
Neural Network Attributions: A Causal Perspective

A. Appendix
A.1. Causality Preliminaries

In this section, we review some of the basic definitions in
causality that may help understand this work.

Structural Causal Models (SCMs) (Pearl, 2009) provide a
rigorous definition of cause-effect relations between differ-
ent random variables. Exogenous variables (noise) are the
only source of stochasticity in an SCM, with the endogenous
variables (observables) deterministically fixed via functions
over the exogenous and other endogenous variables.
Definition A.1. (Structural Causal Models). A Structural
Causal Model is a 4-tuple (X,U, f, Pu)) where, (i) X is a
finite set of endogenous variables, usually the observable
random variables in the system; (ii) U is a finite set of ex-
ogenous variables, usually treated as unobserved or noise
variables; (iii) f is a set of functions [f1, f2,fn], where n
refers to the cardinality of the set X . These functions define
causal mechanisms, such that ∀xi ∈ X,xi = fi(Par, ui).
The set Par is a subset of X − {xi} and ui ∈ U . We do
not consider feedback causal models here; (iv) Pu defines
a probability distribution over U . It is not necessary for
every node in an SCM to have a unique/shared noise. Deter-
ministic causal systems have been considered in literature
(Daniusis et al., 2010).

An SCM M(X,U, f, Pu) can be trivially represented by
a directed graphical model G = (V,E), where the ver-
tices V represent the endogenous variables X (each ver-
tex vi corresponds to an observable xi). We will use ran-
dom variables and vertices interchangeably henceforth. The
edges E denote the causal mechanisms f . Concretely, if
xi = fi(Par, ui) then ∀xj ∈ Par, there exists a directed
edge from the vertex vj corresponding to xj to the vertex
vi corresponding to xi. The vertex vj is called the parent
vertex while the vertex vi is referred to as the child vertex.
Such a graph is called a causal Bayesian network. The
distribution of every vertex in a causal Bayesian network de-
pends only upon its parent vertices (local Markov property)
(Kiiveri et al., 1984).

A path is defined as a sequence of unique vertices
vo, v1, v2, ..., vn with edges between each consecutive ver-
tex vi and vi+1. A collider is defined with respect to a path
as a vertex vi which has a→ vi ← structure. (The direction
of the arrows imply the direction of the edges along the
path.) d-separation is a well-studied property of graphi-
cal models (Pearl, 2009; Geiger et al., 1990) that is often
used to decipher conditional independences between ran-
dom variables that admit a probability distribution faithful
to the graphical model.
Proposition 4. (Pearl, 2009) Two random variables a and
b are said to be conditionally independent given a set of

random variables Z if they are d-separated in the corre-
sponding graphical model G.

Definition A.2. (d-separation). Two vertices va and vb
are said to be d-separated if all paths connecting the two
vertices are “blocked” by a set of random variables Z.

A path is said to be “blocked” if either (i) there exists a
collider that is not in Anc(Z), or, (ii) there exists a non-
collider v ∈ Z along the path. Anc(Z) is the set of all
vertices which exhibit a directed path to any vertex v ∈ Z.
A directed path from vertex vi to vj is a path such that there
is no incoming edge to vi and no outgoing edge from vj .

The do(.) operator (Definition 4.1)(Pearl, 2009; 2012) is
used to identify causal effects from a given SCM or causal
Bayesian network. Although similar in appearance to the
conditional expectation E(y|x = 1), E(y|do(x) = 1) refers
to the expectation of the random variable y taken over its
interventional distribution P (y|do(x) = 1).

Definition A.3. (Average Causal Effect). The Aver-
age Causal Effect (ACE) of a binary random variable x
on another random variable y is commonly defined as
E(y|do(x = 1))− E(y|do(x = 0)).

Formally, a causal Bayesian network G = (V,E)
induces a joint distribution over its vertices PV =∏
vi∈V P (vi|parents(vi). Performing interventions on

random variables Xi are analogous to surgically remov-
ing incoming edges to their corresponding vertices VXi
in the network G. This is because the value of the
random variables Xi now depend on the nature of the
intervention caused by the “external doer” and not the
inherent causal structure of the system. The interven-
tional joint distribution over the vertices of G would
be P(V |do(VXi)) =

∏
vi∈V−VXi

P (vi|parents(vi))). No-
tice that in P(V |do(VXi)), the factorization of the inter-
ventional joint distribution ignores the intervened random
variables Xi. In an SCM M(X,U, f, Pu), performing a
do(x = x′) operation is the same as an intervened SCM
M i(X,U, f i, Pu), where the causal mechanism fx for vari-
able x, is replaced by the constant function x′. f i is obtained
from the set f by replacing all the instances of random vari-
able x in the arguments of the causal functions by x′.

A.2. More on Prior Work

Existing methods for attribution can broadly be categorized
into gradient-based methods and local regression-based
methods.

As stated in Sections 1 and 2 (main paper), in the former
approach, gradients of a function are not ideal indicators of
an input feature’s influence on the output. Partial derivatives
of a continuous function f : Rn → R are also functions
gi : Rn → R over the same domain Rn (the subscript i

Neural Network Attributions: A Causal Perspective

denotes the partial derivative with respect to the ith input
feature). The attribution value of the ith feature which is
derived from gi would in turn be biased by the values of
other input features. For instance, consider a simple function
f : R2 → R, f(x1, x2) = x1x2. The respective partial
derivatives are g1 = x2 and g2 = x1. Consider a points
a = [5, 1000]. g1(a) = 1000 and g2(a) = 5. This implies
that for output f(a) = 5000, x1 had a stronger influence
than x2. But in reality x2 has a stronger contribution towards
f(a) than x1. Gradients are thus viable candidates for the
question “How much would perturbing a particular input
affect the output?”, but not for determining which input
influenced a particular output neuron.

Besides, perturbations and gradients can be viewed as cap-
turing the Individual Causal Effect (ICE) of input neuron xi
with values α on output y.

ICEydo(xi=α) = E[y|do(xi = α), xj 6=i = data]−baseline
(5)

In Equation 5, xj 6=i = data denotes conditioning the input
neurons other than xi to the input training instance values.
The Expectation operator for y is over the unobservable
noise which is equal to the learned neural function f(.) it-
self, i.e., ICEydo(xi=α) = f(x1, x2, ..., α.., xn)− baseline,
where the baseline is f(x1, x2, ..., α − ε, .., xn) for some
ε ∈ IR. Evidently, inter-feature interactions can conceal
the real importance of input feature xi in this computation,
when only the ICE is analyzed.

The latter approach of “interpretable” regression is highly
prone to artifacts as regression primarily maps correlations
rather than causation. Regression of an output variable y
(the neural network output) on a set of input features is
akin to calculating E[y|x1, x2, ..., xk], given k input fea-
tures. However, true causal effects of xi on y are discerned
via E[y|do(xi)], as in (Pearl, 2009). The only way regress-
ing on a particular input feature would give E[y|do(xi)] is
if all the backdoor variables are controlled and a weighted
average according to the distribution of these backdoor vari-
ables is taken (Pearl, 2009). Thus, causal statements made
from regressing on all input variables (say, the weights of a
linear approximator to a deep network) would be far from
the true picture.

A.3. Proofs

A.3.1. PROOF OF PROPOSITION 1

Proof. In a feedforward neural network, each layer neu-
rons can be written as functions of neurons in its previous
layer, i.e. ∀i ∈ l : ∀lij ∈ li : lij = fij (li−1). The in-
put layer l1 can be assumed to be functions of independent
noise variables U such that l1i = f1i(ui) ∀l1i ∈ l1 and
ui ∈ U . This structure in the random variables, neurons
in the network, can be equivalently expressed by a SCM

M([l1, l2,, ln], U, [f1, f2, ...fn], Pu).

A.3.2. PROOF OF COROLLARY 1.1

Proof. All notations are consistent with their def-
initions in Proposition 1. Starting with each neu-
ron lni in the output layer ln, the corresponding
causal function fni(ln−1) can be substituted as
fni(fn−11(ln−2), fn−12(ln−2), fn−13(ln−2), ...fn−1|ln−1|

(ln−2)).
This can also be written as lni = f ′ni(ln−2). fij refers to
the causal function of neuron j in layer i. Similarly, lij
refers to neuron j in layer i. Proceeding recursively layer by
layer, we obtain modified functions such that, ∀lni ∈ layer
ln : lni = f ′ni(l1). The causal mechanisms set f ′ of the
reduced SCM M’ would be {f ′ni |lni ∈ ln}∪{l1i = f1i(ui)
|l1i ∈ l1 and ui ∈ U}

A.3.3. PROOF OF PROPOSITION 2

Proof. Let M c be the causally sufficient SCM for a given
SCM M ′. Let Gc = (V,E) be the corresponding causal
bayesian network. Presence of dependency between in-
put features in neural network N implies the existence of
common exogenous parent vertices in the graph Gc. All
the paths from one input neuron to another in graph Gc

either passes through an exogenous variable or a vertex cor-
responding to an output neuron. The output neurons are
colliders and the intervention on vi, surgically removes all
incoming edges to vi (refer to Section A.1). As all the paths
from vi to every other input neuron vj are “blocked”, from
Definition A.2, the intervened input neuron is d-seperated
from all other input neurons.

A.3.4. PROOF OF PROPOSITION 3

Proof. Let pyt be a probability density over the output vari-
ables yt at time t. Now, from Corollary 1.1 and Section
3

yt = f(x1, x2, ..., xt−1). (6)

f(.) is a recurrent function (the neural network).

In the reduced SCM M ′ for the recurrent function f(.), if
the values of all other input neurons at different timesteps
are controlled (fixed), yt transforms according to f(xt−k).
Let’s assume yt depends on xt−k via a one-to-one mapping.
Note, if there exists a one-to-one mapping between xt−k

and yt, then the conditional entropy H(yt|xt−k) would be
0, thus maximizing the mutual information between the two
random variables. So, we limit the lookback to only those
timesteps that register a one-to-one mapping with yt.

The probability of yt in an infinitesimal volume dyt is given
by,

P (yt) = p(yt)dyt (7)

Neural Network Attributions: A Causal Perspective

Algorithm 1 Calculate interventional expectation for feed-
forward networks

Result: E(y|do(xi))
Input: output neuron y, intervened input neuron xi, input
value constraints [lowi, highi], number of interventions
num, means µ, covariance matrix Cov, neural network
function f()
Initialize: Cov[xi][:] := 0; Cov[:][xi] := 0;
interventional expectation := []; α = lowi

while α ≤ highi do
µ[i] := α
interventional expectation.append(f(µ)+
1
2 trace(matmul(∇2f(µ), Cov)))

α := α+ highi−lowi
num

end while

By change of variables

P (yt) = p(yt(xt−k))|det(∇xt−kyt)|dxt−k (8)

Now, dyt and dxt−k are volumes and hence are positive
constants. yt exists in the training data and hence P (yt) >
0. Similarly, p(yt(xt−k)) 6= 0. Thus, if P (yt) evaluated
using Equation 8 is zero, there is a contradiction. Hence,
the assumption that yt depends on xt−k via a one-to-one
mapping is incorrect. τx = maxk(|det(∇xt−kyt)| > 0).
would be optimal for a particular input sequence x and
output yt. Ex[maxk(|det(∇xt−kyt)| > 0)] is taken as the
τ for the entire dataset, to prevent re-computation for every
new input sequence.

A.4. Algorithms/Pseudocode

A.4.1. ALGORITHM FOR PHASE I IN FEEDFORWARD
NETWORKS

Algorithm 1 outputs an array of size num with interven-
tional expectations of an output neuron y given different
interventions (do(.)) on xi. The user input parameter num
decides how many evenly spaced α values are desired. The
accuracy of the learned polynomial functions in Phase II
depends on the size of num.

Consider n training points, and k input neurons in a feed-
forward network. Usually, n � k to avoid memoriza-
tion by the network. Computations are performed on-the-
fly via a single pass through the computational graph in
frameworks such as Tensorflow (Abadi et al., 2016) and
PyTorch(Team, 2017). If one single pass over the com-
putational graph is considered 1 unit of computation, the
computational complexity of Phase I (Algorithm 1) would
be O(k × num). Compare this to the computational com-
plexity of O(n × num) for calculating the interventional
expectations naively. For every perturbation α of neuron xi,

Algorithm 2 Calculate interventional expectation for recur-
rent networks

Result: E(yt|do(xt̂i))
Input: output neuron yt, intervened input neuron xt̂i at
time t̂, input value constraints [lowt̂i , high

t̂
i], number of

interventions num, training input data Data, recurrent
function f()

Initialize: α = lowt̂i ; interventional expectation :=
[];
while α ≤ hight̂i do
data iterator := 0
inputdata := Data[:, : t + 1, :] //past is independent
of the present timestep t
inputdata[:, t, i] := α //setting the value of the inter-
vened variable
while data iterator < Data.size() do
next timestep input := f(input data)
inputdata.append(next timestep input)
data iterator += 1

end while
µ := Mean(inputdata) //Calculate mean of each input
neuron
Cov := Covariance(inputdata)
tempvar := f(µ)
hess :=∇2f(µ)
interventional expectation.append(tempvar +
1
2 trace(matmul(hess,Cov)))

α := α+ highi−lowi
num

end while

we would require atleast n forward passes on the network
to estimate E(y|do(xi = α)).

A.4.2. ALGORITHM FOR PHASE I IN RECURRENT
NETWORKS

See Algorithm 2. The input training data is arranged in a ten-
sor of size num samples× num time× num features.

A.4.3. ALGORITHM FOR PHASE II

See Algorithm 3.

A.5. Scaling to Large Data
In this section we follow the same notations as defined
in Section 4 in the main text. Evaluating the interven-
tional expectations using Eqn 4 involves calculating the
Hessian. This is a costly operation. For a system with
k input features it takes about O(k) backward passes
along the computational graph. Several domains involve
a large number of input features. Such a large k regime
would render Equation 4 inefficient. Note however that

Neural Network Attributions: A Causal Perspective

Algorithm 3 Learning causal regressors
Result: baseline, predictive mean, predictive variance
Input: interventional expectation for different interven-
tions E(y|do(xi)), input value constraints [lowi, highi]
Initialize: α = lowi;
order := Bayesian Model Selection(E(y|do(xi)))
predictive mean, predictive variance :=
Bayesian linear regression(E(y|do(xi)), order)
baseline := Integrate(predictive mean, lowi, highi)

we never explicitly require the Hessian, just the term∑k
i=1

∑k
j=1∇2f ′y(µ)ijCov(xi, xj |do(xl = α)). In this

section, we propose an efficient methodology to compute
the interventional expectations for high-dimensional data.

We begin with computing Cov(x,x|do(xl = α)), where
x is the input vector. Consider the eigendecomposition of
Cov(x,x|do(xl = α)) =

∑k
r=1 λrere

T
r , where er is the

rth eigenvector and λr the corresponding eigenvalue. Let
vr = λ1/2er. Performing a Taylor series expansion of f ′y
around µ, we get:

f ′y(µ+ εvr) = f ′y(µ) + ε∇T f ′y(µ)vr +
ε2

2
vTr ∇2f ′y(µ)vr

+O(ε3v3r)

f ′y(µ− εvr) = f ′y(µ)− ε∇T f ′y(µ)vr +
ε2

2
vTr ∇2f ′y(µ)vr

+O(−ε3v3r)
Adding the equations:

f ′y(µ− εvr) + f ′y(µ+ εvr)− 2f ′y(µ) = ε2vTr ∇2f ′y(µ)vr

+O(ε4v4r)

1

ε2

(
f ′y(µ− εvr) + f ′y(µ+ εvr)− 2f ′y(µ)

)
= vTr ∇2f ′y(µ)vr

+O(ε2v4r)
Rather:
lim
ε→0

1

ε2

(
f ′y(µ−εvr)+f ′y(µ+εvr)−2f ′y(µ)

)
= vTr ∇2f ′y(µ)vr

(9)
Equation 9 calculates the second order directional
derivative along vr. Since Cov(xi, xj |do(xl =

α)) =
∑k
r=1 vrivrj (ri and rj refer to the ith &

jth entry of vr respectively),
∑k
r=1 v

T
r ∇2f ′y(µ)vr =∑k

i=1

∑k
j=1∇2f ′y(µ)ijCov(xi, xj |do(xl = α)). Thus,

the second order term in Eqn 4 can be calculated by three
forward passes on the computational graph with inputs
µ, µ+εV, µ−εV , where V is the matrix with vrs as columns
and ε is taken to be very small (10−6). Although eigende-
composition is also compute-intensive, the availability of
efficient procedures allowed us to get results significantly
faster than exact calculations (0.04s for the approxima-
tion v/s 3.04s per computation for experiments on MNIST
dataset with a deep neural network of 4 hidden layers).

Figure 6. Quality of approximation via second order directional
derivatives

Figure 6 shows results for the approximate second order
term calculated v/s the exact second order term for different
α values (Section A.5). The function f ′y is a neural network
trained on MNIST images. Both the methods agree “almost”
perfectly with each other as indicated by the y = x line.

In case of feedforward networks, from Corollary 2.1, we
know that Cov(xi, xj |do(xl = α)) = Cov(xi, xj), i.e.,
the observational covariances. For recurrent networks,
Cov(xi, xj |do(xl = α)) can be calculated after explicitly
intervening on the system (Section 4.5).

A.6. More on Experiments and Results

A.6.1. GENERATION OF SYNTHETIC DATASET

We used the following procedure for generating the synthetic
dataset used for experiments (Section 5.2):

• Sample individual sequences uniformly of length be-
tween [T, T + 5]. We used T = 10. Let xt refer to the
sequence value at length t.

• ∀i; 2 < i ≤ T Sample xi ∼ N (0, 0.2).

• With probability 0.5 either (a) sample ∀i; 0 ≤ i < 3
xi ∼ N (1, 0.2) and label such sequences class 1 or (b)
sample ∀i; 0 ≤ i < 3 xi ∼ N (−1, 0.2) and label such
sequences class 0.

A.6.2. CALCULATION OF THE INTERVENTIONAL
EXPECTATIONS IN SECTION 5.4

From the generative model of the VAE we have access to
p(xij |z, c). Each pixel p(xij |z, c) is modelled as a Bernoulli
random variable with parameter θij , z being the continous
latents [z0, z1, z2, ..., z9] and c being the class-specific bi-
nary variables [c0, c1, c2, ..., c9]. Interventional expectations
required for calculated ACEs are calculated via Equation 2.

For continuous latents:

E[xij |do(zk = α), do(cl = 1)] =

E
z\zk

[E
xij

[xij |do(zk = α), do(cl = 1), z]].

Neural Network Attributions: A Causal Perspective

From the generative model prior p(z, c), we know that each
zk is independently distributed according to N (0, 1), so the
intervention does not change the distribution of the other
variables. However, the multinouli distribution over the c′s
forces all the other ci 6=l = 0. Thus, the above expression
can be simply computed via Monte Carlo integration as
follows: 1

KΣz\zk∼N(0,I9)θij , where K samples are drawn.

For discrete latents: there are two cases depending on the
intervention value α.
Case 1:

E[xij |do(ck = 1)] = E
z
[E
xij

[xij |do(ck = 1), z]]

As before, the multinoulli distribution over the cs restricts
all the other ci 6=k = 0. Thus, the above expression can be
simply computed via Monte Carlo integration as follows:
1
KΣz∼N(0,I10)θij , where K samples are drawn.
Case 2:

E[xij |do(ck = 0) = E
z,c\ck

[E
xij

[xij |do(ck = 0), c, z]]

Now, as ck = 0, the distribution over all the other ci6=k ∼
Mult(1,U{0, 9}\k). Thus, the above expression can be
simply computed via Monte Carlo Integration as follows,
1
KΣz∼N(0,I10)c\ck∼Mult(1,U{0,9}\k)θij , where K samples
are drawn.

A.6.3. ADDITIONAL RESULTS: VISUALIZING CAUSAL
EFFECT

In continuation to results in Section 5.4, we present addi-
tional results here. We fix the class part of the latent and
sample a random vector z from N (0, 1). Then we intervene
on one of the dimensions of z and pass the latent through
the decoder. We intervene with values in the range -3 to 3.
This is repeated for every dimension. When the decoded
images are sorted based on the value of intervention, we are
able to see the effect of rotation in dimension z0 and the
effect of scaling in dimension z6. Other dimensions show
no effect, as shown in Figure 7.

Figure 8 shows causal attributions of the continuous latents
zk (defined in Section 5.4) for the decoded image for dif-
ferent class-specific latents (ck). In all the cases z0 and z6
capture rotation and scaling of the digit respectively. z2 like
all the other zks showed no discernable causal effect. We
also show causal attributions of these latents for digits 0, 2
and 3 in Figure 8 to 10.

Neural Network Attributions: A Causal Perspective

Figure 7. Decoded images generated by a random latent vector, with interventions between -3.0 to 3.0 on (a) z0, (b) z6, (c) z2. The
observed trends are consistent with the causal effects observed via causal attributions on the respective zks. z0 captures rotation, z6
captures scaling, and z2 captures nothing discernable.

Figure 8. Causal attributions of (a) z0 & c0, (b) z6 & c0, (c) z2 & c0 for the decoded image. Refer Section 5.4 for details. Red indicates a
stronger causal effect, and blue indicates a weaker effect. The class-specific latent intervened on here is digit 0.

Neural Network Attributions: A Causal Perspective

Figure 9. Causal attributions of (a) z0 & c3, (b) z6 & c3, (c) z2 & c3 for the decoded image. Refer Section 5.4 for details. Red indicates a
stronger causal effect, and blue indicates a weaker effect. The class-specific latent intervened on here is 2.

Figure 10. Causal attributions of (a) z0 & c3, (b) z6 & c3, (c) z2 & c3 for the decoded image. Refer Section 5.4 for details. Red indicates
a stronger causal effect, and blue indicates a weaker effect. The class-specific latent intervened on here is 3.

