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Abstract

We establish the first nonasymptotic error bounds
for Kaplan-Meier-based nearest neighbor and ker-
nel survival probability estimators where feature
vectors reside in metric spaces. Our bounds imply
rates of strong consistency for these nonparamet-
ric estimators and, up to a log factor, match an
existing lower bound for conditional CDF estima-
tion. Our proof strategy also yields nonasymptotic
guarantees for nearest neighbor and kernel vari-
ants of the Nelson-Aalen cumulative hazards esti-
mator. We experimentally compare these methods
on four datasets. We find that for the kernel sur-
vival estimator, a good choice of kernel is one
learned using random survival forests.

1. Introduction

Survival analysis arises in numerous applications where we
want to reason about the amount of time until some critical
event happens. For example, in health care, we may be
interested in using electronic health records to predict how
long a patient with a particular disease will live (e.g., Botsis
et al. 2010; Ganssauge et al. 2016), or how much time a
patient has before a disease relapses (e.g., Zupan et al. 2000).
In criminology, we may be interested in predicting the time
until a convicted criminal reoffends (Chung et al., 1991).

A fundamental task in survival analysis is estimating the
survival probability over time for a specific subject (for ease
of exposition, we stick to using standard survival analysis
terminology in which the critical event of interest is death).
Formally, suppose a subject has feature vector X (a random
variable that takes on values in a feature space &") and sur-
vival time 7' (a nonnegative real-valued random variable).
For a given feature vector € X, our goal is to estimate the
conditional survival function S(t|z) := P(T > t|X = z)
for time ¢t > 0.
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To estimate .S, we assume that we have access to n training
subjects. For the i-th subject, we have the subject’s feature
vector X; € X as well as two observations: §; € {0,1}
indicates whether we observe the survival time for the :-th
subject, and Y; € R is the survival time for the -th subject
if §; = 1 or the “censoring time” if §; = 0. The censoring
time gives a lower bound for the ¢-th subject’s survival time
(e.g., when we stop collecting training data, the i-th subject
might still be alive, in which case that is when the subject’s
true survival time is “censored” and we only know that the
subject survives beyond the time of censoring).

Many approaches have been devised for estimating the con-
ditional survival function S. Most standard approaches
impose strong structural assumptions on S via constraining
the hazard function h(t|z) := — % log S(t|z). For example,
the Cox proportional hazards model decouples the effects
of time ¢ > 0 and of feature vector € R? by assuming
the factorization h(t|z) = ho(t) exp(3 T z), where positive-
valued function hg and vector 3 € R¢ are parameters (Cox,
1972). After estimating ho and g from training data, then
for any feature vector x, we can estimate the hazard func-
tion h(t|z) by plugging in estimates for hy and (. Inte-
grating the estimate for h(¢|x) thus yields an estimate for
S(tlz) = exp(— fo slx)ds). Other standard approaches
such as the Aalen additive rnodel (Aalen, 1989) and accel-
erated failure time models (Kalbfleisch & Prentice, 2002,
Chapter 7) also impose structure on hazard function h(t|z)
and are typically used with parametric assumptions. More
recent approaches include, for instance, modifying the Cox
proportional hazards model by replacing the inner product
BT 2 with a nonlinear function of 2 that is encoded as a deep
net (Katzman et al., 2018), or completely specifying S via a
hierarchical generative model (Ranganath et al., 2016).

Rather than making structural assumptions on S, Beran
(1981) takes a nonparametric approach using nearest neigh-
bors and kernels. The idea is simple: there already is a
nonparametric estimator for the marginal survival function
Smarg(t) := P(T > t) known as the Kaplan-Meier estima-
tor (Kaplan & Meier, 1958). This estimator does not use
feature vectors. We can incorporate feature vectors in a
straightforward manner. For a test subject with feature vec-
tor z, we first find training subjects whose feature vectors
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are sufficiently close to = (e.g., pick the k closest). We
apply the Kaplan-Meier estimator to just these nearby sub-
jects to estimate the conditional survival probability function
S(t|z) (the kernel variant can weight training subjects differ-
ently). Beran (1981) provided consistency results for these
k-NN and kernel estimates for .S, while Dabrowska (1989),
Van Keilegom & Veraverbeke (1996), and Van Keilegom
(1998) established nonasymptotic error bounds for the ker-
nel variant when feature vectors are Euclidean.

In this paper, we present the first nonasymptotic error
bounds for nearest neighbor and kernel estimators for S
where feature vectors reside in the general setting of separa-
ble metric spaces (Euclidean space is a special case). Our
error bounds lead to rates of strong consistency for both
estimators across a wide range of distributions. Further-
more, our bounds are essentially optimal with respect to the
number of training data n. In particular, note that 1 — S(-|z)
is a conditional CDF. If there is no right-censoring, the prob-
lem reduces to conditional CDF estimation. Up to a log
factor, our error rates match an existing conditional CDF
estimation error lower bound by Chagny & Roche (2014).

Our proof strategy also yields nonasymptotic error bounds
for Nelson-Aalen-based nearest neighbor and kernel es-
timates of the conditional cumulative hazard function
—log S(t|x). These bounds turn out to be crucial in how
we derive generalization guarantees for automatic parameter
selection (choosing the number of nearest neighbors or the
kernel bandwidth) via a validation set.

Despite our theory handling a wide range of distances and
kernels, both of these still have to be pre-specified by the
user and, in practice, can lead to large prediction accuracy
differences. As a simple heuristic, we propose using random
survival forests (Ishwaran et al., 2008) to learn a kernel
for the kernel survival estimator. We experimentally show
that the resulting adaptive kernel estimator has prediction
accuracy on par with regular random survival forests and
is, in particular, typically as good as or better than other
methods tested.

2. Model and Nonparametric Estimators

Model. The training data (X1,Y7,01),...,(Xn, Yn,0n)
€ X xRy x {0, 1} are assumed to be generated i.i.d. by the
following process, stated for a generic data point (X, Y, J):

1. Sample feature vector X ~ Px.

2. Sample nonnegative survival time T" ~ Pp x.

3. Sample nonnegative censoring time C' ~ P¢|x. (Note
that T" and C are independent given X.)

4. SetY = min{T,C},and 6 = 1{T < C}.

We refer to Y as the observed time, and § as the censoring
indicator (0 means censoring happened). For test feature
vector x € X, we aim to estimate the conditional survival
function S (¢|x)

= P(T > ¢|X = z) using the training data.

Nonparametric survival function estimators. All non-
parametric estimators for S in this paper are based on
the Kaplan-Meier estimator (Kaplan & Meier, 1958), re-
stricted to a subset of the n training subjects. This estimator
works as follows. Let [n] := {1,2,...,n} denote the set
of all training subjects. For any subset of training sub-
jects Z C [n], the Kaplan-Meier estimator first identifies
the unique times when death occurred, given by the set
Yz :={Y; :j € Ist. 0; = 1} (repeated observed times
get counted once). Next, we keep track of how many deaths
and how many subjects are at risk at any given time ¢ > 0:
)= S S = 1) nz(t) = 1{Y; > 1),
JET JjE€T
Then the Kaplan-Meier estimator restricted to training sub-

jects 7 is given by
H (1 dz(t") )ﬂ{t'St}
nz(t/) '

t'eyz
This equation has a simple interpretation: if we sort the
unique death times Vr as {1 <tz < --- < t}y,|, then the
terms being multiplied above are estimated probabilities of
a subject surviving from time O to ¢;, from ¢; to to, and
so forth until reaching time ¢. The standard Kaplan-Meier
estimator has 7 = [n].

SKM(4|T) =

We now state four nonparametric estimators for the condi-
tional survival function S. The first two are by Beran (1981)
and are the estimators that we provide theoretical analysis
for in the next section. Distances between feature vectors
are measured via a user-specified metric p : X x X — R

k-NN survival estimator. For a test feature vector x € X,
we first find the k training subjects with feature vectors
closest to x according to metric p, breaking ties uniformly
at random. Let N nn(z) C [n] denote these k subjects’

indices. Then the k-NN estimate for S is S*NN(t|z) =
SKM(thk_NN(ZC)).

Kernel survival estimator. For a user-specified kernel func-
tion K : Ry — R and bandwidth h > 0, we can measure
how similar training subject j € [n] is to = by the weight
K (@) We generalize the unique death times, death
counts, and survivor counts as follows:

p(z, Xg)) S 0}’

yK(x;h)::{Yj for j € [n] s.t. @K( ( -
w(tlzs h): ZK(

K (tjz;h): ZK( )]l{Y >t}
Then the kernel estimate for S is given by

a dr (t'|z; h) \ HE'<t}
K (4] 1Y - _ ’
SE(t|z; h) = | | 1 - (t’|x;h)> (D

)5 1{Y; = t},

t' €V (x;h)
In our numerical experiments later, we benchmark the above
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methods against the random survival forests method by
Ishwaran et al. (2008) along with our proposed variant of it
that combines it with the kernel survival estimator.

Random survival forests. Random survival forests are much
like standard random forests. During training, each tree is
grown using a survival-analysis-based splitting rule. Each
leaf is associated with some subset of the training data
for which a Kaplan-Meier survival estimate is produced.
In other words, for each tree, each leaf is associated with
a particular survival function estimate. Then, for a test
point x, we find the tree leaves that « belongs to. We average
these leaves’ survival function estimates to produce the final
random survival forest estimate for S(-|z).

Adaptive kernel survival estimator. We propose an alterna-
tive approach to making predictions using random survival
forests without changing their training procedure. For a
test point x, to make a final prediction, we instead use the
kernel survival estimator given by equation (1), where we
replace the expression K (2 ez, XJ)) by K (2, X;), defined as
the fraction of trees for which x and training point X; show
up in the same leaf node in the learned forest. Note that
interpreting standard random forests as learning kernels was
originally done by Lin & Jeon (2006).

Relating to the Nelson-Aalen estimator. The Nelson-
Aalen estimator estimates the marginal cumulative haz-
ard function Hpg(t) := —log Smarg(t) = —1logP(T" > t)
(Nelson, 1969; Aalen, 1978). The Nelson-Aalen estimator
restricted to training subjects Z is given by

B = Y IO <y,

t Eyz ( )

using the same variables introduced for the Kaplan-Meier

estimator. We can relate the Nelson-Aalen estimator to

the Kaplan-Meier one: the first-order Taylor approximation
— log S¥M (t|7) is HNA (t|Z). Because our theoretical

analy51s of k-NN and kernel variants of the Kaplan-Meier

survival estimator is in terms of Taylor series expansions of

log S, our proofs extend (with small changes) to k-NN and

kernel variants of the Nelson-Aalen estimator.

For exposition clarity, the rest of the paper uses k-NN and
kernel estimators to refer to the Kaplan-Meier versions
rather than the Nelson-Aalen ones unless stated otherwise.

3. Theoretical Guarantees

We first introduce some notation used throughout the paper.
We denote closed and open balls centered at z € X with
radius r > 0 as

By, :={a' € X : p(x,2') <r},
B, :={2' eX :p(z,2') <r}
We define the “support” of feature distribution Px as
supp(Px) :={z € X : Px(B,,) > 0forall r > 0},

where Px (Bmﬂn) is the probability that a feature vector sam-
pled from distribution Px lands in B .

We denote tail probability functions using “S” with and
without subscripts. .S without a subscript always refers
to the tail of the conditional survival time 7' distribu-
tion S(tjlx) = P(T > t|X = ). The tails of the con-
ditional censoring time C' and observed time Y distribu-
tions are Sc(t|z) = P(C > ¢|X = z) and Sy(t|z) :=
P(Y > t|X = z). PDF’s of distributions Ppx—, and
Po|x—, are denoted by fr(t|x) and fc(t[z). Note that
Sy (t|x) = S(t|x)Sc(t|x), S(t|lz) =1 — fo fr(s|x)ds, and
Sc(t]z) =1— fo fe(s|z)ds.

Our guarantees depend on the following four assumptions:

Al. Feature space X and distance p form a separable met-
ric space, and feature distribution Px is a Borel prob-
ability measure. This assumption is technical and en-
sures that the probability of a feature vector landing
in a ball (whether open or closed) is well-defined, and
that we only need to care about feature vectors that
land in supp(Px ) (the probability of a feature vector
landing outside of this support is 0). This assumption is
also used in establishing consistency of nearest neigh-
bor classification in metric spaces (Cérou & Guyader,
2006; Chaudhuri & Dasgupta, 2014).

A2. For all v € supp(Px), distributions Pp x—, and
Po|x—s exist and correspond to continuous random
variables. This assumption ensures that functions S,
Sc, Sy, f, and g described above are well-defined.
Moreover, continuity here makes ties in observed times
Y:’s happen with probability 0.

A3. There exists § € (0, ] and 7 € (0, 00) such that

Sy(t|z) > 0 forall x € supp(Px).
In practice, we cannot estimate conditional survival
function S(¢|x) accurately for time ¢ that is arbitrar-
ily large (e.g., ¢ > max;=1 .., Y;). We shall only
guarantee accurate estimation of S(t|z) for ¢ € [0, 7].

Ad4. For any time t € [0, 7], density function f(t|x) and
fc(t|x) are Holder continuous in x with the same ex-
ponent o > 0 but with potentially different constants
Ar > 0and M\e > 0, e, forall z,2' € supp(Px),

[fr(tl) = fr(tla")] < Aep(z, 2')%,

[feltle) = fetle)] < Aepla,a')™.
This assumption ensures that nearby feature vectors
have similar conditional survival and censoring dis-
tributions. Thus, feature vectors near x can help us
estimate S(-|z).

A wide range of distributions Py, fr, and fc satisfy the

above assumptions. We provide a few examples at the end
of this section.

Since fr(t|-) and fc(t|-) are Holder continuous with com-
mon exponent «, then so are Sy(t|-) and Sc(¢|-) fr(¢|-),
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which appear in our analysis. With a bit of algebra, one
can show that Sy(¢|-) is Holder continuous with parame-
ters (Ar + Ac)t and . Meanwhile, Sc(¢|-) fr(¢]-) is Holder
continuous with parameters (Ar + fAct) and o, where
fr = sup ().
t€[0,7],z€supp(Px )

Our £-NN result depends on the constant

2T
0
As we explain shortly, the £-NN survival estimator is closely
related to two subproblems: k-NN CDF estimation and
a special case of k-NN regression. In the definition of
A above, the two parts of the maximization correspond
precisely to the CDF estimation and regression components.

()\T + Ac), )\TT +

A := max { fT*/\;TQ }

We state each of our main theoretical guarantees as a point-
wise result, i.e., for any point z € supp(Px) and error
tolerance € € (0, 1), how to guarantee sup,c(o - |S(t|z) —

S(t|x)| < e with high probability using estimator S. Trans-
lating pointwise guarantees to account for randomness in
sampling X = z from Px can easily be done using standard
proof techniques, as we discuss momentarily.

k-NN estimator results

We begin with the nonasymptotic k-NN estimator guarantee.
Proofs are deferred to the appendix. As a disclaimer, no
serious attempt has been made to optimize constants.

Theorem 3.1 (k-NN pointwise bound). Under Assumptions

Al-A4, let e € (0,1) be a user-specified error tolerance and

define critical distance h* := (%)1/0‘. For any feature

vector x € supp(Px) and any choice of number of nearest

neighbors k € [%,w

in training data,

]P’( sup [SFNN(t|z) — S(t]z)] > 5)

], we have, over randomness

< oxp (=) o (- )

The four terms in the above bound correspond to penalties
for the following bad events:

1. Too few of the k nearest neighbors survive beyond time 7
(in the worst case, none do, so from the data alone, we
would suspect Assumption A3 to not hold)

2. The k nearest neighbors are not all within critical dis-
tance h* of x (by Assumption A4, the nearest neighbors
should be close to x to guarantee that they provide accu-
rate information about S(-|x))

3. The number of nearest neighbors & is too small such
that when we form an empirical distribution using their
Y; values, this empirical distribution has not converged
to its expectation, which is a CDF (note that when the
previous bad event does not happen, then this CDF is

approximately 1 — Sy(-|x))

4. The k-NN survival estimator can be viewed as solving a
specific k-NN regression problem, which averages over
the k nearest neighbors’ “labels” (if X; is one of the
k nearest neighbors of x, then its label is taken to be

—M, i.e., this label depends on an accurate esti-
Sy (Yi|z)

mate for Sy (-|«), which the previous bad event is about).
This last bad event is that the average of these & labels is
not close to its expectation due to k being too small.

In our analysis, preventing bad event #1 is pivotal to upper-
bounding the k-NN survival estimator’s error by those of
the k-NN CDF estimation and k-NN regression problems.
Subsequently, bad event #2 is about controlling the bias of
these k-NN CDF and k-NN regression estimators, i.e., mak-
ing sure their expectations are close to desired target values.
Bad events #3 and #4 relate to controlling the variances of
these k-NN CDF and k-NN regression estimates.

The observation that CDF estimation and regression sub-
problems arise is based on nonasymptotic analysis of the
standard Kaplan-Meier estimator by Foldes & Rejto (1981).
For controlling the bias and variance of k-NN CDF and
k-NN regression estimators, we use proof techniques by
Chaudhuri & Dasgupta (2014).

To understand the consequences of Theorem 3.1, especially
how it relates to the rate of convergence for the k-NN sur-
vival estimator, we examine sufficient conditions for which
the RHS of bound (2) is at most a user-specified error prob-
ability v € (0, 1). To achieve this, we can ask that each of
the four terms be bounded above by /4. In doing so, a
simple calculation reveals that the theorem’s conditions on
k and n are met if
648 32 2k

kZ@IO , and nzm 3)
This pointwise guarantee highlights a key feature of nearest
neighbor methods in that they depend on the intrinsic di-
mension of the data (Kpotufe, 2011; Kpotufe & Garg, 2013).
For example, consider when the feature space is X = R
Even though the data have extrinsic dimension d, it could
be that Px (B, 5+ ) scales as (h*)d/ for some d’ < d. This
could happen if the data reside in a low dimensional portion
of the higher dimensional space (e.g., supp(Px) is a convex
polytope of d’ < d dimensions within R%). Thus, exam-
ining the second inequality of (3), the number of training
data n sufficient for guaranteeing a low error in estimating
S(+|x) scales exponentially in the intrinsic dimension at x
(roughly, the smallest d’ > 0 for which Px (B, ) ~ r? for
all small enough ).

o 22
ey

Sufficient conditions (3) also tell us when we can consis-
tently estimate S(-|x) for a fixed z. Specifically for any
error tolerance € > 0, to have the error probability v go to 0,
the condition on & suggests that we take k¥ — oo, which also
means that n — oo. At the same time, the condition relat-
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ing n and k says that we should have k/n < Px (B, 5+)/2.
Recall that h* = (%)l/ @, so if we pick ¢ to be arbitrarily
small, then Px (B, p+) — 0, so we want k/n — 0. We
remark that choosing k as a function of n to satisfy £k — oo
and k/n — 0 are the usual conditions on k for k-NN clas-
sification and regression to be weakly consistent (Cover &

Hart, 1967; Stone, 1977).

As for how k should scale with n, this depends on
Px (B, p+). For example, if Px (B, 5+) ~ (h*)?, then the
second inequality of sufficient conditions (3) says that k
should scale at most as (h*)%n ~ £%/“n. In this case, our
next result shows that the k-NN estimator is strongly consis-
tent. Since h* is a function of €, which we now take to go
to 0, formally we shall assume that Px (B, ) > Prminr® for
all 7 € (0, r*] for some positive constants ppin, d, and r*.
Thus, as we shrink € toward 0, once € becomes small enough
(namely € < M), then h* = (%)Y € (0,r*] and
SO IP>X (Bw,h*) > pmin(h*)d-

Corollary 3.1 (k-NN strong consistency rate). Under As-
sumptions AI-A4, let x € supp(Px), and suppose that
there exist constants pmin > 0, d > 0, and r* > 0
such that Px (B ) > Pmin”? for all v € (0,7*]. Then
there are positive numbers ¢ = 6((%)2"%)’ Cco =

glatd)/(a+2d) B A4/ atd)
O (“Rarmarzs—)> and ¢ = O (griozaymmsar ) such that

by choosing the number of nearest neighbors to be k,, :=
Lein?e/ (Gatd)( log(CQn))d/(zaﬂl)J, with probability 1,

supy (o, [ NN (t|z) — S(tl‘)|} <1

cs ( log(ﬁgn) )a/(2a+d)

lim sup {

n—oo

The above corollary follows from setting error probability
v = 1/n? in sufficient conditions (3), solving the inequal-
ities in the sufficient conditions for ¢, n, and k£ (and thus
finding coefficients ¢, co, and c3 above), and finally apply-
ing the Borel-Cantelli lemma. Closed-form equations for
c1, c2, and c3 are in Appendix D.

Near-optimality. Our nonasymptotic bound (2) turns out
to essentially be optimal. Consider when the censoring
times always occur after the survival times, i.e., nothing is
censored. Then the problem reduces to conditional CDF
estimation (1 — S(-|x) is a conditional CDF), for which
the minimax lower bound for expected squared error under
slightly more assumptions than we impose is n~2¢/(2a+d)
(Chagny & Roche, 2014, Theorem 3). Our result implies an
upper bound on the expected squared error. First, note that

E[/OT(EM-NN(W) - S(t|x))2dt}

<7E| suwp [S N (tfa) - S(U)2]. @)

te[0,7]
Next, sufficient conditions (3) say that with probabil-
ity at least 1 — v, none of the bad events happen so
Supyc (o, [ NN (t|z) — S(t[x)| < e (for which we can

square both sides and bring the square into the supremum);
otherwise the supremum norm error is at worst 1. Hence,
E[ sup 85 (tz) - S(ta)P| <2 14149, ()
te[0,7]
where on the RHS, the first term is the worst-case squared
supremum norm error €2 when none of the bad events hap-
pen (this happens with probability at least 1 — v < 1), and
the second term is the worst-case squared supremum norm
error of 1 (this happens with probability at most 7).

It suffices to set v = €2 and find precise conditions on k, n,
and ¢ so that sufficient conditions (3) hold (the calculation
is similar to the one for deriving Corollary 3.1). By doing
this calculation and combining inequalities (4) and (5), we
get that the £-NN survival estimator has expected squared
error O(n~2/(22+d)) "even if there is right-censoring.

Results for random test feature vectors. As there are a
number of standard approaches for translating pointwise
guarantees to ones accounting for randomness in sampling
X = x ~ Px, we only focus on one such technique and
briefly mention some others. Specifically, we consider a
simple approach in which we partition the feature space X’
into a “good” region X,yoq With sizable probability mass
(where many training data are likely to be), and a bad region
AXbad Where we tolerate error (where there are likely to be
too few training data). Using the same idea as described
in Section 3.3.1 of Chen & Shah (2018), we define the
sufficient mass region as

Xgood (PX ; Pmin, d, T*)

= {z € supp(Px) : Px(Bsr) > pminr® Vr € (0,7%]},
and Xbad(PX;pminy d, T*) =X \ Xgood(]P)X§pmin7 d, T*)-
The sufficient mass region for feature distribution Px cor-
responds to portions of supp(Px) that behave like they
have dimension d. Returning to the previous example, if
X = R and supp(PPx) is a full-dimensional convex poly-
tope, then there exists a pyi, > 0 and r* > 0 such that
XgOOd(]P)X;pminy d, T*) = Supp(PX)'

In general, when feature vector X ~ Px lands in
Xeood (P x5 Pmin, ds h*), then the conditions of Theorem 3.1
are satisfied and, moreover, Px (B ) > Prmin(h*)9. We
readily obtain the following corollary.

Corollary 3.2 (k-NN bound for random test point). Under
the same conditions as Theorem 3.1 except now sampling
test point X ~ Px, then over randomness in the training

data and X,

JP’( sup |SFNN([X) — S(t|X)| >5)
te[0,7]

<oxp (50 4 oxp (- "I
#2000 (=) + Pew (- )

+ Px (Xaa(Px; Pmin, d, h¥)).
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Thus, if there exists ppi, > 0, d > 0, and r* > 0 such
that Xgo0d(Px; Pmin, d, 7*) = supp(Px), then strong con-
sistency of S¥NN(.|X) at the rate of Corollary 3.1 holds
over randomness in training data and X ~ Px.

Other approaches are possible to obtain guarantees over
randomness in both training data and X from guarantees for
fixed X = x. For example, there are notions similar to the
sufficient mass region specific to Euclidean space such as
the strong minimal mass assumption of Gadat et al. (2016)
and the strong density assumption of Audibert & Tsybakov
(2007). An alternative strategy that stays in separable metric
spaces is to use covering numbers from metric entropy. For
details, see Section 3.3.3 of Chen & Shah (2018).

Kernel estimator results

Our kernel result uses an additional decay assumption:

AS. The kernel function K monotonically decreases, and
there exists a standardized distance ¢ > 0 such that
K(s) > 0forall s € [0,¢] and K(s) = 0 fors > ¢.
This assumption ensures that training data sufficiently
far from 2 have no impact on our estimation of S(-|z).
(Small proof changes can be made to allow K (¢) = 0,
e.g., to handle triangle and Epanechnikov kernels.)

Our kernel result depends on the kernel function’s maximal
and minimal positive values, namely K (0) and K (¢). We
let k := K(¢)/K(0), and define

2T
%(AT + Ac)7 )\TT +
The first term in the maximization (related to CDF estima-
tion) has an extra 1/x factor compared to A.

Ag = max{ fT*)\chz}.

As our kernel survival estimator guarantee is similar to that
of the k-NN estimator, we only present its pointwise version.
Deriving a corresponding strong consistency rate, account-
ing for randomness in sampling X ~ Px, and showing
near-optimality can be done as before. In particular, the two
methods have similar asymptotic behavior.

Theorem 3.2 (Kernel pointwise guarantee). Under As-
sumptions AI-A5, let ¢ € (0,1) be a user-specified er-
ror tolerance. Suppose that the threshold distance satisfies
h € (0, é(lSEXK )1/, and the number of training data sat-
: 144

isfies n > 07 % (B )R For any © € supp(Px),

IP’( sup |SE (t|z;h) — S(t|z)| > 5)
telo,7]

Px (B sn)0 Px (B,
< exp ( n x(16,¢h) ) + exp ( _n X(8 @h))
216 nPx (By on)e?0k?
* oz, P ( - 11664 )
8 TLP)((BJJ@}I)EQQQHQ
TP ( - 324 ) ©)

As with the k-NN analysis, the kernel estimator analysis

involves two subproblems, a kernel CDF estimation (i.e., us-
ing weighted samples to construct an empirical distribution
function) and a kernel regression. We remark that k-NN
CDF estimation is straightforward to analyze because the
different data points have equal weight, so we can apply the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality. To handle
weighted empirical distributions, we establish the following
nonasymptotic bound.

Proposition 3.1 (Weighted empirical distribution inequal-
ity). Let real-valued random variables Z.,...,Z; be
i.i.d. samples drawn from a continuous CDF F. Let
Wi, ... J wy be any sequence of nonnegative constants such
that ) ._, w; > 0. Consider the following weighted empiri-
cal distribution function:
‘
Fty=Y ——1{Z <t} forteR.
i=1 22j=1Wj
Forevery e € (0,1],

~ 6 252(24—1 wj)2
. o <6 == )
(spl#0 = FO1>e) < Cew( = =05)

Box kernel, weighted k-NN. If instead the kernel survival
estimator is used with a box kernel (uniform weights), then
we can use the DKW inequality instead of Proposition 3.1,
leading to a slightly stronger pointwise guarantee (Theo-
rem A.1 in the appendix). We remark that proof ideas for
our k-NN and kernel survival estimators can be combined
to derive results for weighted k£-NN survival estimators.

Choosing k£ and h via a validation set. Our main results
choose k and h in a way that depends on unknown model pa-
rameters. In practice, validation data could be used to select
k and h via minimizing the IPEC score (Gerds & Schu-
macher, 2006; Lowsky et al., 2013). We obtain a nonasymp-
totic guarantee for a slight variant of the validation strategy
by Lowsky et al. (2013) in Appendix H. The high-level
proof idea is simple. For example, for the £-NN estimator
Sk-NN_suppose we have an independent validation set of
size n. Provided that the choices of k that the user sweeps
over for validation include one good choice according to
Theorem 3.1, then for large enough n, estimator SN has
a validation error that approaches that of S. Our proof is
a bit nuanced and requires controlling both additive and
multiplicative error in tail probability estimates, using our
analysis for Nelson-Aalen-based nearest neighbor and ker-
nel estimators (given in Appendix J).

Distributions satisfying Assumptions A1-A4

We now provide example models that satisfy Assumptions
A1-A4. In these examples, the feature space X and distance
p are Euclidean, and the Holder exponent is v = 1 (so Ar
and Ac are Lipschitz constants).

Example 3.1 (Exponential regression). Let X = R?, and
Px be any Borel probability measure with compact, con-
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vex support (so Assumption Al is met). We define condi-
tional survival function S(t|x) using the hazard function
hr(t|z) = —% log S(t|z) = hroexp(x ' Br) with parame-
ters hro > 0 and Br € R<. Then

Sitls) = o (- | o exp(a Br)ds)

= eXp(—hxl-,()ew-r’gﬂrt)7

which implies that the distribution Pp x—, (which has
CDF 1 — S(:|z)) is exponentially distributed with param-
eter hTﬁoe’”TﬁT. We could similarly define the censoring
time conditional distribution through the hazard function
he(t|lz) = heexp(z T Be), with he g > 0 and Bc € R%. In
this case, distribution Po|x —, is exponentially distributed
with parameter hcyoeITfBC. At this point, Assumption A2 is
also met since for any x € supp(Px ), distributions Pp| x—,
and Po|x—, correspond to continuous random variables.

We now present valid choices for 0 and T for Assumption A3.
Recall that the observed time is Y = min{T, C}. Condi-
tioned on X = x, the minimum of independent exponential
random variables is exponential. In particular, distribu-
tion Py |x—, is exponentially distributed with parameter
w(z) = hT,oe'”TﬁT + hc,oe”fTBC. Thus, if we pick 6 = 1/2,
then a valid choice for T would be the smallest possible
median of distribution Py | x_, across all x € supp(Px).
Note that the median of Py | x —, is (log 2) /w(x). Thus, we
can pick T = minge gpp )1 (log2) /w(z)}.

Lastly, for Assumption A4, due to supp(Px ) being compact
and convex, the conditional survival time density fr(t|-) has
finite Lipschitz constant

Ofx(t|z) H
oz 2’

Ar = sup
z€supp(Px ),t€(0,7]

where || - ||2 is Euclidean norm, and W = fr(t|z)(1—

hT,OeITﬁTt)BT. We could similarly choose Lipschitz con-
stant \c for the conditional censoring time density fc(t]-).

This exponential regression example can easily be general-
ized to Weibull regression, which is another proportional
hazards model (see Appendix I).

Example 3.2 (Weibull mixture). To give an example that
is not a proportional hazard model that satisfies Assump-
tions A1-A4, consider an integer-valued one-dimensional
feature vector X ~ Uniform{1,2,...,100}. For a thresh-
oldv € (1,100), if X < v, then we sample survival time T
from a Weibull distribution with shape parameter q > 0
and scale parameter 1y 1 > 0. Otherwise if X > v, then
we sample T from a Weibull distribution still with shape
parameter q but a different scale parameter 11 o > 0. Thus,
the marginal distribution of T is a mixture of two Weibull
distributions. We similarly define the censoring time C to be
a mixture of two Weibull distributions with common shape

Dataset Description # subjects | # dim.
PBC primary biliary cirrhosis 276 17
GBSG2 breast cancer 686 8
RECID recidivism 1445 14
KIDNEY dialysis 1044 53

Table 1. Characteristics of the survival datasets used.

parameter q and different scale parameters \c; > 0 and
Pe,2 > 0; we sample C from the first component using the
same threshold v as before, i.e., when X < v.

Conditioned on X, the distribution of observed time Y =
min{T, C} is now one of two possible Weibull distribu-
tions (the minimum of independent Weibull distributions
with shape parameter q is still Weibull with shape q):
if X <v, then Y is Weibull with shape q and scale
(Pr i+ Ve d)7Ya. Otherwise Y is Weibull with shape q
and scale (1; 3 + wag)_l/q. For Assumption A3, we
can choose 0§ = 1/2 and 7 to be the smaller me-
dian of the two possible Weibull distributions for Y, i.e.,

1 1 1/q
e i } log 2] . Lastly, for As
sumption A4, since |supp(Px)| is finite, we can set the Lips-
chitz constant \y to be

T = [min{

| fr(t|z) — fT(t|‘fI’./)|’

Ar = sup o=

z,2’€{1,2,...,100} s.t. z#£x’ ,t€[0,7]

Lipschitz constant \c can be chosen similarly.

4. Experimental Results

We benchmark the four nonparametric estimators stated in
Section 2 against two baselines: the Cox proportional haz-
ards model (Cox, 1972), and a second baseline that explic-
itly solves the £-NN CDF estimation and k-NN regression
subproblems (in succession) that arise in the theoretical
analysis for the £-NN survival estimator (we refer to this
method as CDF-REG; for simplicity we only consider the
k-NN variant and not the kernel variant). According to our
theory, the k-NN survival estimator’s error should be upper-
bounded by that of CDF-REG. For the k-NN, CDF-REG, and
kernel methods, we standardize features and use ¢ and /1
distances. For the k-NN and CDF-REG methods, we also
consider their weighted versions using a triangle kernel.*
For the kernel method, we use box and triangle kernels. We
also have results for more kernel choices in Appendix K (the
Epanechnikov kernel performs as well as the triangle kernel,
and truncated Gaussian kernels tend to perform poorly).

We run the above methods on four datasets. Three are
publicly available: the Mayo Clinic primary biliary cir-
rhosis dataset (abbreviated PBC) (Fleming & Harrington,
1991), the German Breast Cancer Study Group 2 dataset
(GBSG2) (Schumacher et al., 1994), and the recidivism

*Let X ;) denote the i-th nearest neighbor of test point 2. Then
p(z, X)) )

weighted k-NN assigns X ;) to have weight K( 2@ X (1))
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Dataset "pbc" Concordance Indices
CcoX —0—

k-NN L2 [ S — ]
k-NN L1 —0—
k-NN (triangle) L2 ———
k-NN (triangle) L1 ——
cdf-reg L2 — 00—
cdf-reg L1 —T
cdf-reg (triangle) L2 [y S—— ]
cdf-reg (triangle) L1 [y S— ]
kernel (box) L2 —C—1+—
kernel (box) L1 —_— L }+—
kernel (triangle) L2 —— 00—
kernel (triangle) L1 e, E——
random survival forest ——
adaptive kernel —_—
0.65 0.70 0.75 0.80 0.85

c-index

Dataset "recid" Concordance Indices

cox —— 11—
k-NN L2 ——
k-NN L1 ——

k-NN (triangle) L2 [ m— ]
k-NN (triangle) L1 L m— )
cdf-reg L2 —
cdf-reg L1 ———
cdf-reg (triangle) L2 ~+———3—
cdf-reg (triangle) L1 —_—
kernel (box) L2 — 00—
kernel (box) L1 —_—

kernel (triangle) L2
kernel (triangle) L1 o—

random survival forest [y e — e}
adaptive kernel ——
0.55 0.60 0.65
c-index

Dataset "gbsg2" Concordance Indices

COox T
k-NN L2 0
k-NN L1 —
k-NN (triangle) L2 —
k-NN (triangle) L1 ——
cdf-reg L2 I
cdf-reg L1 —
cdf-reg (triangle) L2 —— 0
cdf-reg (triangle) L1 (e, S—— ]
kernel (box) L2 —
kernel (box) L1~ +————3—
kernel (triangle) L2 ———
kernel (triangle) L1 00—
random survival forest [ m— ]
adaptive kernel —»
0.60 0.65 0.70
c-index

Dataset "kidney" Concordance Indices

COX ——
k-NN L2 —CH
k-NN L1 — 00—
k-NN (triangle) L2 ——
k-NN (triangle) L1 —H
cdf-reg L2 —H
cdf-reg L1 3
cdf-reg (triangle) L2 ———
cdf-reg (triangle) L1 HO—
kernel (box) L2 ——
L1 —

kernel (box§

kernel (triangle) L2 —{—
kernel (triangle) L1 -
random survival forest 1
adaptive kernel 0
0.5 0.6 0.7
c-index

Figure 1. Survival analysis prediction results on four datasets using the concordance index (c-index; higher means more accurate
prediction). Each dataset is randomly split into 10 train/test splits, resulting in the different c-index scores per method.

dataset (RECID) from Chung et al. (1991). The fourth dataset
we use is from a study on dialysis patients (KIDNEY) by
Ganssauge et al. (2016). For PBC, GBSG2, and KIDNEY, the
survival time refers to time until death whereas for RECID,
the “survival time” refers to time until a convicted criminal
reoffends. The dataset sizes and number of features are
reported in Table 1. In all cases, subjects with any missing
features are removed. For the KIDNEY dataset, features with
too many missing entries are also removed.

For each dataset, the basic experiment we run is as follows.
We randomly divide the dataset into a 70%/30% train/test
split. Using the training portion, for all methods except Cox
proportional hazards, we run 5-fold cross-validation to se-
lect algorithm parameters before training on the full training
set and predicting on the test set; prediction error is mea-
sured using the standard survival analysis accuracy metric of
concordance index (c-index) (Harrell Jr et al., 1982) (details
on c-index calculation and the parameter grids used are in
Appendix K). This basic experiment is repeated 10 times,
so that every dataset gets randomly divided into train/test
sets 10 different ways. Results are shown in Figure 1.

We find that random survival forests and the adaptive kernel
method (with a kernel learned using random survival forests)
tend to have similar performance per dataset. These two
methods have the best performance in the GBSG2, RECID,
and KIDNEY datasets. However, on the smallest dataset
considered (PBC with 276 subjects), while random survival
forests and the adaptive kernel method outperform nearly all
the other methods, their concordance indices are noticeably

lower than those of the weighted k-NN and kernel survival
estimators (both using triangle kernels). Separately, we
find that the £-NN survival estimator always outperforms
its corresponding CDF-REG variant. This agrees with our
theory in which the k-NN estimator’s error is upper-bounded
by that of CDF-REG.

5. Conclusions

By combining contemporary metric-space-based nearest
neighbor theory by Chaudhuri & Dasgupta (2014) with the
classic Kaplan-Meier analysis of Foldes & Rejto (1981), we
have established new guarantees for nearest neighbor and
kernel variants of Kaplan-Meier and Nelson-Aalen estima-
tors. We suspect that other recent theoretical developments
in nearest neighbor and kernel methods also carry over to
the survival analysis setting, such as adaptive methods for
choosing the number of nearest neighbors % or kernel band-
width h (Goldenshluger & Lepski, 2011; Kpotufe, 2011;
Goldenshluger & Lepski, 2013; Kpotufe & Garg, 2013;
Anava & Levy, 2016), and error bounds that are uniform
over test feature vectors rather than only over a randomly
chosen test vector (Kpotufe, 2011; Kpotufe & Garg, 2013).
However, these developments do not explain the success of
random survival forests and the proposed adaptive kernel
variant. When and why do these nonparametric survival
estimators work well, and how does their theory differ from
that of standard random forests for regression and classifi-
cation? Are there better ways of learning a kernel for use
with kernel survival estimation? These questions outline
promising directions for future exploration.
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