K with high probability
as long as sufficiently large number of samples are used.
Furthermore, the top m eigenvalues of the second moment
matrix of K are at most

√
ε/2-away from the eigenvalues of

the second moment matrix of K̂m under P.

To construct Φm(·) we need to calculate the top m eigen-
vectors of the sample covariance matrix Σ̂, however, it is
equivalent to calculate the top m eigenvectors of the sample
Gram matrix K and use them to construct the eigenvectors
of Σ̂ (for more details see Appendix B where we review the
basics of kernel PCA).

2.2. Bandits Exponential Weights

In this section we present a modified version of exponential
weights adapted to work with kernel losses. Exponential
weights has been analyzed extensively applied to linear
losses under bandit feedback (20; 17; 13). Two technical
challenges make it hard to directly adapt their algorithms to
our setting.

The first challenge is that at each round we need to estimate
the adversarial action wt. If the feature map of the kernel is
finite dimensional this is easy to handle, however when the
feature map is infinite dimensional, this becomes challeng-
ing and we need to build an approximate feature map Φm(·)
using Algorithm 2.1. This introduces a bias in our estimate
of the adversarial action wt and we will need to control the
contribution of the bias in our regret analysis. The second
challenge will be to lower bound the minimum eigenvalue

of the kernel covariance matrix as we will need to invert
this matrix to estimate wt. For general kernels which are
infinite dimensional, the minimum eigenvalue is zero. To
resolve this we will again turn to our construction of a finite
dimensional proxy kernel.

2.3. Bandit Algorithm and Regret Bound

In our exponential weights algorithm we first build the finite
dimensional proxy kernel K̂m using Algorithm 2.1. The
rest of the algorithm is then almost identical to the exponen-
tial weights algorithm (EXP 2) studied for linear bandits in
(20; 17; 13). In Algorithm 2.3 we set the exploration distri-
bution νAJ to be such that it induces John’s distribution (νJ )
over Φm(A) := {Φm(a) ∈ Rm : a ∈ A} (first introduced
as an exploration distribution in (13); also a short discussion
is presented in Appendix H.1). Note that for finite sets it
is possible to build minimal volume ellipsoid containing
conv(Φm(A))–John’s ellipsoid and John’s distribution in
polynomial time (24)6. We assume without loss of gen-
erality that the center of the set A is such that the John’s
ellipsoid is centered at the origin.

If we know beforehand the behavior of the eigen-decay of
the Mercer eigenvalues of K under measure µ we will be
able to choose our tuning parameters optimally. In our algo-
rithm we also build and invert the exact covariance matrix
Σ

(t)
m , however this can be relaxed and we can work with a

sample covariance matrix instead. We analyze the required
sample complexity and error introduced by this additional
step in Appendix D. We now state the main result of this
paper which is an upper bound on the regret of Algorithm
2.3.

Theorem 10 Let µi be the i-th Mercer operator eigenvalue
of K for the uniform measure µ over A. Let m, p, α and ε
be chosen as specified by the conditions in Theorem 9. Let
the mixing coefficient be chosen such that γ = ηG4m. Then
Algorithm 2.3 with probability 1− e−α has regret bounded
by

Rn ≤ γn+ (e− 2)G4ηmn+ 3εn+
1

η
log(|A|).

We prove this theorem in Appendix A. Note that this is sim-
ilar to the regret rate attained for adversarial linear bandits
in (20; 18; 13) with an additional term 3εn that accounts
for the bias in our loss estimates ŵt. In our regret bounds
the parameter m plays the role of the effective dimension
and will be determined by the rate of the eigen-decay of the
kernel. When the underlying Hilbert space is finite dimen-
sional (as is the case when the losses are linear) our regret

6It is thus possible to construct νJ over Φm(A) in polynomial
time. However, as A is a finite set, using Φm(·) and νJ it is also
possible to construct νAJ efficiently.
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Algorithm 2 Bandit Information: Exponential Weights
Input :Set A, learning rate η > 0, mixing coefficient γ >

0, number of rounds n, uniform distribution µ over
A, exploration distribution νAJ overA, kernel map
K, effective dimension m(ε), number of samples
p.

Build kernel K̂m with feature map Φm(·) using Algorithm
2.1 with kernel K, dimension m, distribution µ, bias toler-
ance ε and number of samples p.

set q1(a) = νAJ .
for t = 1, . . . , n do

set pt = γνAJ + (1− γ)qt
choose at ∼ pt
observe 〈Φ(at), wt〉H
build the covariance matrix

Σ(t)
m = Ex∼pt

[
Φm(x)Φm(x)>

]
compute the estimate ŵt = Σ−1

m Φm(at)〈Φ(at), wt〉H.
update qt+1(a) ∝ qt(a) · exp (−η · 〈ŵt,Φm(a)〉H)

end

bound recovers exactly the results of previous work (that is,
ε = 0 and m = d). Next we state the following different
characteristic eigenvalue decay profiles.

Definition 11 (Eigenvalue decay) Let the Mercer opera-
tor eigenvalues of a kernel K with respect to a measure P
over a set A be denoted by µ1 ≥ µ2 ≥ . . ..

1. K is said to have (C, β)-polynomial eigenvalue decay
(with β > 1) if for all j ∈ N we have µj ≤ Cj−β .

2. K is said to have (C, β)-exponential eigenvalue decay
if for all j ∈ N we have µj ≤ Ce−βj .

Under assumptions on the eigen-decay we can establish
bounds on the effective dimension m and µm, so that the
condition stated in Lemma 6 is satisfied and we are guar-
anteed to build an ε-approximate kernel K̂m. We establish
bounds on m in Proposition 33 presented in Appendix C.1.

Corollary 12 Let the conditions stated in Theorem 10 hold.
Then Algorithm 2.3 has its regret bounded by the following
rates with probability 1− e−α.

1. If K has (C, β)-polynomial eigenvalue decay
under measure µ, with β > 2. Then

by choosing η = 1

3
1

2β−1
·
[
β−1
4CB2

]1/2β−1

·[
log(|A|)

((e−1)G4)
β−1
β n

] β
2β−1

and m =
[

4CB2

(β−1)ε

]1/β−1

where ε =
(

(e−1)ηG4

3

)(β−1)/β [
4CB2

β−1

]1/β
, the ex-

pected regret is bounded by

Rn ≤ 3

[
4CB2

β − 1

] 1
2β−1 (

eG4 log (|A|)
) β−1

2β−1 · n
β

2(β−1) .

2. If K has (C, β)-exponential eigenvalue decay un-
der measure µ. Then by choosing η =(

β log(|A|)
(e−1)G4 log

(
4CB2
β

)
·n

)1/2

and m = 1
β log

(
4CB2

βε

)
where ε = (e−1)G4η

3β log
(

4CB2

β

)
, with n large enough

so that ε < 1, the expected regret is bounded by

Rn ≤ Õ


18G4 log (|A|) · n

β log
(

4CB2

β

)
1/2

 .

Remark 13 Under (C, β)-polynomial eigen-decay condi-
tion we have that the regret is upper bounded by Rn ≤
O(n

β
2(β−1) ). While when we have (C, β)-exponential

eigen-decay we almost recover the adversarial linear ban-
dits regret rate (up to logarithmic factors), with Rn ≤
O(n1/2 log(n)).

One way to interpret the results of Corollary 12 in contrast to
the regret bounds obtained for linear losses is the following.
We introduce additional parameters into our analysis to
handle the infinite dimensionality of our feature vectors – the
effective dimension m and bias of our estimate ε. When the
effective dimensionm is chosen to be large we get can build
an estimate of the adversarial action ŵt which has low bias,
however this estimate would have large variance (O(m)).
On the other hand if we choosem to be small we can build a
low variance estimate of the adversarial action but with high
bias (ε is large). We trade these off optimally to get the regret
bounds established above. In the case of exponential decay
we obtain that the choice m = O(log(n)) is optimal, hence
the regret bound only degrades by a logarithmic factor in
terms of n as compared to linear losses (where m would be
a constant). When we have polynomial decay, the effective
dimension is higher m = O(n

1
2(β−1) ) which leads to worse

bounds on the expected regret. Note that asymptotically
as β → ∞ the regret bound goes to n1/2 which aligns
well with the intuition that the effective dimension is small.
While when β → 2 (the effective dimension m→∞) the
regret bound becomes close to linear in n.

We can also show a minimax lower bound for these two
settings that are close to matching the upper bound.

Proposition 14 (informal) For any algorithm used by the
player, there exist a strategy for the adversary such that
Rn ≥ Ω

(
n
β+1
2β

)
whenever µj = Õ(j−β), while when the

decay is exponentialRn ≥ Ω
(
n1/2

)
.



Online learning with kernel losses

Algorithm 3 Full Information: Exponential Weights
Input :Set A, learning rate η > 0, number of rounds n.
Set p1(a) uniform distribution over A.
for t = 1, . . . , n do

choose at ∼ pt
observe wt
update pt+1(a) ∝ pt(a) · exp (−η · 〈wt,Φ(a)〉H)

end

The lower bound follows by a modification of the arguments
used to prove a lower bound linear bandits. For a complete
proof see Appendix E.

3. Full Information Setting
3.1. Full information Exponential Weights

We begin by presenting a version of the exponential weights
algorithm, Algorithm 3 adapted to our setup. In each
round we sample an action vector at ∈ A from the ex-
ponential weights distribution pt. After observing the loss,
〈Φ(at), wt〉H we update the distribution by a multiplicative
factor, exp(−η〈wt,Φ(a)〉H). In the algorithm presented we
choose the initial distribution p1(a) to be uniform over the
set A, however we note that alternate initial distributions
with support over the whole set could also be considered.
We can establish a sub-linear regret of O(

√
n) for the expo-

nential weights algorithm.

Theorem 15 Assume that in Algorithm 3 the step size η

is chosen to be, η =
√

log(vol(A))
e−2 · 1

G2n1/2 , with n large

enough such that
√

log(vol(A))
e−2

1
n1/2 ≤ 1. Then the expected

regret after n rounds is bounded by,

Rn ≤
√

(e− 2) log(vol(A))G2n1/2.

We prove this regret bound in Appendix F.1.

3.2. Conditional Gradient Descent

Next we present an online conditional gradient (Frank-
Wolfe) method (26) adapted for kernel losses. The con-
ditional gradient method is also a well studied algorithm
studied in both the online and offline setting (for a review
see (25)). The main advantage of the conditional gradient
method is that as opposed to projected gradient descent and
related methods, the projection step is avoided. At each
round the conditional gradient method involves the opti-
mization of a linear (kernel) objective function over A to
get a point vt ∈ A. Next we update the optimal mean ac-
tion Xt+1 by re-weighting the previous mean action Xt by
(1− γt) and weight our new action vt by γt. Note that this
construction also automatically suggests a distribution over

Algorithm 4 Full Information: Conditional Gradient
Input :Set A, number of rounds n, initial action a1 ∈ A,

inner product 〈·, ·〉H, learning rate η, mixing rates
{γt}nt=1.

X1 = Φ(a1)
choose D1 such that Ex∼D1Φ(x) = X1

for t = 1, 2, . . . , n do
sample at ∼ Dt
observe the adversarial action wt
define Ft(Y ) , η

∑t−1
s=1〈ws, Y 〉H + ‖Y −X1‖2H

compute vt = argmina∈A〈∇Ft(Xt),Φ(a)〉H
update mean Xt+1 = (1− γt)Xt + γtΦ(vt)
choose Dt+1 s.t. Ex∼Dt+1

[Φ(x)] = Xt+1.
end

a1, v1, v2, . . . , vt ∈ A such that, Xt+1 is a convex combina-
tion of Φ(a1),Φ(x1), . . . ,Φ(at). For this algorithm we can
prove a regret bound of O(n3/4) (presented in Appendix
F.2.).

Theorem 16 Let the step size be η = 1
2n3/4 . Also let the

mixing rates be γt = min{1, 2/t1/2}, then Algorithm 4
attains regret ofRn ≤ 8G2n3/4.

4. Applications
4.1. General Quadratic Losses

The first example of losses that we present are general
quadratic losses. At each round the adversary can choose
a symmetric (not necessarily positive semi-definite matrix)
A ∈ Rd×d, and a vector b ∈ Rd, with a constraint on the
norm of the matrix and vector such that ‖A‖2F + ‖b‖22 ≤ G2.
If we embed this pair into a Hilbert space defined by
the feature map (A, b) we get a kernel loss defined as –
〈Φ(x), (A, b)〉H = x>Ax+ b>x, where Φ(x) = (xx>, x)
is the associated feature map for any x ∈ A and the inner
product in the Hilbert space is defined as the concatenation
of the trace inner product on the first coordinate and the
Euclidean inner product on the second coordinate. The cu-
mulative loss that the player would aspire to minimize is,∑n
t=1 x

>
t Atxt + b>t xt. The setting without the linear term,

that is when bt = 0 with positive semidefinite matrices At
is previously well studied in (47; 48; 23; 4). However when
the matrix is not positive semi-definite (making the losses
non-convex) and there is a linear term, regret guarantees
and tractable algorithms have not been studied even in the
full information case.

As this is a kernel loss we have regret bounds for these
losses. We demonstrate in the subsequent sections in the
full information case it is also possible to run our algorithms
efficiently. First for exponential weights we show sampling
is efficient for these losses.
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Lemma 17 (Proof in Appendix F.1) Let B ∈ Rd×d be a
symmetric matrix and b ∈ Rd. Sampling from q(a) ∝
exp(a>Ba + a>b) for ‖a‖2 ≤ 1, a ∈ Rd is tractable in
Õ(d4) time.

4.2. Guarantees for Conditional Gradient Descent

We now demonstrate that conditional gradient descent also
can be run efficiently when the adversary plays a general
quadratic loss. At each round the conditional gradient de-
scent requires the player to solve the optimization problem,
vt = argmina∈A〈∇Ft(Xt),Φ(a)〉H. When the set of ac-
tions isA = a ∈ Rd : ‖a‖2 ≤ 1 then under quadratic losses
this problem becomes,

vt = argmin
a∈A

a>Ba+ b>a, (5)

for an appropriate matrix B and b that can be calculated by
aggregating the adversary’s actions up to step t. Observe that
the optimization problem (5) is a quadratically constrained
quadratic program (QCQP) given our choice ofA. The dual
problem is the (semi-definite program) SDP,

max− t− µ
s. t. [

B + µI b/2
b/2 t

]
� 0.

For this particular program with a norm ball constraint set it
is known the duality gap is zero provided Slater’s condition
holds, that is, strong duality holds (see Annex B.1 (12)).

4.3. Posynomial Losses

In this section we will define a posynomial game, by intro-
ducing posynomial losses and prove that these losses can
also be viewed as kernel inner products. We will use the con-
nection between posynomials and Geometric programs to
prove that conditional gradient descent can be run efficiently
on this family of losses.

Definition 18 (Monomial) A function f : Rd+ 7→ R de-
fined as

f(x) = cxα1
1 xα2

2 · · ·x
αd
d ,

where c > 0 and αi ∈ R, is called a monomial function.

A sum of monomials is a posynomial.

Definition 19 (Posynomial) A function f : Rd+ 7→ R de-
fined as

f(x) =

m∑
k=1

ckx
α1k
1 xα2k

2 · · ·xαdkd

where ck > 0 and αik ∈ R, is called a posynomial function.

Note that posynomial functions are closed under addition,
multiplication and non-negative scaling. If we assume the
adversary at each round plays a vector of dimension m
with all non-negative entries, wt = (c1, c2, · · · , cm), while
the player chooses a vector x ∈ Rd+. This vector is then
partitioned into m parts,

x = (x1, x2︸ ︷︷ ︸
s1

, . . . , xd−2, xd−1, xd︸ ︷︷ ︸
sm

),

and the feature vector is defined as

Φ(x) =

 xα1
1 xα2

2
...

x
αd−2

d−2 x
αd−1

d−1 x
αd
d

 .
Where the ith component of Φ(·) is only a function of the
ith partition of the coordinates si. Then the loss obtained
on the evaluation of the inner product between the adversary
and player action is a posynomial loss function,

〈wt,Φ(x)〉H =

m∑
k=1

ckx
αk1
1 · · ·xαkdd .

A number of scenarios can be modeled as a minimiza-
tion/maximization problem over posynomial functions (see
(11) for a detailed list of examples). We now show that con-
ditional gradient descent can be run efficiently over posyn-
omial losses. If we again assume that the set of actions
A = {a ∈ Rd : ‖a‖2 ≤ 1}. Additionally we all choose the
initial action to be the solution to the optimization problem,

a1 = argmin
a∈A

d∑
k=1

Φ(a)i.

Observe that the objective function is a posynomial subject
to a posynomial inequality constraint. This is a geometric
program that can be solved efficiently by changing variables
and converting into a convex program (Section 2.5 in (11)).
At each round of the conditional gradient descent algorithm
requires us to solve the optimization problem,

vt = argmin
a∈A

〈η
t−1∑
s=1

wt + 2(Xt − Φ(a1)),Φ(a)〉H. (6)

Given that posynomials are closed under addition, and given
our choice of a1, the objective function (6) is still a posyn-
omial and the constraint is a posynomial inequality. This
can again be cast as a geometric program that can be solved
efficiently at each round.

Conclusion

It would be interesting to explore and study more kernel
losses for which we have regret guarantees and for which
our algorithms are also computationally efficient.
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