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A. Supplementary Material
In this supplement, Sections A.1, A.2, A.3 and A.4 contain complete proofs for the results stated in the main text, Section
A.5 details the Markov transition kernel that was used in all experiments and Section A.6 contains an in-depth presentation
of our empirical results which were summarised at a high level in the main text.

A.1. Proof of Theorem 1

Note that the performance of greedy algorithms for minimisation of MMD was studied in (De Marchi et al., 2005; Santin
& Haasdonk, 2017). Our analysis, and that in (Chen et al., 2018b), differ in several respects from this work - not least in
that our arguments do not require the set X to be compact.

First, we state and prove a generalisation of Theorem 5 in (Chen et al., 2018b), which quantifies KSD convergence for
point sets produced by approximately optimizing over arbitrary subsets of X :

Theorem 5 (Generalized Stein Point Convergence). Suppose k0 is a reproducing kernel with
∫
X k0(x, ·)dP (x) ≡ 0. Fix

n ∈ N, and, for each 1 ≤ j ≤ n, any Yj ⊆ X and any hj in the convex hull of {k0(x, ·)}x∈Yj . Fix δ > 0 and, for each
1 ≤ i ≤ n, fix Si ≥ 0 and ri > 0. Any point set {xi}ni=1 ⊂ X satisfying

k0(xj , xj)

2
+

j−1∑
i=1

k0(xi, xj) ≤
δ

2
+
S2
j

2
+ inf
x∈Yj

j−1∑
i=1

k0(xi, x) (8)

for each 1 ≤ j ≤ n also satisfies

DK0,P ({xi}ni=1) ≤ exp

1

2

n∑
j=1

1

rj

√√√√ δ

n
+

1

n2

n∑
i=1

(
S2
i + ri‖hi‖2K0

)
. (9)

Proof. Let an := n2DK0,P ({xi}ni=1)2 =
∑n
i=1

∑n
i′=1 k0(xi, xi′) = ‖

∑n
i=1 k0(xi, ·)‖2K0

. Then

an =

n∑
i=1

n∑
i′=1

k0(xi, xi′) = an−1 + k0(xn, xn) + 2

n−1∑
i=1

k0(xi, xn) ≤ an−1 + δ + S2
n + 2 inf

x∈Yn

n−1∑
i=1

k0(xi, x), (10)

where for the final inequality we have used (8) with j = n. Next, we let fn :=
∑n
i=1 k0(xi, ·) so that ‖fn‖K0

=
√
an.

Applying in the first instance the Cauchy-Schwarz inequality, then making use of the arithmetic-geometric inequality5, we
get:

2 inf
x∈Yn

fn−1(x) = 2 inf
f∈Mn

〈fn−1, f〉K0 ≤ 2〈fn−1, hn〉K0

≤ 2
√
‖fn−1‖2K0

‖hn‖2K0
= 2

√(‖fn−1‖2K0

rn

)
(rn‖hn‖2K0

)

≤ rn‖hn‖2K0
+
an−1

rn
. (11)

Combining (10) and (11) establishes the recurrence relation

an ≤
(

1 +
1

rn

)
an−1 + δ + S2

n + rn‖hn‖2K0
. (12)

Expanding the recurrence leads to a product of terms of the form (1 + 1
rn

) which must be controlled. To this end, we use
the fact that log(1 + x) ≤ x for x ≥ 0 implies that

log

n∏
j=1

(
1 +

1

rj

)
=

n∑
j=1

log

(
1 +

1

rj

)
≤

n∑
j=1

1

rj
,

5Recall that the arithmetic-geometric mean inequality states that for any constants b1, . . . , bm ≥ 0, 1
m

∑m
k=1 bk ≥ (

∏m
k=1 bk)

1
m .
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and, noting that the function i 7→
∏i
j=1(1 + 1/rn−j+1) is increasing, we can bound the product

i∏
j=1

(
1 +

1

rn−j+1

)
≤

n∏
j=1

(
1 +

1

rj

)
≤ exp

 n∑
j=1

1

rj

 ,

uniformly in i. This implies that the recurrence relation in (12) satisfies

an ≤
n−1∑
i=0

(
δ + S2

n−i + rn−i‖hn−i‖2K0

) i∏
j=1

(
1 +

1

rn−j+1

)

≤ exp

 n∑
j=1

1

rj

 n−1∑
i=0

(
δ + S2

n−i + rn−i‖hn−i‖2K0

)
,

from which the result is established.

Theorem 5 is a refinement of the argument used in the first part of the proof of Theorem 5 in (Chen et al., 2018b). It serves
to make explicit the roles of Sj and ‖hj‖K0 and distinguishes between the content of (9) and subsequent assumptions on
k0 and P that are used to bound the terms that are involved.

The result of Theorem 5 provides an upper bound in the situation where the sets Yj are fixed. To make use of Theorem 5
in the context of SP-MCMC, where the sets Yj are instead randomly generated, we must therefore establish probabilistic
bounds on the quantities Si and ‖hi‖K0

that appear in the statement of Theorem 5. This is the content of the next result:

Theorem 6 (Generalized i.i.d. SP-MCMC Convergence). Suppose k0 is a reproducing kernel with
∫
X k0(x, ·)dP (x) ≡ 0

and EZ∼P [eγk0(Z,Z)] < ∞. Fix a sequence (mj)
n
j=1 ⊂ N and, for each j ∈ N, let Yj be the set of independent random

variables {Yj,l}
mj
l=1, with each Yj,l ∼ P . For each 1 ≤ i ≤ n, fix S̃i ≥ 0 and ri > 0. Then ∃C > 0 such that

E
[
DK0,P ({xi}ni=1)2

]
≤ C exp

(
n∑
j=1

1

rj

)
1

n2

n∑
i=1

(
rie
− γ2 S̃

2
i +

(
1 +

ri
mi

)
min

{
S̃2
i , sup
x∈X

k0(x, x)

})
, (13)

where in each case the total expectation E is taken over realisations of the random sets Yj , j ∈ N.

Proof. Recall that the jth iteration of SP-MCMC requires that random variables (Yj,l)
mj
l=1 are instantiated. Define the set

Yj to consist of the subset of these mj samples for which Yj,l ∈ Bj := {x ∈ X : k0(x, x) ≤ S̃2
j } is satisfied. Note that

SP-MCMC selects the jth point xj from the collection {Yj,l}
mj
l=1 such that

k0(xj , xj)

2
+

j−1∑
i=1

k0(xi, xj) = inf
x∈{Yj,l:l=1,...,mj}

k0(x, x)

2
+

j−1∑
i=1

k0(xi, x)

≤ inf
x∈Yj

k0(x, x)

2
+

j−1∑
i=1

k0(xi, x) ≤ 1

2
min

{
S̃2
j , sup
x∈X

k0(x, x)

}
+ inf
x∈Yj

j−1∑
i=1

k0(xi, x).

so that (8) is satisfied with δ = 0 and Sj := min
{
S̃j , supx∈X k0(x, x)1/2

}
.

Let hj(·) := 1
mj

∑mj
l=1 k0(Yj,l, ·)I[Yj,l ∈ Bj ], which is an element of the convex hull of {k0(x, ·)}x∈Yj . Define also the

truncated kernel mean embeddings

k−j (·) :=

∫
k0(x, ·)I[x ∈ Bj ]dP (x), k+

j (·) :=

∫
k0(x, ·)I[x /∈ Bj ]dP (x).

From the triangle inequality followed by Jensen’s inequality

‖hj‖2K0
≤ 2

(
‖k−j ‖

2
K0

+ ‖hj − k−j ‖
2
K0

)
. (14)

In what follows we aim to bound the two terms on the right hand side of (14).
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Bound on ‖k−j ‖2K0
: For the first term in (14), since

∫
X k0(x, ·)dP (x) ≡ 0 we have k+

j = −k−j . Thus, we deduce that

‖k−j ‖
2
K0

= ‖k+
j ‖

2
K0

=

∫∫
k0(x, y)I[x /∈ Bj ]dP (x)I[y /∈ Bj ]dP (y)

≤
(∫ √

k0(x, x)I[x /∈ Bj ]dP (x)

)2

≤
∫
k0(x, x)I[x /∈ Bj ]dP (x)

where the final two inequalities follow by Cauchy-Schwarz and Jensen’s inequality. Now, let Y = k0(Z,Z) for Z ∼ P
and b := E[eγY ] < ∞. Following Appendix A.1.3 of (Chen et al., 2018b), we will bound the tail expectation above by
considering the biased random variable Y ∗ = k0(Z∗, Z∗) for Z∗ with density

ρ(z∗) =
k0(z∗, z∗)p(z∗)

E[Y ]
.

To this end we have, by the relation x ≤ ex,

E[e
γ
2 Y
∗
] = E[e

γ
2 k0(Z∗,Z∗)] =

E[k0(Z,Z)e
γ
2 k0(Z,Z)]

E[Y ]
=

E[γ2Y e
γ
2 Y ]

γ
2E[Y ]

≤ E[eγY ]

λE[Y ]
=

2b

γE[Y ]
.

From an application of Markov’s inequality we see that

P[Y ∗ ≥ S̃2
j ] = P[e

γ
2 Y
∗
≥ e

γ
2 S̃

2
j ] ≤ E[e

γ
2 Y
∗
]

e
γ
2 S̃

2
j

≤ 2b

γE[Y ]
e−

γ
2 S̃

2
j

and as a consequence

‖k−j ‖
2
K0
≤
∫
k0(x, x)I[k0(x, x) > S̃2

j ]dP (x) = E[Y ]

∫
I[k0(x, x) > S̃2

j ]ρ(x)dx = E[Y ]P[Y ∗ ≥ S̃2
j ] ≤ 2b

γ
e−

γ
2 S̃

2
j .

(15)

Bound on ‖hj − k−j ‖2K0
: For the second term in (14), we have that

‖hj − k−j ‖
2
K0

=
1

m2
j

mj∑
l,l′=1

k0(Yj,l, Yj,l′)I[Yj,l, Yj,l′ ∈ Bj ]−
2

mj

mj∑
l=1

∫
k0(x, Yj,l)I[x, Yj,l ∈ Bj ]dP (x)

+

∫∫
k0(x, x′)I[x, x′ ∈ Bj ]dP (x)dP (x′)

=
1

mj

mj∑
l=1

{
1

mj

mj∑
l′=1

k0(Yj,l, Yj,l′)I[Yj,l, Yj,l′ ∈ Bj ]−
∫
k0(x, Yj,l)I[x, Yj,l ∈ Bj ]dP (x)

}

−
∫ {

1

mj

mj∑
l=1

k0(x, Yj,l)I[x, Yj,l ∈ Bj ]−
∫
k0(x, x′)I[x, x′ ∈ Bj ]dP (x′)

}
dP (x)

=
1

m2
j

mj∑
l=1

mj∑
l′=1

{
hYj,l′ (Yj,l)−

∫
hYj,l(x)dP (x)

}
− 1

mj

mj∑
l=1

∫ {
hx(Yj,l)−

∫
hx(x′)dP (x′)

}
dP (x)

=
1

m2
j

mj∑
l=1

mj∑
l′=1

{
hYj,l′ (Yj,l)−

∫
hYj,l′ (x)dP (x)

}
− 1

mj

mj∑
l=1

∫ {
hx(Yj,l)−

∫
hx(x′)dP (x′)

}
dP (x)

where hx(x′) := k0(x, x′)I[x, x′ ∈ Bj ]. Thus, letting again Z ∼ P be independent of all other random variables that we
have defined,

E
[
‖hj − k−j ‖

2
K0

]
=

1

m2
j

mj∑
l=1

mj∑
l′=1

{
E[hYj,l′ (Yj,l)]− E[hYj,l′ (Z)]

}
− 1

mj

mj∑
l=1

∫
{E[hx(Yj,l)]− E[hx(Z)]} dP (x). (16)
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Since the Yj,l are assumed to be independent and distributed according to P , all of the terms in (16) vanish apart from the
diagonal terms in the first sum, and moreover all of the diagonal terms are identical:

E
[
‖hj − k−j ‖

2
K0

]
=

1

m2
j

mj∑
l=1

{
E[hYj,l(Yj,l)]− E[hYj,l(Z)]

}
=

1

mj

{
E[hYj,1(Yj,1)]− E[hYj,1(Z)]

}
.

An application of the triangle inequality and Cauchy-Schwarz leads us to the bound

∣∣E [‖hj − k−j ‖2K0

]∣∣ ≤ 1

mj

{∣∣E[hYj,1(Yj,1)]
∣∣+
∣∣E[hYj,1(Z)]

∣∣}
=

1

mj
{|E[k0(Yj,1, Yj,1)I[Yj,1 ∈ Bj ]]|+ |E[k0(Yj,1, Z)I[Yj,1, Z ∈ Bj ]]|}

≤ 1

mj

{
E[k0(Yj,1, Yj,1)I[Yj,1 ∈ Bj ]] + E[k0(Yj,1, Yj,1)

1
2 k0(Z,Z)

1
2 I[Yj,1, Z ∈ Bj ]]

}
≤ 2

mj
min

{
S̃2
j , sup
x∈X

k0(x, x)

}
.

Overall Bound: Combining our bounds for the terms in (14) leads to

E[‖hj‖2K0
] ≤ 2

(
‖k−j ‖

2
K0

+ E
[
‖hj − k−j ‖

2
K0

])
≤ 4b

γ
e−

γ
2 S̃

2
j +

4

mj
min

{
S̃2
j , sup
x∈X

k0(x, x)

}
. (17)

Finally, we square the conclusion (9) of Theorem 5 (with, recall, δ = 0 and Sj := min{S̃j , supx∈X k0(x, x)1/2}) and take

expectations, which combine with (17) to produce (13) with C = max
{

4b
γ , 4

}
.

Now we are in a position to prove Theorem 1, which follows as a specific instance of Theorem 6:

Proof of Theorem 1. The result follows as a special case of the general result of Theorem 6 with Si =
√

2
γ log(n ∧mi)

and ri = n for i = 1, . . . , n. Indeed, with these settings we can bound the conclusion (13) of Theorem 6 as follows (with
C a generic constant):

E
[
DK0,P ({xi}ni=1)2

]
≤ C exp

(
n∑
j=1

1

rj

)
1

n2

n∑
i=1

(
rie
− γ2 S

2
i +

(
1 +

ri
mi

)
min

{
S2
i , sup
x∈X

k0(x, x)

})

= C
1

n2

n∑
i=1

(
n

n ∧mi
+

(
1 +

n

mi

)
min

{
2

γ
log(n ∧mi), sup

x∈X
k0(x, x)

})

≤ C
1

n

n∑
i=1

(
1

n ∧mi
+

1

n ∧mi
min

{
log(n ∧mi), sup

x∈X
k0(x, x)

})

≤ C
1

n

n∑
i=1

1

n ∧mi
min

{
log(n ∧mi), sup

x∈X
k0(x, x)

}

as claimed.

To conclude this section, we remark that the general result established in Thm. 6 also implies conditions under which
Monte Carlo search strategies can be successfully applied to the Stein Herding algorithm proposed in (Chen et al., 2018b).
However, our focus on the greedy version of SP in this work was motivated by the stronger theoretical guarantees posessed
by the greedy method, as well as the superior empirical performance reported in (Chen et al., 2018b).
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A.2. Proof of Theorem 2

Now we turn to the main task of establishing consistency of SP-MCMC in the Markov chain context. Necessarily, any
quantitative result must depend on mixing properties of the Markov chain being used. In this research we focused on
time-homogeoeus Markov chains and the notion of mixing called V -uniform ergodicity, defined in Sec. 5 of the main text.
Recall that, for a function V : X → [1,∞), V -uniform ergodicy is the property that

‖Pn(y, ·)− P‖V ≤ RV (y)ρn

for some R ∈ [0,∞) and ρ ∈ (0, 1) and for all initial states y ∈ X and all n ∈ N. The assumption of V -uniform ergodicity
enables us to provide results that hold for any choice of function crit that takes values in X . This includes the functions
LAST, RAND and INFL from the main text, but in general the value of crit({xi}ji=1) is not restricted to be in {xi}ji=1

and can be an arbitrary point in X . This permits the development of quite general strategies for SP-MCMC, beyond those
explicitly conisdered in the main text.

Armed with the notion of V -uniform ergodicity, we derive the following general result:

Theorem 7 (SP-MCMC for V -Uniformly Ergodic Markov Chains). Suppose
∫
X k0(x, ·)dP (x) ≡ 0 and let (mj)

n
j=1 ⊂ N

be a fixed sequence. Fix a function V : X → [1,∞) and consider time-homogeneous reversible Markov chains (Yj,l)
mj
l=1,

j ∈ N, generated using the same V -uniformly ergodic transition kernel. Suppose ∃γ > 0 such that b := E[eγk0(Y,Y )] <∞.
Let {xi}ni=1 denote the output of SP-MCMC. For each 1 ≤ i ≤ n, fix Si ≥ 0 and ri > 0. Then for some constant C,

E
[
DK0,P ({xi}ni=1)2

]
≤ C exp

(
n∑
i=1

1

ri

)
1

n2

n∑
i=1

(
S2
i + rie

− γ2 S
2
i + V+(Si)V−(Si)

ri
mi

)
(18)

where in each case the total expectation E is taken over realisations of the random sets Yj = {Yj,l}
mj
l=1, j ∈ N.

Proof. The stucture of the proof is initially identical to that used in Theorem 6. Indeed, proceeding as in the proof of
Theorem 6 we set up the triangle inequality in (14) and attempt to control both terms in this bound. For the first term we
proceed identically to obtain the bound on ‖k−j ‖2K0

in (15). For the second term we proceed identically to obtain the bound

E
[
‖hj − k−j ‖

2
K0

]
=

1

m2
j

mj∑
l=1

mj∑
l′=1

{
E[hYj,l′ (Yj,l)]− E[hYj,l′ (Z)]

}
− 1

mj

mj∑
l=1

∫
{E[hx(Yj,l)]− E[hx(Z)]}dP (x) (19)

from (16), where Z ∼ P is independent of all other random variables that we have defined. However, the subsequent
argument in Theorem 6 exploited independence of the random variables Yj,l, which does not hold in the Markov chain
context. Thus our aim in the sequel is to leverage V -uniform ergodicity to control (19).

For the first term in (19) we exploit the definition of the ‖ · ‖V norm and the Cauchy-Schwarz inequality to see that, for
each l′ ≥ l, we have that∣∣∣E[hYj,l′ (Yj,l)|Yj,l′ = y]− E[hYj,l′ (Z)|Yj,l′ = y]

∣∣∣ = |E[hy(Yj,l)|Yj,l′ = y]− E[hy(Z)]|

≤ ‖Pl
′−l(y, ·)− P‖V ‖hy‖V

= ‖Pl
′−l(y, ·)− P‖V sup

x∈X

|k0(y, x)I[x, y ∈ Bj ]|
V (x)

≤ ‖Pl
′−l(y, ·)− P‖V sup

x∈X

k0(x, x)
1
2 k0(y, y)

1
2 I[x, y ∈ Bj ]

V (x)

= ‖Pl
′−l(y, ·)− P‖V k0(y, y)

1
2 I[y ∈ Bj ] sup

x∈Bj

k0(x, x)
1
2

V (x)
. (20)
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At this point we exploit V -uniform ergodicity to obtain that, for some R ∈ [0,∞) and ρ ∈ (0, 1),

(20) ≤ RV (y)ρl
′−l × k0(y, y)

1
2 I[y ∈ Bj ]× sup

x∈Bj

k0(x, x)
1
2

V (x)

≤ Rρl
′−l × sup

y∈Bj
V (y)k0(y, y)

1
2 × sup

x∈Bj

k0(x, x)
1
2

V (x)

≤ Rρl
′−l × V+(Sj)V−(Sj). (21)

Note that from the symmetry hx(x′) = hx′(x), together with the fact that the Markov chain is reversible, the above bound
holds also for l′ < l if l′ − l is replaced by |l′ − l|. Thus, from Jensen’s inequality,∣∣∣E[hYj,l′ (Yj,l)]− E[hYj,l′ (Z)]

∣∣∣ =
∣∣∣E [E[hYj,l′ (Yj,l)|Yj,l′ ]− E[hYj,l′ (Z)|Yj,l′ ]

]∣∣∣
≤ E

∣∣∣[E[hYj,l′ (Yj,l)|Yj,l′ ]− E[hYj,l′ (Z)|Yj,l′ ]
]∣∣∣

≤ RV+(Sj)V−(Sj)ρ
|l′−l|

from which it follows that∣∣∣∣∣ 1

m2
j

mj∑
l=1

mj∑
l′=1

{
E[hYj,l′ (Yj,l)]− E[hYj,l′ (Z)]

}∣∣∣∣∣ ≤ RV+(Sj)V−(Sj)
1

m2
j

mj∑
l=1

mj∑
l′=1

ρ|l
′−l|

= RV+(Sj)V−(Sj)

[
1

mj
+

2

mj

mj−1∑
r=1

(
mj − r
mj

)
ρr

]

≤ RV+(Sj)V−(Sj)

[
1

mj
+

2

mj

∞∑
r=1

ρr

]

= RV+(Sj)V−(Sj)

(
1 + ρ

1− ρ

)
1

mj
.

For the second term in (19) we use the same approach as in (21) to obtain that

|E[hx(Yj,l)|Yj,0 = xj−1]− E[hx(Z)|Yj,0 = xj−1]| ≤ RV+(Sj)V−(Sj)ρ
l

independently of xj−1, and hence that∣∣∣∣∣ 1

mj

mj∑
l=1

∫
E[hx(Yj,l)]− E[hx(Z)]dP (x)

∣∣∣∣∣ ≤ RV+(Sj)V−(Sj)
1

mj

mj∑
l=1

ρl

≤ RV+(Sj)V−(Sj)

(
ρ

1− ρ

)
1

mj
.

Overall Bound: Combining our bounds for the terms in (14) leads to

E[‖hj‖2K0
] ≤ 2

(
‖k−j ‖

2
K0

+ E
[
‖hj − k−j ‖

2
K0

])
≤ 4b

γ
e−

γ
2 S

2
j + 2RV+(Sj)V−(Sj)

(
1 + ρ

1− ρ

)
1

mj
+ 2RV+(Sj)V−(Sj)

(
ρ

1− ρ

)
1

mj

=
4b

γ
e−

γ
2 S

2
j + 2RV+(Sj)V−(Sj)

(
1 + 2ρ

1− ρ

)
1

mj
. (22)

In a similar manner to the proof of Theorem 6 we can square (9) (with, recall, δ = 0) and take expectations, which combine
with (22) to produce (18) with C = max

{
4b
γ , 2R

(
1+2ρ
1−ρ

)}
.
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Theorem 2 in the main text follows as a special case of the previous result:

Proof of Theorem 2. The result follows from specialising (18) to the case S2
i = 2

γ log(n ∧mi) and ri = n. Indeed, with
these settings (18) can be upper-bounded as follows (with C playing the role of a generic constant changing from line to
line):

E
[
DK0,P ({xi}ni=1)2

]
≤ C exp

(
n∑
i=1

1

ri

)
1

n2

n∑
i=1

(
S2
i + rie

− γ2 S
2
i + V+(Si)V−(Si)

ri
mi

)

= C
1

n2

n∑
i=1

(
2

γ
log(n ∧mi) +

n

n ∧mi
+ V+(Si)V−(Si)

n

mi

)

≤ C
1

n

n∑
i=1

(
log(n ∧mi)

n
+
V+(Si)V−(Si)

mi

)
(23)

as claimed.

A.3. Proof of Theorem 3

Our aim is to check the ergodicity preconditions of Theorem 2 when the Metropolis-adjusted Langevin algorithm (MALA)
transition kernel is employed. To this end, we will establish V -uniform ergodicity of MALA for the specific choice
V (x) = 1 + ‖x‖2. This will imply the convergence of SP-MCMC, as motivated by the following result:

Theorem 8 (SP-MCMC Convergence 2). Suppose k0 has the form (3), based on a kernel k ∈ C(1,1)
b and a target P ∈ P

such that
∫
X k0(x, ·)dP (x) ≡ 0. Let (mj)

n
j=1 ⊂ N be a fixed sequence. Consider the function V (x) = 1 + ‖x‖2 and

consider time-homogeneous reversible Markov chains (Yj,l)
mj
l=1, j ∈ N, generated using the same V -uniformly ergodic

transition kernel. Let {xi}ni=1 denote the output of SP-MCMC. Then ∃ C > 0 such that

E
[
DK0,P ({xi}ni=1)2

]
≤ C 1

n

n∑
i=1

log(n ∧mi)

n ∧mi

where in each case the total expectation E is taken over realisations of the random sets Yj = {Yj,l}
mj
l=1, j ∈ N.

Proof. Firstly, consider the case where ∃C0 > 0 such that 1
C0
≤ V0(x) := V (x)

1+k0(x,x)1/2
≤ C0. In this situation we have

that the functions V+ and V− defined in Theorem 2 satisfy V+(s) ≤ C0(s+s2) and V−(s) ≤ C0. It therefore follows from
Theorem 2 that

E
[
DK0,P ({xi}ni=1)2

]
≤ C

1

n

n∑
i=1

(
log(n ∧mi)

n
+
V+(Si)V−(Si)

mi

)
≤ C

1

n

n∑
i=1

log(n ∧mi)

n ∧mi

again with C a generic constant. It is therefore sufficient to establish that 1
C0
≤ V0(x) ≤ C0 is a consequence of the V -

uniform ergodicity with V (x) = 1+‖x‖2 that we have assumed. The lower and upper bounds on V0 are derived separately
in the sequel.

Lower Bound: If∇ log p is Lipschitz and k(x, y) = ψ(‖x−y‖22) with ψ ∈ C2 (which is the case for the pre-conditioned
IMQ kernel), then it can be shown that k0(x, x) ≤ B‖x‖22 +D for some B and D. Indeed, recall from (3) that

k0(x, y) = ∇x · ∇yk(x, y) + 〈∇xk(x, y),∇y log p(y)〉+ 〈∇yk(x, y),∇x log p(x)〉+ k(x, y) 〈∇x log p(x),∇y log p(y)〉

and note ∇xk(x, y) = 2(x − y)ψ′(‖x − y‖22), thus ∇xk(x, x) = 0 and k0(x, x) = ψ(0)‖∇x log p(x)‖22. From Lipschitz
continuity of ∇ log p, say with Lipschitz constant C, we have that ‖∇ log p(x)‖2 ≤ C‖x‖2 + ‖∇ log p(0)‖2 . Let A =
‖∇ log p(0)‖2. Thus

‖∇ log p(x)‖22 ≤ C2‖x‖22 + 2AC‖x‖2 +A2.

For ‖x‖2 ≤ 1 we have that C2‖x‖22 + 2AC‖x‖2 + A2 ≤ C2‖x‖22 + 2AC + A2, and for ‖x‖2 ≥ 1 we have that
C2‖x‖22 + 2AC‖x‖2 +A2 ≤ (C2 + 2AC)‖x‖22 +A2. Hence for all x, ∃D,B with

k0(x, x) ≤ B‖x‖22 +D (24)
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as claimed. This result implies that

sup
x∈X

V0(x)−1 = sup
x∈X

1 + k0(x, x)
1
2

V (x)
≤ sup
x∈X

1 +
√
B‖x‖22 +D

1 + ‖x‖2
<∞.

Upper Bound: For the converse direction we make use of the distant dissipativity assumption. Recall that this implies

κ(‖x− y‖2)‖x− y‖22 ≤ −2〈∇ log p(x)−∇ log p(y), x− y〉

and thus, setting y = 0, taking the absolute value on the right hand side and using the Cauchy-Schwarz inequality,

κ(‖x‖2)‖x‖22 ≤ 2|〈∇ log p(x)−∇ log p(0), x〉| ≤ 2‖∇ log p(x)−∇ log p(0)‖2‖x‖2.

Rearranging, and using the triangle inequality,

κ(‖x‖2)‖x‖2 ≤ 2‖∇ log p(x)−∇ log p(0)‖2 ≤ 2‖∇ log p(x)‖2 + 2‖∇ log p(0)‖2

and rearranging again,

−2‖∇ log p(0)‖2 + κ(‖x‖2)‖x‖2 ≤ 2‖∇ log p(x)‖2.

Now, since κ0 = lim infr→∞ κ(r) > 0, there ∃R such that, for all ‖x‖2 > R, κ(‖x‖2) ≥ κ0

2 > 0 and hence, for
‖x‖2 > R,

−2‖∇ log p(0)‖2 +
κ0

2
‖x‖2 ≤ 2‖∇ log p(x)‖2,

where we are free to additionally assume that

R > 1 +
8

κ0
‖∇ log p(0)‖2. (25)

Since ‖x‖2 > R, it follows that

−2‖∇ log p(0)‖2 + +
κ0

4
R+

κ0

4
‖x‖2 ≤ 2‖∇ log p(x)‖2

and from (25) we further deduce that

1 + ‖x‖2 ≤ 8

κ0
‖∇ log p(x)‖2

for all ‖x‖2 > R. Thus

sup
x∈X

V0(x) = sup
x∈X

V (x)

1 + k0(x, x)
1
2

≤ sup
‖x‖2≤R

1 + ‖x‖2
1 + k0(x, x)

1
2

+ sup
‖x‖2>R

1 + ‖x‖2
1 + k0(x, x)

1
2

≤ (1 +R) + sup
‖x‖2>R

8
κ0
‖∇ log p(x)‖2

1 + ψ(0)1/2‖∇ log p(x)‖2
< ∞

as required.

The implication of Theorem 8 is that we can seek to establish V -uniform ergodicity of MALA in the case V (x) = 1+‖x‖2.
To this end, we present Lemmas 1, 2, Proposition 1 and Theorem 9 next:

Lemma 1. Let U, V : X → [1,∞) be functions such that V < cU and U < aV for c, a > 0. Then a Markov chain is
U -uniformly ergodic if and only if it is V -uniformly ergodic.
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Proof. Suppose ∃RU ∈ [0,∞), ρU ∈ (0, 1) such that

‖Pn(y, ·)− P‖U ≤ RUU(y)ρnU

for all initial states y ∈ X . From the definition of the V -norm, we have that 1
c‖f‖U ≤ ‖f‖V ≤ a‖f‖U , and moreover

‖µ‖V = sup
‖f‖V 6=0

|µf |
‖f‖V

≤ c‖µ‖U .

Together, these imply that

‖Pn(y, ·)− P‖V ≤ c‖Pn(y, ·)− P‖U ≤ cRUU(y)ρnU ≤ acRUV (y)ρnU = RV V (y)ρnV

where RV := acRU ∈ [0,∞) and ρV = ρU ∈ (0, 1). Thus U -uniform ergodicity implies V -uniform ergodicity. The
converse result follows by symmetry.

The next Lemma concerns the unadjusted Langevin algorithm (ULA), whose proposal distribution is identical to MALA,
but the acceptance/rejection step is not perfomed (Roberts & Tweedie, 1996). As such, ULA does not leave P invariant
but leaves a different distribution, which we denote P̃ , invariant.

Lemma 2 (Properties of ULA Proposal Distribution). Suppose P ∈ P and X = Rd. Let c(x) := x+ h
2∇ log p(x). Then

∃R, h0, κ > 0 such that, for ‖x‖2 > R, it holds that

‖c(x)‖22 <
(

1− κh

2

)
‖x‖22 (26)

whenever the step size h satisfies h < h0. Moreover let Y be distributed as the MALA proposal distribution starting from
x ∈ X , namely Y d

= c(x)+
√
hZ, where h > 0 and Z ∼ N (0, I) where I is a d×d identity matrix. Then ∃R2, h0, κ2 > 0

such that for ‖x‖2 > R2, s < 1/2h, it holds that

E
[
exp

(
s‖Y ‖22

)]
<

1

(1− 2sh)d/2
exp

([
1− κ2

2

1− 2sh

]
s‖x‖22

)
whenever the step size h satisfies h < h0. Let A(h) := κ2h/(4− κ2h). Then, furthermore, if s < min {1/2h, κ2/8}, then

E
[
exp

(
s‖Y ‖22

)]
<

4d/2

(4− κ2h)d/2
exp

(
[1−A(h)]s‖x‖22

)
and A(h) ∈ (0, 1) whenever the step size h satisfies h < min {h0, 2/κ2}.

Proof. We expand

‖c(x)‖22 =

〈
x+

h

2
∇ log p(x), x+

h

2
∇ log p(x)

〉
= ‖x‖22 + h 〈x,∇ log p(x)〉+

h2

4
‖∇ log p(x)‖22 . (27)

Since P is distantly dissipative, we know for any r > 0 and any x with ‖x‖2 = r,

κ(r) ≤ −2
〈∇ log p(x)−∇ log p(0), x〉

‖x‖22
.

Moreover, since κ0 := lim infr→∞ κ(r) > 0, ∃R1 > 0 and κ1 ∈ (0, κ0) such that for all ‖x‖2 > R1, we have κ(‖x‖2) ≥
κ1. Thus for any ‖x‖2 > R1 we have that

κ1‖x‖22 ≤ −2〈∇ log p(x)−∇ log p(0), x〉
= −〈∇ log p(x), x〉+ 〈∇ log p(0), x〉 ≤ −〈∇ log p(x), x〉+ ‖∇ log p(0)‖2‖x‖2

Let κ2 ∈ (0, κ1), so that for ‖x‖2 > ‖∇ log p(0)‖2/κ1 − κ2, we have κ2‖x‖22 ≤ κ1‖x‖22 − ‖∇ log p(0)‖‖x‖2. Hence, for
‖x‖2 > R2 := max {R1, ‖∇ log p(0)‖2/κ1 − κ2}, we have that

κ2‖x‖2 ≤ −〈∇ log p(x), x〉.
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Since ∇ log p is Lipschitz, there exists a constant L such that for all x we have ‖∇ log p(x) − ∇ log p(0)‖2 ≤ L‖x‖2. It
follows that for all ‖x‖2 > R2,

‖∇ log p(x)‖2 ≤
(
L+

‖∇ log p(0)‖2
R2

)
︸ ︷︷ ︸

=:L̃

‖x‖2.

Hence for ‖x‖2 > R2 we have, from (27) and the bounds just obtained, that ‖c(x)‖22 ≤ ‖x‖22−hκ2‖x‖22 +(h2/4)L̃2‖x‖22.
For h < h0 := 2κ2/L̃

2 we have that hκ2)/2 > (h2/4)L̃2, so that 1− hκ2 + h2

4 L̃
2 < 1− (κ2h)/2 and therefore have that

‖c(x)‖22 < (1− κ2h/2) ‖x‖22. The first part of the Lemma is now established.

For the second part, In this theorem, we consider the proposal distribution of MALA which is an unadjusted Langevin
algorithm (ULA). First note that

E
[
exp

(
s‖Y ‖22

)]
= E

[
exp

(
s
∥∥∥√hZ + c(x)

∥∥∥2

2

)]
= E

[
exp

(
sh

∥∥∥∥Z +
c(x)√
h

∥∥∥∥2

2

)]
= E

[
exp

(
shW 2

)]
, (28)

where W := ‖Z+ c(x)/
√
h‖22 is a non-central chi-squared random variable with non-centrality parameter λ = ‖c(x)‖22/h

and degrees of freedom d. The last expression is recognised as the moment generating function MW (t) = E[etW ] of W ,
evaluated at t = sh. Recall that MW (t) = (1/(1− 2t)d/2) exp(λt/1− 2t), valid for 2t < 1 (Sec. 26.4.25 of Abramowitz
& Stegun, 1972). Hence, for 2sh < 1 we have that

E
[
exp

(
s‖Y ‖22

)]
=

1

(1− 2sh)d/2
exp

(
s‖c(x)‖22
1− 2sh

)
.

We then observe that if additionally s < κ2/8 and h < 2/κ2 then

1− κ2

2 h

1− 2sh
<

1− κ2

2 h

1− κ2

4 h
= 1−A(h),

1

(1− 2sh)d/2
<

4d/2

(4− κ2h)d/2
, and A(h) =

κ2h

4− κ2h
< 1

as required.

Proposition 1 (Us-Uniform Ergodicity of ULA). Suppose P ∈ P and X = Rd. The one-step transition kernel P = P1 of
ULA satisfies

PUs(x) ≤ τ1Us(x) + τ0 (29)

for some τ1 < 1 and τ0 ∈ R, for each of Us(x) = exp(s‖x‖2) (any s > 0), exp(s‖x‖22) (some s > 0), and Us(x) =
1 + ‖x‖s2 (s ∈ {1, 2}). Thus ULA is Us-uniformly ergodic for its invariant distribution P̃ for each of these Us(x).

Proof. The strategy of the proof is to establish the geometric drift condition

lim sup
‖x‖2→∞

PUs(x)

Us(x)
< 1 (30)

for each of the functions Us given in the statement. Let c(x) := x+ h
2∇ log p(x) and consider the ULA density at a given

point x, defined as

q(x, y) :=
1

(2πh)k/2
exp

(
− 1

2h
‖y − c(x)‖22

)
.

Then we have that

γ(x) := Us(x)−1

∫
X
q(x, y)Us(y)dy

=
Us(x)−1

(2πh)k/2

∫
exp

(
− 1

2h
‖y − c(x)‖22

)
Us(y)dy

=
1

(2πh)k/2
Us(x)−1

∫
exp

(
− 1

2h
‖y‖22

)
Us
(
y + c(x)

)
dy

=
1

(2π)k/2
Us(x)−1

∫
exp

(
− 1

2
‖y‖22

)
Us
(√
hy + c(x)

)
dy = Us(x)−1E [Us(Y )]
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where Y is the random variable defined in the statement of Lemma 2; c.f. (28). Now we consider each of the functions
Us(x) = exp(s‖x‖2), exp(s‖x‖22) and 1 + ‖x‖22 in turn (the case 1 + ‖x‖2 will be treated separately at the end):

• For Us(x) = exp(s‖x‖2), let Z̃ = h
1
2Z where Z ∼ N (0, I), so that

γ(x) =
E[exp(s‖Y ‖2)]

exp(s‖x‖2)
=

E[exp(s‖Z̃ + c(x)‖2)]

exp(s‖x‖2)
≤ E[exp(s‖Z̃‖2)] exp(s‖c(x)‖2)

exp(s‖x‖2)
(31)

≤ E[exp(s‖Z̃‖2)] exp
((√

1− κh

2
− 1
)
s‖x‖2

)
(32)

where we have used the triangle inequality in (31) and we have used (26) from Lemma 2 to obtain (32). The final
bound goes to zero as ‖x‖2 → ∞, since a Gaussian has finite exponential moments, and thus the geometric drift
condition is satisfied.

• For Us(x) = exp(s‖x‖22), from the conclusion of Lemma 2 we have that, with A(h) := κ2h/(4− κ2h),

γ(x) <
4d/2

(4− κ2h)d/2
exp

(
−s‖x‖22

)
exp

(
[1−A(h)]s‖x‖22

)
=

4d/2

(4− κ2h)d/2
exp

(
−A(h)s‖x‖22

)
where A(h) ∈ (0, 1). It is therefore clear that for ‖x‖2 sufficiently large we have γ(x) < 1, so that the geometric drift
condition is satisfied.

• For Us = 1 + ‖x‖2, we have

γ(x) =
1 + E

[∥∥Z√h+ c(x)
∥∥2

2

]
(1 + ‖x‖22)

=
1 + hE

[∥∥Z‖22]+ ‖c(x)‖22 + 2
√
hE
[
〈Z, c(x)〉

]
(1 + ‖x‖22)

where Z ∼ N (0, I). Moreover E
[
〈Z, c(x)〉

]
=
〈
E
[
Z
]
, c(x)

〉
= 0, and from Lemma 2, ∃R, h0, κ > 0 such that for

‖x‖2 > R, it holds that ‖c(x)‖22 <
(
1− κh

2

)
‖x‖22 for h < h0. Hence

γ(x) <
1 + hE

[
‖Z‖22

]
+
(
1− κh

2

)
‖x‖22

1 + ‖x‖22
and for ‖x‖2 sufficiently large we have γ(x) < 1, and the geometric drift condition is satisfied.

Thus for ‖x‖ > R and appropriate h, s, there exists τ1 ∈ (0, 1) s.t., PUs(x) ≤ τ1Us(x), and since PUs bounded on the
compact set C = {x ∈ Rd : ‖x‖2 ≤ R}, there exists τ0 ∈ R s.t., PUs(x) ≤ τ1Us(x) + τ0IC(x) for all x, where I is
the indicator function. Thus by section 3.1 of (Roberts & Tweedie, 1996), the chain is Us-uniformly ergodic for each of
Us(x) = exp(s‖x‖22), exp(s‖x‖2) and 1 + ‖x‖22.

The remaining case to establish is Us-uniform ergodicity for Us(x) = 1 + ‖x‖s2 and s = 1. For this, we leverage the fact
that U -uniform ergodicity implies

√
U -uniform ergodicity by Lemma 15.2.9 (Meyn & Tweedie, 2012). The stated result

will then follow from Lemma 1, since for some c > 0, 1
cU1(x) ≤

√
U2(x) ≤ cU1(x).

Our theoretical analysis now focuses on the MALA transition kernel, which is precisely defined in Appendix A.5. In what
follows, as in the main text, let q(x, ·) be a density for the proposal distribution of MALA, starting from the state x, and let

α(x, y) := min

{
1,
p(y)q(y, x)

p(x)q(x, y)

}
denote the MALA acceptance probability for moving from x to y, given that y has been proposed. As in the main text, we
let A(x) = {y ∈ X : α(x, y) = 1} denote the region where proposals are always accepted and let R(x) = X \ A(x). Let
I(x) := {y : ‖y‖2 ≤ ‖x‖2} represent the set of points interior to x.
Theorem 9 (V -Uniform Ergodicity of MALA). Suppose P ∈ P and X = Rd. Consider MALA with step size h and
one-step transition kernel P = P1. Further assume P is such that MALA is inwardly convergent. Then, for V = Us, where
Us is any of the functions defined in Proposition 1 for which ULA is Us-uniformly ergodic,

PV (x) ≤ τ1V (x) + τ0. (33)

Hence, in particular, MALA is V -uniformly ergodic.
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Proof. The proof strategy follows Theorem 4.1 of (Roberts & Tweedie, 1996), which is based on establishing the geometric
drift condition (33) in the form (30). Let c(x) := x+ h

2∇ log p(x) denote the MALA drift and let

q(x, y) :=
1

(2πh)k/2
exp

(
− 1

2h
‖y − c(x)‖22

)
.

Then, using I[·] to denote the indicator function, the ratio in the geometric drift condition for V can be decomposed and
bounded as follows:∫

V (y)P(x, y)dy

V (x)
=

∫
A(x)

q(x, y)
V (y)

V (x)
dy +

∫
R(x)

q(x, y)
V (y)

V (x)
α(x, y)dy +

∫
R(x)

q(x, y)[1− α(x, y)]dy

=

∫
X
q(x, y)

V (y)

V (x)
dy −

∫
R(x)

q(x, y)
V (y)

V (x)

(
α(x, y)− 1

)
dy +

∫
R(x)

q(x, y)[1− α(x, y)]dy

=

∫
X
q(x, y)

V (y)

V (x)
dy +

∫
R(x)

q(x, y)

[
1− V (y)

V (x)

]
[1− α(x, y)]dy

≤
∫
X
q(x, y)

V (y)

V (x)
dy +

∫
R(x)

q(x, y)I
[
1− V (y)

V (x)
≥ 0

]
[1− α(x, y)]dy

≤
∫
X
q(x, y)

V (y)

V (x)
dy +

∫
R(x)∩I(x)

q(x, y)dy

where we have used V (y) ≤ V (x) for x ∈ I(x). The final term vanishes as ‖x‖2 →∞ from the assumption that MALA
is inwardly convergent; c.f. (7). So to establish the geometric drift condition for V it remains to show that the first term is
asymptotically < 1, that is ULA is V -uniformly ergodic. This was proved in Proposition 1.

Our main result, Theorem 3, follows immediately as a consequence of the results just established and the auxiliary Lemma
3:

Proof of Theorem 3. It will be demonstrated that the preconditions of Theorem 8 are satisfied. Indeed, from Theorem 9 we
have that (under our assumptions) MALA is V -uniformly ergodic for V (x) = 1 + ‖x‖2. In addition, since k0 has the form
(3), based on a kernel k ∈ C(1,1)

b , from (24) we have that k0(x, x) ≤ B‖x‖22 +D and thus, for γ > 0 sufficiently small,

EZ∼P [eγk0(Z,Z)] ≤ eDEZ∼P [eγB‖Z‖
2
2 ] <∞

since distant dissipativity of P implies that P is sub-Gaussian (c.f. Lemma 3). It follows that the preconditions of Theorem
8 hold and thus the result is established.

Lemma 3. If P is a distantly dissipative distribution on X = Rd with b(x) := ∇ log p(x) continuous, then P is sub-
Gaussian; i.e. EX∼P [ea‖X‖

2
2 ] <∞ for some a > 0.

Proof. Since P is distantly dissipative, ∃R, κ such that 〈b(x)− b(y), x− y〉 ≤ −κ2 ‖x− y‖
2
2 holds for all ‖x− y‖2 ≥ R.

Fix x ∈ X with ‖x‖2 ≥ R and define τ := R/‖x‖2. By the gradient theorem (i.e. the fundamental theorem of calculus
for line integrals) applied to the curve r : [0, 1]→ X , r(t) := tx, we have that

log p(x)− log p(0) =

∫ 1

0

〈b(r(t)), r′(t)〉dt

=

∫ 1

0

〈b(tx), x〉dt

= 〈b(0), x〉+

∫ 1

0

1

t
〈b(tx)− b(0), tx〉dt

≤ ‖b(0)‖2‖x‖2 +

∫ τ

0

〈b(tx)− b(0), x〉dt︸ ︷︷ ︸
(∗)

+

∫ 1

τ

1

t
×−κ

2
‖tx‖22dt︸ ︷︷ ︸

(∗∗)
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where in the final inequality we have used Cauchy-Schwartz followed by the distant dissipativity property of P .

The term (∗) is an integral of the continuous function b inside the ball B(0, R) and thus, using Cauchy-Schwarz, (∗) can
be upper bounded by c0‖x‖2 for some constant c0 independent of x. The term (∗∗) can be directly evaluated to see that

(∗∗) = −κ
4

(
1− R2

‖x‖22

)
‖x‖22.

Thus, for ‖x‖2 ≥ R, we have the overall bound

log p(x)− log p(0) ≤ (‖b(0)‖2 + c0)‖x‖2 −
κ

4

(
1− R2

‖x‖22

)
‖x‖22. (34)

A straightforward argument based on (34) establishes that EX∼P [ea‖X‖
2
2 ] <∞ for some a > 0, as required.

A.4. Proof of Theorem 4

Our final theoretical contribution is to demonstrate that a preconditioned kernel still ensures that KSD provides control
over weak convergence of measure:

Proof of Theorem 4. In what follows, (·)# is used to denote the push-forward, so that for a random variable Z : Ω → Z ,
the pushforward Z#P is the measure on Z with (Z#P)(S) = P(Z−1(S)) for all measurable S, where Z−1(S) is the
pre-image of S.

Recall that in Theorem 8 of (Gorham & Mackey, 2017) the result was established in the specific case of Λ = I . Our
strategy in what follows is to prove that if P is distantly dissipative, then so is the pushforward Λ

−1/2
# P . The required

result will then follow from a global change of coordinates x 7→ Λ−1/2x.

To this end, let P be a distantly dissipative distribution with P = pdλ, with λ the Lebesgue measure on X = Rd.
Since Λ−1 is symmetric positive definite (SPD), we may denote its unique SPD square root Γ := Λ−1/2. Note that
Γ#P = p ◦ Γ−1(detΓ)−1dλ, and in particular its score function is bΓ := ∇ log(p ◦ Γ−1(detΓ)−1) = ∇ log(p ◦ Γ−1). Our
goal is to show that Γ#P is distantly dissipative, meaning that lim infr→∞ κΓ(r) > 0 for

κΓ(r) := inf

{
−2
〈bΓ(x)− bΓ(y), x− y〉

‖x− y‖22
: ‖x− y‖2 = r

}
.

First, notice that:〈
bΓ(x)− bΓ(y), x− y

〉
‖x− y‖22

=

〈
∇ log p

(
Γ−1(x)

)
−∇ log p

(
Γ−1(y)

)
, x− y

〉
‖x− y‖22

=

〈
∇ log p

(
Γ−1(x)

)
−∇ log p

(
Γ−1(y)

)
,Γ(Γ−1x− Γ−1y)

〉
‖x− y‖22

=

〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
,Γ(zx − zy)

〉
‖Γzx − Γzy‖22

=

〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
Γ

‖zx − zy‖2Λ−1

,

where zx := Γ−1x, 〈v, u〉B := 〈v,Bu〉 = v>Bu, and ‖ · ‖B is the norm induced by 〈·, ·〉B . Note that ‖Γv‖ = 〈Γv,Γv〉 =
〈v,Γ>Γv〉 = 〈v, v〉Λ−1 . Now since Γ is an SPD matrix, we can consider its eigendecomposition Γ = P−1DP where D
is diagonal with entries the eigenvalues of Γ and P is a matrix whose rows contain the corresponding eigenvectors of Γ.
Denote by γ > 0 the largest eigenvalue of Γ. Then, we have that

〈v, u〉Γ = v>Γu = v>P−1DPu ≤ γv>P−1IPu = γv>u = γ〈v, u〉.

where I is a d× d identity matrix. Applying this result to the quantity of interest, we get:〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
Γ
≤ γ

〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
,
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Moreover since all norms on Rd are equivalent ‖zx − zy‖2Λ−1 ≥ C−1‖zx − zy‖22 for some C > 0. Hence〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
Γ

‖zx − zy‖2Λ−1

≤ Cγ

〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
‖zx − zy‖22

,

and thus, combining all of the results above:

κΓ(r) ≥ inf

−2Cγ

〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
‖zx − zy‖22

: ‖Γ(zx − zy)‖2 = r

 .

Note that the set {v : ‖Γv‖ = r} is no longer a sphere (in which case we would be done), it is an ellipsoid. However there
exists r1, r2 > 0 s.t. r1 ≤ ‖v‖ ≤ r2 if ‖Γv‖ = r. Then

κΓ(r) ≥ inf

−2Cγ

〈
∇ log p

(
zx
)
−∇ log p

(
zy
)
, zx − zy

〉
‖zx − zy‖22

: r1 ≤ ‖zx − zy‖2 ≤ r2

 = Cγκ(r3),

where κ was defined in Section 5 of the main text and r3 ∈ [r1, r2]. By hypothesis lim infr→∞ κ(r) > 0, from which
lim infr→∞ κΓ(r) > 0 follows and the result is established.

A.5. Details of Markov Kernels Used

All experiments in this paper based on MCMC were conducted using either the random walk Metropolis (RWM) algorithm
or the Metropolis-adjusted Langevin algorithm (MALA) of (Roberts & Tweedie, 1996). Note that the P -invariance of the
Markov kernel is not fundamental in SP-MCMC and one could, for example, consider also using an unadjusted version
in which a Metropolis-Hastings correction is not applied. However, in order to control for the performance of different
MCMC kernels, all experiments in this paper used either the RWM or the MALA kernel, which are both P -invariant.

The RWM algorithm is a Metropolis-Hastings method (Metropolis et al., 1953) based on the proposal

x 7→ x+ h1/2ξ

where ξ ∼ N (0,Σ). The MALA algorithm is a Metropolis-Hastings method (Metropolis et al., 1953) based on the
proposal

x 7→ x+
h

2
Σ−1∇ log p(x) + h1/2ξ

where ξ ∼ N (0,Σ). In both cases the step size parameter h was calibrated according to the recommendations in (Roberts
& Rosenthal, 2001). The positive definite matrix Σ was taken to be a sample-based approximation to the covariance matrix
of P , generated by running a long MCMC.6

A.6. Additional Empirical Results

A.6.1. BENCHMARK METHODS

In this section we recall the MCMC, MED and SVGD methods used as an empirical benchmark. A relatively default
version of each method was used. However, we note that both MED and SVGD are being actively developed and we
provide references to more sophisticated formulations of those methods where appropriate in the sequel.

Markov Chain Monte Carlo The standard MCMC benchmark in this work was based on a single sample path of MALA,
described in Appendix A.5, which is subsequently thinned by discarding all but every mj th point. Thus the length of the
sample path is mjn, where n is the number of points that constitute the final point set. The choice to keep every mj th
state serves to ensure that the MCMC benchmark and SP-MCMC are based on the same Markov kernel, so that empirical
results are not confounded.

6Our interest in this work was not on the construction of efficient Markov transition kernels, and we defer a more detailed empirical
investigation of the impact of poor choice of transition kernel to further work.
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Minimum Energy Designs The MED method that we consider in this work was proposed as an algorithm for Bayesian
computation in (Joseph et al., 2015). That work restricted attention to X = [0, 1]d and constructed an energy functional

Eδ,P ({xi}ni=1) :=
∑
i6=j

[
p̃(xi)

− 1
2d p̃(xj)

− 1
2d

‖xi − xj‖2

]δ
for some tuning parameter δ ∈ [1,∞) to be specified. In (Joseph et al., 2018) the default choice of δ →∞ was proposed,
so that the energy functional can be interpreted as (up to an appropriate re-normalisation)

E∞,P ({xi}ni=1) = min
i6=j

[
p̃(xi)

− 1
2d p̃(xj)

− 1
2d

‖xi − xj‖2

]
.

This default form has the advantage of removing dependence on the hyper-parameter δ and simultaneously enabling more
stable computation, being based on log p̃ rather than p̃:

log E∞,P ({xi}ni=1) = −min
i 6=j

[
1

2d
log p̃(xi) +

1

2d
log p̃(xj) + log ‖xi − xj‖2

]
.

A preliminary theoretical analysis of the MED method was also provided in (Joseph et al., 2018). This focussed on the
properties of a point set that globally minimised the energy functional, but did not account for the practical aspect of
approximating such a point set. In fact, minimisation of E∞,P can be practically rather difficult. For an explicit algorithm,
(Joseph et al., 2015) proposed a greedy method, which (for the case δ →∞) is defined as

x1 ∈ arg max
x∈X

p̃(x), xn ∈ arg max
x∈X

min
i=1,...,n−1

[
1

2d
log p̃(xi) +

1

2d
log p̃(x) + log ‖xi − x‖2

]
n ≥ 2. (35)

The method was recently implemented in the R package mined, available at https://cran.r-project.org/
web/packages/mined/. Although the results presented in this work are based on our own implementation of (35) in
MATLAB, it would be interesting in further work to explore the extent to which the performance of MED is improved in
mined.

For the results reported in this paper, the global optimisation in (35) was replaced by an adaptive Monte Carlo optimisation
method. Indeed, in Fig. 2(c) of (Chen et al., 2018b) it was established that MED performed best for SP when an adaptive
Monte Carlo optimisation was used, compared to both a basic grid search and the Nelder–Mead method (Nelder & Mead,
1965). Specifically, the adaptive Monte Carlo method is described in Alg. 1. Here µ0 and Σ0 are the mean and covariance
of a Gaussian and are selected to approximately match the first two moments of P . The notation Π({zi}ni=1, λ) denotes a
uniform-weighted Gaussian mixture distribution with each component having identical variance λ, to be specified. Thus
the algorithm described in Alg. 1 picks randomly between drawing a set {xtest

i }
ntest
i=1 from N (µ0,Σ0) (with probability αn

to be specified) and drawing such a set instead from Π({xi}n−1
i=1 , λ), a Gaussian mixture based on the current point set

{xi}n−1
i=1 .

For our experiments, the parameters αn, µ,Σ0, ntest of Alg. 1 were approximately optimised in favour of MED. However,
it is likely that the numerical optimisation routine used in mined will lead to different results to those reported in this
work, and it may be possible to obtain better performance when more sophisticated numerical optimisation routines are
used.

Stein Variational Gradient Descent The SVGD method was first proposed in (Liu & Wang, 2016) and subsequently
studied in (e.g.) (Liu, 2017; Liu & Wang, 2018). The approach is rooted in a continuous version of gradient descent on
P(X ), the set of probability distributions on X , with the Kullback-Leibler divergence KL(·||P ) providing the gradient. To
this end, restrict attention to X = Rd, let K be a RKHS as in the main text and consider the discrete time process

Sf (x) = x+ εg(x)

parametrised by a function g ∈ Kd. For an infinitesimal time step ε we can lift Sg to a pushforward map on P(X ); i.e.
Q 7→ (Sg)#Q. Then (Liu & Wang, 2016) established that

− d

dε
KL((Sg)#Q||P )

∣∣∣∣
ε=0

=

∫
X
Ag dQ (36)

https://cran.r-project.org/web/packages/mined/
https://cran.r-project.org/web/packages/mined/
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Algorithm 1 Adaptive Monte Carlo search method to select xn
1: Draw u ∼ Unif(0, 1)
2: if u ≤ αn then
3: Draw {xtest

i }
ntest
i=1 ∼ N (µ0,Σ0)

4: else
5: Draw {xtest

i }
ntest
i=1 ∼ Π({xi}n−1

i=1 , λ)
6: end if
7: j∗ ← arg minj∈{1...ntest} log E∞,P ({xi}n−1

i=1 ∪ {xtest
j })

8: xn ← xtest
j∗

where A is the Langevin Stein operator defined in the main text; i.e. Ag = 1
p̃∇ · (p̃g). The direction of fastest descent

g∗(·) := arg max
g∈B(Kd)

− d

dε
KL((Sg)#Q||P )

∣∣∣∣
ε=0

has a closed form with jth coordinate equal to (in informal notation)

g∗j (·;Q) =

∫
X

(∂xj + ∂xj log p̃)k(x, ·) dQ(x).

To obtain a practical algorithm, (Liu & Wang, 2016) proposed to discretise this dynamics in both space X , through the use
of an empirical approximation to Q, and in time, through the use of a fixed and positive time step ε > 0. The result is a
sequence of empirical measures based on point sets {x(m)

i }ni=1 for m ∈ N, where in what follows we have re-purposed
superscripts to denote iteration number instead of coordinate. Thus, given an initialisation {x(0)

i }ni=1 of the points, at
iteration m ≥ 1 of the algorithm we update

x
(m)
i = x

(m−1)
i + εg∗(x

(m−1)
i ;Qmn ), Qmn :=

1

n

n∑
i=1

δ
x
(m−1)
i

in parallel at a computational cost of O(n). The output is the empirical measure Qmn and positive theoretical results on
the convergence of Qmn to P is at present an open research question, though continuum versions of SVGD have now been
studied (e.g.) (Liu, 2017; Lu et al., 2018). In addition, recent work has sought to improve the empirical performance of
SVGD by the use of quasi-Newton methods; see (Detommaso et al., 2018). However, for all experiments in this paper we
employed the original formulation of SVGD due to (Liu & Wang, 2016).

A.6.2. GAUSSIAN MIXTURE MODEL

SP was implemented based on the same adaptive Monte Carlo search procedure described above in Alg. 1. To ensure a
fair comparison, the number of search points was taken equal to mj , the length of the Markov chain used in SP-MCMC.

A.6.3. IGARCH MODEL

SP and MED were each implemented based on the same adaptive Monte Carlo search procedure described above in Alg.
1. To ensure a fair comparison, in each case the number of search points was taken equal to mj , the length of the Markov
chain used in SP-MCMC.

For SVGD the size n of the point set must be pre-specified. In order to ensure a fair comparison with SP-MCMC we
considered a point set of size n = 1000, which is identical to the size of point set that are ultimately produced by SP-
MCMC during the course of this experiment. The step size ε was hand-tuned to optimise the performance of SVGD in
our experiment. The point set was initialised for SVGD by sampling each point independently from Unif((0.002, 0.04)×
(0.05, 0.2)). The step-size ε for SVGD was set using Adagrad, as in (Liu & Wang, 2016), with master step size 0.001 and
momentum 0.9.

The resulting point sets are visualised in Fig. S1.
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Figure S1. Quantisation in the IGARCH experiment. For the IGARCH experiment, we display point sets of size n = 1000 produced by
each of MCMC, SP, MED, SVGD and SP-MCMC, as described in Section 4.3 and Appendix A.6.3.
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Figure S2. Assessing the contribution of the preconditioner kernel. For the IGARCH experiment (left), we compared the performance
of SP, SVGD and SP-MCMC each with and without a preconditioner matrix Λ being used. In addition, a toy model (right) was explored
for which the natural scale of the state vector x was not commensurate with the naive choice of preconditioner matrix Λ = I . As in Fig.
3 in the main text, each method produced an empirical measure 1

n

∑n
i=1 δxi whose distance to the target P was quantified by the energy

distance EP . The computational cost was quantified by the number neval of times either p̃ or its gradient were evaluated.

A.6.4. PERFORMANCE OF THE PRECONDITIONER KERNEL

The performance of the preconditioner kernel in (6) was explored by comparing the default case Λ = I (i.e. where a
preconditioner is not used) to the case where Λ is estimated based on a short run of MCMC. For this comparison we first
considered the IGARCH experiment described in Sec. 4.3. This is expected to prove to be a challenging example for
a preconditioner, in the sense the posterior is already unimodal and fairly well-conditioned. To test this hypothesis, the
experiment reported in the main text was performed for both selections of Λ and the results are reported in Fig. S2 (left).
It can indeed be seen that the use of a preconditioner does not lead to a gain in performance in this case; however, and
importantly, performance does not get worse as a result of the preconditioner being used.

To explore a scenario where the preconditioner demonstrates a benefit, we considered a toy model P = N (0, σ2I) with
σ = 0.01. In this case the naive choice of Λ = I was compared to the proposed approach of taking Λ to be a sample-based
approximation to the covariance of P . It is seen in Fig. S2 (right) that the preconditioner kernel out-performed the naive
choice of Λ = I for this model, emphasising the need to ensure Λ is commensurate with the scale of the state variable x in
general.

An important point is that there is in general a computational cost associated with building an appropriate preconditioner
matrix Λ as just described. This is not explicitly accounted for in the experimental results that we report (i.e. not included
in the total neval). To address this point, and to demonstrate that SP-MCMC can prove to be effective in the absence of this
computational overhead, we refer the reader to the ODE example in Secs. 4.4 and A.6.6, where a simple preconditioner
matrix Λ ∝ I was used and strong results were nevertheless obtained.

A.6.5. REMOVAL OF “BAD” POINTS

In this section we explored the implications of Remark 3 in the main text, which proposed to remove “bad” points from
the current point set. This can be motivated by analogous strategies, known as away steps, explored in the Frank-Wolfe
literature (e.g. Lacoste-Julien & Jaggi, 2015; Freund et al., 2017). An approach was considered such that, if the current
point set in SP-MCMC is {xi}j−1

i=1 , then in addition to identifying a possible next point xj , we also identify a “bad” point
xi∗ that minimises DK0,P ({xi}j−1

i=1 \ {xi∗}). Then we compare the two quantities

∆good := DK0,P ({xi}j−1
i=1 )−DK0,P ({xi}ji=1)

∆bad := DK0,P ({xi}j−1
i=1 )−DK0,P ({xi}j−1

i=1 \ {xi∗}).

If either j = 1 or ∆good > ∆bad, then the new point xj is included in the point set, so that the updated point set is {xi}ji=1.
Otherwise we remove the “bad” point from the point set, so that the update point set is {xi}j−1

i=1 \ {xi∗}. As such, with
this approach the iteration number of the SP-MCMC algorithm is no longer identical to the size of the point set and the



Stein Point Markov Chain Monte Carlo

0 2 4 6 8 10
log n

eval

-14

-12

-10

-8

-6

-4

-2

lo
g 

E
P

SP-MCMC INFL
SP-MCMC INFL Away
SP-MCMC INFL Drop

Figure S3. Assessing the benefit of removing “bad” points. For the IGARCH experiment, we compared the performance of SP-MCMC
with and without away steps (“Away”) being used. In addition a simpler procedure, whereby the “current worst” point is occasionally
dropped (“Drop”), was considered. As in Fig. 3 in the main text, each method produced an empirical measure 1

n

∑n
i=1 δxi whose

distance to the target P was quantified by the energy distance EP . The computational cost was quantified by the number neval of times
either p̃ or its gradient were evaluated.

computational cost required to obtain a size n point set may be increased relative to vanilla SP-MCMC. However, it is
possible that this approach can lead to improved performance at the quantisation task.

To empirically test this approach, we revisit the IGARCH experiment in Sec. 4.3 of the main text. The SP-MCMC method
was implemented with the INFL criterion and with mj = 5, identical to the experiment shown in the main text. Results
comparing the impact of removing “bad points” in the manner described above are shown in Fig. S3. Interestingly, this was
not seen to work well because too frequently a point would be removed, leading to sets containing only a small number of
points. To investigate further, we considered an alternative approach wherein the “current worst” point would occasionally
be removed. Results are also depicted in Fig. S3, based on a “dropping” rate of 25%. This led to larger point sets and
an improved performance as measured by EP . However, neither strategy considered outperformed the default approach
where points were never removed.

A.6.6. GOODWIN OSCILLATOR

The Goodwin oscillator (Goodwin, 1965) is a dynamical model of oscillatory enzymatic control. This kinetic model, spec-
ified by a system of q ODEs, describes how a negative feedback loop between protein expression and mRNA transcription
can induce oscillatory dynamics at a cellular level. In this work we considered Bayesian parameter estimation for two such
models; a simple model with no intermediate protein species (q = 2) and a more complex model with six intermediate
protein species (q = 8). The experimental protocol below follows that used in the earlier work of (Calderhead & Girolami,
2009; Oates et al., 2016).

The Goodwin oscillator with q species is given by

du1

dt
=

a1

1 + a2u
ρ
q
− αu1 (37)

du2

dt
= k1u1 − αu2

...
duq
dt

= kq−1uq−1 − αuq.

The variable u1 represents the concentration of mRNA and u2 represents its corresponding protein product. The variables
u3, . . . , uq represent intermediate protein species that facilitate a cascade of enzymatic activation leading, ultimately, to a
negative feedback, via uq , on the rate at which mRNA is transcribed. The Goodwin oscillator permits oscillatory solutions
only when ρ > 8. Following (Calderhead & Girolami, 2009; Oates et al., 2016) we set ρ = 10 as a fixed parameter.
The solution u(t) of this dynamical system depends upon synthesis rate constants a1, k1, . . . , kq−1 and degradation rate
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constants a2, α. Thus the parameter vector θ = [a1, a2, k1, . . . , kq−1, α] ∈ [0,∞)q+2 and a q-variable Goodwin model
has d = q + 2 uncertain parameters to be inferred.

For this experiment we followed (Oates et al., 2016) and considered a realistic setting where only mRNA and protein
product are observed, corresponding to g(u) = [u1, u2]. For the initial condition we took u0 = [0, . . . , 0] and for the
measurement noise we took σ = 0.1, both considered known and fixed. Data {yi}40

i=1 were generated using a1 = 1,
a2 = 3, k1 = 2, k2, . . . , kq−1 = 1, α = 0.5, as in (Oates et al., 2016). Thus the likelihood function for these data has the
Gaussian form

p(y|θ) =
1

(2πσ2)20
exp

(
− 1

2σ2

40∑
i=1

‖yi − g(u(ti))‖22

)
.

To set up the Bayesian inferential framework, each parameter θi was assigned an independent Γ(2, 1) prior belief. Note that,
in order to ensure that boundary conditions in Sec. 2.1 were satisfied, we subsequently worked with the log-transformed
parameters x = log(θ) ∈ Rd, identifying the posterior distribution of x with the target P in our assessment.

In order to obtain the gradient ∇ log p̃ it is required to differentiate the solution u(ti) of the ODE with respect to the
parameters x at each time point i ∈ {1, . . . , 40}. Of course, from the chain rule it is sufficient in what follows to consider
differentiation of u(ti) with respect to θ. To this end, define the sensitivities Sij,k := ∂uk

∂θi
(tj), and note that these satisfy

d

dt
Sij,k =

∂fk
∂θi

+

q∑
l=1

∂fk
∂ul

Sij,l (38)

where ∂uk
∂θi

= 0 at t = 0. The sensitivities can therefore be numerically computed by augmenting the state vector u of the
original ODE to include the Sij,k. In this work the ode45 solver in MATLAB was used to numerically solve this augmented
ODE.

For SP-MCMC, we found that construction of a suitable preconditioner matrix Λ was challenging due to the computational
cost associated with each forward-solve of the ODE. To this end, we simply selected Λ = 0.3I for the case d = 4 and
Λ = 0.15I for the case d = 10. The same kernel k, with this choice of Λ, was employed for each of SP, SP-MCMC and
SVGD.

SP and MED were each implemented based on the same adaptive Monte Carlo search procedure described above in Alg.
1. To ensure a fair comparison, in each case the number of search points was taken equal to mj , the length of the Markov
chain used in SP-MCMC. The methods were run to produce a point set of size n = 300.

For SVGD the size n of the point set must be pre-specified. In order to ensure a fair comparison with SP-MCMC we
considered a point set of size n = 300, which is identical to the size of point set that are untimately produced by SP-
MCMC during the course of this experiment. The step size ε was hand-tuned to optimise the performance of SVGD in our
experiment. To initialise SVGD, a point set was drawn independently at random from Uniform(θ∗−0.5×1, θ∗+0.5×1),
where 1 = [1, . . . , 1] where θ∗ is the data-generating value of the parameter vector. The step-size ε for SVGD was set
using Adagrad, as in (Liu & Wang, 2016), with master step size 0.005 and momentum 0.9.


