
PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits

A. Lower Bound on the Worst Case Sample Complexity to Solve (k,m, n)

Theorem 3.1. [Lower Bound for (k,m, n) ] Let L be an algorithm that solves (k,m, n). Then, there exists an instance
(A, n,m, k, ε, δ), with 0 < ε ≤ 1√

32
, 0 < δ ≤ e−1

4 , and n ≥ 2m, 1 ≤ k ≤ m, on which the expected number of pulls

performed by L is at least 1
18375 .

1
ε2 .

n
m−k+1 ln

( m
k−1)
4δ .

The proof technique for Theorem 3.1 follows a path similar to that of (Kalyanakrishnan et al., 2012, Theorem 8), but differs
in the fact that any k of the m (ε,m)-optimal arms needs to be returned as opposed to all the m.

A.1. Bandit Instances:

Assume we are given a set of n arms A = {0, 1, 2, · · · , n − 1}. Let I0
def
= {0, 1, 2, · · · ,m − k} and Il

def
= {I : I ⊆

{A \ I0} ∧ |I| = l}. Also for I ⊆ {m− k + 1,m− k + 2, · · · , n− 1}, we define

Ī
def
= {m− k + 1,m− k + 2, · · · , n− 1} \ I.

With each I ∈ Ik−1 ∪ Im we associate an n-armed bandit instance BI , in which each arm a produces a reward from a
Bernoulli distribution with mean µa defined as:

µa =


1
2 if a ∈ I0
1
2 + 2ε if a ∈ I
1
2 − 2ε if a ∈ Ī .

(2)

Notice that all the instances in Ik−1 ∪ Im have exactly m (ε,m)-optimal arms. For I ∈ Ik−1, all the arms in I0 are
(ε,m)-optimal, but for I ∈ Im they are not. With slight overloading of notation we write µ(S) to denote the multi-set
consisting of means of the arms in S ⊆ A.

The key idea of the proof is that without sufficient sampling of each arm, it is not possible to correctly identify k of the
(ε,m)-optimal arms with high probability.

A.2. Bounding the Error Probability:

We shall prove the theorem by first making the following assumption, which we shall demonstrate leads to a contradiction.

Assumption 1. Assume, that there exists an algorithm L, that solves each problem instance in (k,m, n) defined
on bandit instance BI , I ∈ Ik−1, and incurs a sample complexity SCI . Then for all I ∈ Ik−1, E[SCI ] <

1
18375 .

1
ε2 .

n
m−k+1 ln

(
( m
m−k+1)

4δ

)
, for 0 < ε ≤ 1√

32
, 0 < δ ≤ e−1

4 , and n ≥ 2m, where C = 1
18375 .

For convenience, we denote by PrI the probability distribution induced by the bandit instance BI and the possible
randomisation introduced by the algorithm L. Also, let SL be the set of arms returned (as output) by L, and TS be the total
number of times the arms in S ⊆ A get sampled until L stops.

Then, as L solves (k,m, n), for all I ∈ Ik−1

Pr
I
{SL ⊆ I0 ∪ I} ≥ 1− δ. (3)

Therefore, for all I ∈ Ik−1

EI [TA] ≤ C n

(m− k + 1)ε2
ln

((
m

m−k+1

)
4δ

)
. (4)

A.2.1. CHANGING PrI TO PrI∪Q WHERE Q ∈ Ī S.T. |Q| = m− k + 1:

Consider an arbitrary but fixed I ∈ Ik−1. Consider a fixed partitioning of A, into
⌊

n
m−k+1

⌋
subsets of size (m− k + 1)

each. If Assumption (1) is correct, then for the instance BI , there are at most
⌊

n
4(m−k+1)

⌋
− 1 partitions B ⊂ Ī , such that
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EI [TB ] ≥ 4C
ε2 ln

(
1
4δ

)
. Now, as

⌊
n−m
m−k+1

⌋
−
(⌊

n
4(m−k+1)

⌋
− 1
)
≥
⌊

n
4(m−k+1)

⌋
+ 1 > 0; therefore, there exists at least

one subset Q ∈ Ī such that |Q| = m− k + 1, and EI [TQ] < 4C
ε2 ln

(
( m
m−k+1)

4δ

)
. Define T ∗ = 16C

ε2 ln

(
( m
m−k+1)

4δ

)
. Then

using Markov’s inequality we get:

Pr
I
{TQ ≥ T ∗} <

1

4
. (5)

Let ∆ = 2εT ∗ +
√
T ∗ and also let KQ be the total rewards obtained from Q.

Lemma A.1. If I ∈ Ik−1 and Q ∈ Ī s.t. |Q| = m− k + 1, then

Pr
I

{
TQ ≤ T ∗ ∧KQ ≤

TQ
2
−∆

}
≤ 1

4
.

Proof. Let KQ(t) be the total sum obtained from Q at the end of the trial t. As for BI0 , ∀j ∈ Q µj = 1/2 − 2ε, hence
selecting and pulling one arm at each trial from Q following any rule (deterministic or probabilistic) is equivalent to selection
of a single arm from Q for once and subsequently perform pulls on it. Hence whatever be the strategy of pulling one arm
at each trial from Q, the expected reward for each pull will be 1/2− 2ε. Let ri be the i.i.d. reward obtained from the ith

trial. Then KQ(t) =
∑t
i=1 ri and V ar [ri] =

(
1
2 − 2ε

) (
1
2 + 2ε

)
=
(

1
4 − 4ε2

)
< 1

4 . As ∀i : 1 ≤ i ≤ t, ri are i.i.d., we get
V ar[KQ(t)] =

∑t
i=1 V ar(ri) <

t
4 . Now we can write the following:

Pr
I

{
min

1≤t≤T∗

(
KQ(t)− t

(
1

2
− 2ε

))
≤ −
√
T ∗
}

≤ Pr
I

{
max

1≤t≤T∗

∣∣∣∣KQ(t)− t
(

1

2
− 2ε

)∣∣∣∣ ≥ √T ∗}
≤ V ar[KQ(T ∗)]

T ∗
<

1

4
, (6)

wherein we have used Kolmogorov’s inequality.

Lemma A.2. Let I ∈ Ik−1 and Q ∈ Im−k+1 such that Q ⊆ Ī , and let W be some fixed sequence of rewards obtained by
a single run of algorithm L on BI such that TQ ≤ T ∗ and KQ ≥ TQ

2 −∆, then:

Pr
I∪Q
{W} > Pr

I
{W} · exp(−32ε∆). (7)

Proof. Recall the fact that all the arms in Q have the same mean. Hence, if chosen one at each trial (following any strategy),
the expected reward at each trial remains the same. Hence the probability of getting a given reward sequence generated from
Q is independent of the sampling strategy. Again as the arms in Q have higher mean in BQ, the probability of getting the
sequence (of rewards) decreases monotonically as the 1-rewards for BI0 become fewer. So we get

Pr
I∪Q
{W} = Pr

I
{W}

(
1
2 + 2ε

)KQ ( 1
2 − 2ε

)TQ−KQ(
1
2 − 2ε

)KQ ( 1
2 + 2ε

)TQ−KQ
≥ Pr

I
{W}

(
1
2 + 2ε

)(TQ
2 −∆

) (
1
2 − 2ε

)(TQ
2 +∆

)
(

1
2 − 2ε

)(TQ
2 −∆

) (
1
2 + 2ε

)(TQ
2 +∆

)

= Pr
I
{W} ·

( 1
2 − 2ε
1
2 + 2ε

)2∆

> Pr
I
{W} · exp(−32ε∆)

[
for 0 < ε ≤ 1√

32

]
.



PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits

Lemma A.3. If (5) holds for an I ∈ Ik−1 and Q ∈ Im−k+1 such that Q ⊆ Ī , and ifW is the set of all possible reward
sequences W , obtained by algorithm L on BI , then PrI∪Q{W} >

(
PrI {W} − 1

2

)
· 4δ. In particular,

Pr
I∪Q
{SL ⊆ I0 ∪ I} >

δ(
m

m−k+1

) . (8)

Proof. Let for some fixed sequence (of rewards) W , TWQ and KW
Q respectively denote the total number of samples received

by the arms in Q and the total number of 1-rewards obtained before the algorithm L stopped. Then:

Pr
I∪Q
{W} = Pr

I∪Q
(W : W ∈ W)

≥ Pr
I∪Q

{
W : W ∈ W

∧
TWQ ≤ T ∗

∧
KW
Q ≥

TWQ
2
−∆

}

> Pr
I

{
W : W ∈ W

∧
TWQ ≤ T ∗

∧
KW
Q ≥

TWQ
2
−∆

}
· exp(−32ε∆)

≥
(

Pr
I

{
W : W ∈ W

∧
TWQ ≤ T ∗

}
− 1

4

)
· exp(−32ε∆)

≥
(

Pr
I
{W} − 1

2

)
· 4δ(

m
m−k+1

) for C =
1

18375
, δ <

e−1

4
.

In the above, the 3rd, 4th and the last step are obtained using Lemma A.2, Lemma A.1 and Equation (5) respectively. The
inequality (8) is obtained by using inequality (3), as PrI{SL ∈ I0} > 1− δ ≥ 1− e−1

4 > 3
4 .

A.2.2. SUMMING OVER Ik−1 AND Im

Now, we sum up the probability of errors across all the instances in Ik−1 and Im. If the Assumption 1 is true, using the
pigeon-hole principle we show that there exists some instance for which the mistake probability is greater than δ.
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∑
J∈Im

Pr
J
{SL * J}

≥
∑
J∈Im

∑
J′⊂J

:|J′|=m−k+1

Pr
J
{SL ⊆ {J \ J ′} ∪ I0}

≥
∑
J∈Im

∑
J′⊂J

:|J′|=m−k+1

Pr
J
{∃a ∈ I0 : SL = {J \ J ′} ∪ {a}}

=
∑
J∈Im

∑
J′⊂J

:|J′|=m−k+1

∑
I∈Ik−1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑
J∈Im

∑
J′⊂A\I0

:|J′|=m−k+1

∑
I∈Ik−1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑
J∈Im

∑
I∈Ik−1

∑
J′⊂A\I0

:|J′|=m−k+1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑

I∈Ik−1

∑
J∈Im

∑
J′⊂Ī

:|J′|=m−k+1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

∑
J∈Im

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

Pr
I∪J′
{SL ⊆ I ∪ I0}

Recall that ∀I ∈ Ik−1 there exists a set Q ⊂ A \ {I ∪ I0} : |Q| = (m− k + 1), such that TQ < T ∗. Therefore,

∑
J∈Im

Pr
J
{SL * J}

≥
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

Pr
I∪J′
{SL ⊆ I ∪ I0}

>
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

δ(
m

m−k+1

)
≥

∑
I∈Ik−1

(
n−m

m− k + 1

)
· δ(

m
m−k+1

)
≥
(
n− (m− k + 1)

k − 1

)
·
(

n−m
m− k + 1

)
· δ(

m
m−k+1

)
=

(
n− (m+ k − 1)

m

)
δ

= |Im|δ.

Hence, we get a contradiction to Assumption 1, thereby proving the theorem.
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B. Analysis of LUCB-k-m
Let at time t, p̂ta be the empirical mean of the arm a ∈ A, and uta be the number of times the arm a has been pulled

until (and excluding) time t. For a given δ ∈ (0, 1], we define β(uta, t, δ) =
√

1
2uta

ln k1nt4

δ , where k1 = 5/4. We define

upper and lower confidence bound on the estimate of the true mean of arm a ∈ A as ucb(a, t) = p̂a + β(uta, t, δ), and
lcb(a, t) = p̂a − β(uta, t, δ) respectively.

To analyse the sample complexity, first we define some events, at least one of which must occur if the algorithm does not
stop at the round t.

PROBABLE EVENTS. Let a, b ∈ A, such that µa > µb. During the run of the algorithm, any of the following five events
may occur:
i) The empirical mean of an arm may falls outside the upper or the lower confidence bound. We define it as:

CROSSta
def
= {ucb(a, t) < µa ∨ lcb(a, t) > µa}.

ii) The empirical mean of arm a may be lesser than that of arm b; we definite as:

ErrA(a, b, t)
def
= {p̂ta < p̂tb}.

iii) The lower and upper confidence bounds of arm a may fall below those of arm b; we define them as:

ErrL(a, b, t)
def
= {lcb(a, t) < lcb(b, t)},

ErrU(a, b, t)
def
= {ucb(a, t) < ucb(b, t)}.

iv) If an arm’s confidence bounds are above a certain radius (say d), we define that event as

NEEDY ta (d)
def
= {{lcb(a, t) < µa − d} ∨ {ucb(a, t) > µa + d}} .

Let u∗(a, t) def
=
⌈

32
max{∆a,

ε
2}2

ln k1nt
4

δ

⌉
for all a ∈ A, where k1 = 5/4. We show that any arm a, if sampled sufficiently, that

is uta ≥ u∗(a, t), then occurrence of any of the PROBABLE EVENTS imply occurrence of CROSSta. First we show that if
CROSSta does not occur for any a ∈ A, then occurrence of any one of the PROBABLE EVENTS implies the occurrence of
NEEDY ta (·) or NEEDY tb (·).

Lemma B.1. [Expressing PROBABLE EVENTS in terms of NEEDY ta and CROSSta] To prove that {¬CROSSta ∧
¬CROSStb} ∧ {ErrA(a, b, t) ∨ ErrU(a, b, t) ∨ ErrL(a, b, t)} =⇒ {NEEDY ta

(
∆ab

2

)
∨NEEDY tb

(
∆ab

2

)
}.

Proof. ErrA(a,b, t): To prove that ¬{CROSSta ∨ CROSStb} ∧ ErrA(a, b, t) =⇒ NEEDY ta
(

∆ab

2

)
∨

NEEDY tb
(

∆ab

2

)
.

ErrA(a, b, t) =⇒ p̂ta < p̂tb

=⇒ p̂ta − (pa − β(uta, t, δ)) < p̂tb − (pb + β(utb, t, δ)+

(β(uta, t, δ) + β(utb, t, δ))−∆ab/2)

=⇒ NEEDY ta

(
∆ab

2

)
∨NEEDY tb

(
∆ab

2

)
.

ErrU(a,b, t): To prove that ¬{CROSSta ∨ CROSStb} ∧ ErrU(a, b, t) =⇒ NEEDY tb
(

∆ab

2

)
.
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Assuming ¬CROSSta ∧ ¬CROSStb we get

ErrU(a, b, t) =⇒ {ucb(b, t) > ucb(a, t)}
=⇒ {p̂tb + β(utb, t, δ) > p̂ta + β(uta, t, δ)}
=⇒ {p̂tb > µb + β(utb, t, δ)} ∨ {p̂ta < µa − β(uta, t, δ)}∨

{2β(utb, t, δ) > ∆ab}

=⇒ NEEDY tb

(
∆ab

2

)
.

ErrL(a,b, t): To prove that ¬{CROSSta ∨ CROSStb} ∧ ErrL(a, b, t) =⇒ NEEDY ta
(

∆ab

2

)
.

Assuming ¬CROSSta ∧ ¬CROSStb we get

ErrL(a, b, t) =⇒ {lcb(b, t) > lcb(a, t)}
=⇒ {p̂tb − β(utb, t, δ) > p̂ta − β(uta, t, δ)}
=⇒ {p̂tb > µb + β(utb, t, δ)} ∨ {p̂ta < µa − β(uta, t, δ)}∨

{2β(uta, t, δ) > ∆ab}

=⇒ NEEDY ta

(
∆ab

2

)
.

We show that given a threshold d, if an arm a is sufficiently sampled, such that β(uta, t, δ) ≤ d
2 , then NEEDY ta infers

CROSSta.

Lemma B.2. For any a ∈ A, {NEEDY ta (d)|β(uta, t, δ) < d/2} =⇒ CROSSta.

Proof. First, we show that {lcb(a, t) < µa − d|β(uta, t, δ) < d/2} =⇒ CROSSta,

{lcb(a, t) < µa − d|β(uta, t, δ) < d/2}
=⇒ {p̂ta − β(uta, t, δ) < µa − d|β(uta, t, δ) < d/2}
=⇒ {p̂ta < µa − d+ β(uta, t, δ)|β(uta, t, δ) < d/2}
=⇒ {p̂ta < µa − d/2|β(uta, t, δ) < d/2}
=⇒ CROSSta. (9)

The other part follows the similar way.

By the very definition of confidence bound, at any round t, the probability that the empirical mean of an arm will lie outside
it, is very low. In other words, the probability of occurrence CROSSta is very low for all t and a ∈ A.

Lemma B.3. [Upper bounding the probability of CROSSta] ∀a ∈ A and ∀t ≥ 0, Pr{CROSSta} ≤ δ
knt4 . Hence,

P [∃t ≥ 0 ∧ ∃a ∈ A : CROSSta|uta ≥ 0] ≤ δ
k1t3

.

Proof. Pr{CROSSta} is upper bounded by using Hoeffding’s inequality, and the next statement gets proved by taking
union bound over all arms and t.

Now, recalling the definition of ht∗, and lt∗ from Algorithm 1, we present the key logic underlying the analysis of LUCB-k-m.
The idea is to show that if the algorithm has not stopped, then one of those PROBABLE EVENTS must have occurred. Then
using Lemma B.1, and Lemma B.2, Lemma B.3 we show that beyond a certain number of rounds, the probability that
LUCB-k-m will continue is sufficiently small. Lastly, using the argument based on pigeon-hole principle, similar to Lemma
5 of Kalyanakrishnan (2011), we establish the upper bound on the sample complexity. Below we present the core logic that
shows, until the algorithm stops one of the PROBABLE EVENTS must occur.
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Case 1 ht∗ ∈ B1 ∧ lt∗ ∈ B1

if ∃b3 ∈ At1 ∩B3 then
Then ErrL(ht∗, b3, t) has occurred.

else
∃b3 ∈ At2 ∩B3

Then ErrA(ht∗, b3, t) has occurred.
end if

Case 2 ht∗ ∈ B1 ∧ lt∗ ∈ B2

if ∃b3 ∈ At1 ∩B3 then
Then ErrL(ht∗, b

t
3, t) has occurred.

else
∃b3 ∈ At2 ∩B3.

if ∆ht∗l
t
∗
≥

∆ht∗
2 then

Then NEEDY tht∗(∆ht∗
/4) ∨NEEDY tlt∗(∆ht∗

/4) has occurred.
else

Then ErrL(lt∗, b
t
3, t) has occurred.

end if
end if

Case 3 ht∗ ∈ B1 ∧ lt∗ ∈ B3

Then NEEDY tht∗(∆ht∗
/4) ∨NEEDY tlt∗(∆lt∗

/4) has occurred.

Case 4 ht∗ ∈ B2 ∧ lt∗ ∈ B1

if ∆ht∗l
t
∗
≥

∆ht∗
2 then

Then ErrA(lt∗, h
t
∗, t) has occurred.

else
if ∃b3 ∈ At1 ∩B3 then

Then ErrL(ht∗, b
t
3, t) has occurred.

else
∃b3 ∈ At2 ∩B3

∴ ErrA(lt∗, b3, t) has occurred.
end if

end if
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Case 5 ht∗ ∈ B2 ∧ lt∗ ∈ B2 and ∆ht∗l
t
∗
> 0

Here, ∃b1 ∈ (At2 ∪At3) ∩B1 and ∃b3 ∈ (At1 ∪At2) ∩B3

if |∆ht∗l
t
∗
| < ∆ht∗

/2 then
if ∆b1ht∗

> ∆b1/4 then
if b1 ∈ At2) ∩B1 then
ErrA(b1, h

t
∗, t)

else
b1 ∈ At3 ∩B1

ErrU(b1, l
t
∗, t) has occurred.

end if
else

∆b1ht∗
≤ ∆b1/4 and hence ∆lt∗b3

≥ ∆lt∗
/4

if b3 ∈ At2 ∩B3 then
ErrA(lt∗, b3, t) has occurred.

else
b3 ∈ At1 ∩B3

ErrL(ht∗, b3, t) has occurred.
end if

end if
else
|∆ht∗l

t
∗
| > ∆ht∗

/2
NEEDY tht∗

(∆ht∗
/4) ∨NEEDY tlt∗(∆ht∗

/4) has occurred.
end if

Case 5 (continued) ht∗ ∈ B2 ∧ lt∗ ∈ B2 and ∆ht∗l
t
∗
≤ 0

Here, ∃b1 ∈ (At2 ∪At3) ∩B1 and ∃b3 ∈ (At1 ∪At2) ∩B3

if |∆ht∗l
t
∗
| < ∆ht∗

/2 then
if ∆b1lt∗

> ∆b1/4 then
if b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
b1 ∈ At3 ∩B1

ErrU(b1, l
t
∗, t) has occurred.

end if
else

∆b1lt∗
≤ ∆b1/4 and hence ∆ht∗b3

≥ ∆ht∗
/4

if b3 ∈ At2 ∩B3 then
ErrA(lt∗, b3, t) has occurred.

else
b3 ∈ At1 ∩B3

ErrL(ht∗, b3, t) has occurred.
end if

end if
else
|∆ht∗l

t
∗
| > ∆ht∗

/2
NEEDY tht∗

(∆ht∗
/4) ∨NEEDY tlt∗(∆ht∗

/4) has occurred.
end if
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Case 6 ht∗ ∈ B2 ∧ lt∗ ∈ B3

if ∆ht∗l
t
∗
≥

∆lt∗
2 then

Then NEEDY tht∗(∆/4) ∨NEEDY tlt∗(∆lt∗
/4) has occurred.

else
∆ht∗l

t
∗
<

∆lt∗
2

∴ ∀b1 ∈ {At2 ∪At3} ∩B1, ∆b1ht∗
>

∆b1

2 .
if ∃b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
∃b1 ∈ At3 ∩B1.
Then ErrU(bt1, l

t
∗, t) has occurred.

end if
end if

Case 7 ht∗ ∈ B3 ∧ lt∗ ∈ B1

∴ ErrA(lt∗, h
t
∗, t) has occurred.

Case 8 ht∗ ∈ B3 ∧ lt∗ ∈ B2

if ∆ht∗l
t
∗
≥

∆ht∗
2 then

ErrA(lt∗, h
t
∗, t) has occurred.

else
∆ht∗l

t
∗
<

∆ht∗
2

∴ ∀b1 ∈ {At2 ∪At3} ∩B1, ∆b1lt∗
>

∆b1

2 .
if ∃b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
∃b1 ∈ At3 ∩B1.
∴ ErrU(b1, l

t
∗, t) has occurred.

end if
end if

Case 9 ht∗ ∈ B3 ∧ lt∗ ∈ B3

∃b1 ∈ {At2 ∪At3} ∩B1

if ∃b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
∃b1 ∈ At3 ∩B1

∴ ErrA(b1, l
t
∗, t) has occurred.

end if

Lemma B.4 (H). If T = CHε ln
(
Hε
δ

)
, then for C ≥ 2732, the following holds:

T > 2 + 2
∑
a∈A

u∗(a, T ).

Proof. This proof is taken from Appendix B.3 of Kalyanakrishnan (2011).

2 + 2
∑
a∈A

u∗(a, T ) = 2 + 64
∑
a∈A

⌈ 1

max(∆a, (ε/2))2
ln
knt4

δ

⌉
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≤ 2 + 64n+ 64Hε ln
knT 4

δ

= 2 + 64n+ 64Hε ln k + 64Hε ln
n

δ
+ 256Hε lnT

< (66 + 64 ln k)Hε + 64Hε ln
n

δ
+ 256Hε

[
lnC + lnHε + ln ln

Hε

δ

]
< (66 + 64 ln k)Hε + 64Hε ln

n

δ
+ 256Hε

[
lnC + lnHε + ln ln

Hε

δ

]
< 130Hε + 64Hε ln

n

δ
+ 256Hε

[
lnC + lnHε + ln

Hε

δ

]
< 130Hε + 64Hε ln

Hε

δ
+ 256Hε

[
lnC + 2 ln

Hε

δ

]
< (706 + 256 lnC)Hε ln

Hε

δ
< CHε ln

Hε

δ
[For C ≥ 2732] .

Lemma B.5. Let T ∗ =
⌈
2732Hε ln

(
Hε
δ

)⌉
. For every T > T ∗1 , the probability that the Algorithm 1 has not terminated

after T rounds of sampling is at most 8δ
T 2 .

Proof. Letting T̄ = T
2 we define two events for T̄ ≤ t ≤ T−1: E(1) def

= ∃a ∈ A : CROSSta andE(2) def
= ∃NEEDY ta

(
∆a

4

)
.

If the algorithm stops for t < T̄ , then there is nothing to prove. On the contrary, let the algorithm has not stopped after
t > T̄ and neither E(1) nor E(2) has occurred. Letting Nrounds be the the required number of rounds beyond T̄ , we can
upper bound it as:

Nrounds =
∑
t=T̄

{
11

[
NEEDY tht∗

(
∆ht∗

4

)
∨NEEDY tmt∗

(
∆mt∗

4

)
∨NEEDY tlt∗

(
∆lt∗

4

)]}

≤
T−1∑
T̄

∑
a∈A

11

[
a ∈ {ht∗,mt

∗, l
t
∗} ∧NEEDY ta

(
∆a

4

)]

=

T−1∑
T̄

∑
a∈A

11[a ∈ {ht∗,mt
∗, l

t
∗} ∧ (uta < u∗(a, t))]

≤
T−1∑
T̄

∑
a∈A

11[a ∈ {ht∗,mt
∗, l

t
∗} ∧ (uta < u∗(a, t))]

≤
∑
a∈A

T−1∑
T̄

11[(a ∈ {ht∗,mt
∗, l

t
∗}) ∧ (uta < u∗(a, t))]

≤
∑
a∈A

u∗(a, t).

Using Lemma B.4, T ≥ T ∗ ⇒ T > 2 + 2
∑
a∈A u

∗(a, t). Hence, if neither E(1) nor E(2) occurs then the algorithm runs
for at most T̄ +Nrounds ≤ dT/2e+

∑
a∈A 16u∗(a, t) < T number of rounds.

The probability that the algorithm does not stop within T rounds, is upper-bounded by P [E(1)∨E(2)]. Applying Lemma B.2
and Lemma B.3,

P [E(1) ∨ E(2)] ≤
T−1∑
t=T̄

(
δ

k1t3
+

δ

kt4

)
≤
T−1∑
t=T̄

δ

k1t3

(
1 +

2

t

)
≤
(
T

2

)
8δ

k1T 3

(
1 +

4

T

)
<

8δ

T 2
.
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Theorem 3.2. [Expected Sample Complexity of LUCB-k-m ] LUCB-k-m solves (k,m, n) using an expected sample
complexity upper-bounded by O

(
Hε log Hε

δ

)
.

Using Lemma B.4, and Lemma B.5 the expected sample complexity of the Algorithm 1 can be upper bounded as

E[SC] ≤ 2

T ∗1 +

∞∑
t=T∗1

8δ

T 2

 ≤ 5464 ·
(
Hε ln

(
Hε

δ

))
+ 32. (10)
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C. Proof of Theorem 4.7
Algorithm 4 describes OPTQP. It uses P2 (Roy Chaudhuri & Kalyanakrishnan, 2017) with MEDIAN ELIMINATION as the
subroutine (inside P2), to select an [ε, ρ]-optimal arm with confidence 1− δ′. We have assumed δ′ = 1/4, in practice the
one can choose any sufficiently small value for it, which will merely affect the multiplicative constant in the upper bound.

Algorithm 4 OPTQP
Input: A, ε, δ, and OPTQF.
Output: A single [ε, ρ]-optimal arm

Set δ′ = 1/4, u =
⌈

1
2(0.5−δ′)2 · log 2

δ

⌉
=
⌈
8 log 2

δ

⌉
.

Run u copies of P2(A, ρ, ε/2, δ′) and form set S with the output arms.
Return the output from OPTQF

(
S, u, bu2 c, 1,

ε
2 ,

δ
2

)
.

Theorem C.1. [Correctness and Sample Complexity of OPTQP] If OPTQF exists, then OPTQP solves Q-P, within the
sample complexity Θ

(
1
ρε2 log 1

δ + γ(·)
)

.

Proof. First we prove the correctness and then upper bound the sample complexity.

Correctness. First we notice that each copy of P2 outputs an [ε/2, ρ]-optimal arm with probability at least 1− δ′. Also,
OPTQF outputs an [ε/2, ρ]-optimal arm with probability 1 − δ. Let, X̂ be the fraction of sub-optimal arms in S. Then
Pr{X̂ ≥ 1

2} = Pr{X̂ − δ′ ≥ 1
4} ≤ exp(−2 · ( 1

4 )2 · u) = exp(−2 · 1
16 · 8 log 2

δ ) < δ
2 . On the other hand, the mistake

probability of OPTQF is upper bounded by δ/2. Therefore, by taking union bound, we get the mistake probability is upper
bounded by δ. Also, the mean of the output arm is not less than ε

2 + ε
2 = ε from the (1− ρ)-th quantile.

Sample complexity. First we note that, for some appropriate constant C, the sample complexity (SC) of each of
the u copies of P2 is C

ρ(ε/2)2

(
log 2

δ′

)2 ∈ O
(

1
ρε2

)
. Hence, SC of all the u copies P2 together is upper bounded

by C1·u
ρε2 , for some constant C1. Also, for some constant C2, the sample complexity of OPTQF is upper bounded by

C2

(
u

(u/2)(ε/2)2 log 2
δ + γ(·)

)
= C2

(
8
ε2 log 2

δ + γ(·)
)
. Now, adding the sample complexities, and substituting for u we

prove the bound.


