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Abstract

An important task in machine learning and statis-
tics is the approximation of a probability measure
by an empirical measure supported on a discrete
point set. Stein Points are a class of algorithms
for this task, which proceed by sequentially min-
imising a Stein discrepancy between the empir-
ical measure and the target and, hence, require
the solution of a non-convex optimisation prob-
lem to obtain each new point. This paper re-
moves the need to solve this optimisation prob-
lem by, instead, selecting each new point based
on a Markov chain sample path. This signifi-
cantly reduces the computational cost of Stein
Points and leads to a suite of algorithms that
are straightforward to implement. The new al-
gorithms are illustrated on a set of challenging
Bayesian inference problems, and rigorous theo-
retical guarantees of consistency are established.

1. Introduction

The task that we consider in this paper is to approximate a
Borel probability measure P on an open and convex set
X C RY d € N, with an empirical measure P sup-
ported on a discrete point set {z;}"; C X. To limit
scope we restrict attention to uniformly-weighted empirical
measures; P = L5 | 64, where &, is a Dirac measure
on x. The quantisation (Graf & Luschgy, 2007) of P by
Pis an important task in computational statistics and ma-
chine learning. For example, quantisation facilitates the ap-
proximation of integrals | + fdP of measurable functions
f : X — R using cubature rules f — 13" f(z;).
More generally, quantisation underlies a broad spectrum
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of algorithms for uncertainty quantification that must op-
erate subject to a finite computational budget. Motivated
by applications in Bayesian statistics, our focus is on the
situation where P admits a density p with respect to the
Lebesgue measure on X’ but this density can only be eval-
uated up to an (unknown) normalisation constant. Specifi-
cally, we assume that p = % where p is an un-normalised
density and C' > 0, such that both p and V log p, where
V= (2 9., can be (pointwise) evaluated at finite

Bal) ) el
computational cost.

A popular approach to this task is Markov chain Monte
Carlo (MCMC; Robert & Casella, 2004), where the sam-
ple path of an ergodic Markov chain with invariant distri-
bution P constitutes a point set {z;}7_;. MCMC algo-
rithms exploit a range of techniques to construct Markov
transition kernels which leave P invariant, based (in gen-
eral) on pointwise evaluation of p (Metropolis et al., 1953)
or (sometimes) on pointwise evaluation of Vlogp and
higher-order derivative information (Girolami & Calder-
head, 2011). In a favourable situation, the MCMC output
will be approximately independent draws from P. How-
ever, in this case the {z;}?" ; will typically not be a low
discrepancy point set (Dick & Pillichshammer, 2010) and
as such the quantisation of P performed by MCMC will
be sub-optimal. In recent years several attempts have been
made to deveop improved algorithms for quantisation in the
Bayesian statistical context as an alternative to MCMC:

e Minimum Energy Designs (MED) In (Roshan
Joseph et al., 2015; Joseph et al., 2018) it was pro-
posed to obtain a point set {x;}1_; by using a numer-
ical optimisation method to approximately minimise
an energy functional &;({z;}) that depends on P
only through p rather than through p itself. Though
appealing in its simplicity, MED has yet to receive a
theoretical treatment that accounts for the imperfect
performance of the numerical optimisation method.

e Support Points The method of (Mak & Joseph, 2018)
first generates a large MCMC output {7;}%, and
from this a subset {z;}?; is selected in such a way
that a low-discrepancy point set is obtained. (This can
be contrasted with classical thinning in which an arith-
metic subsequence of the MCMC output is selected.)
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At present, a theoretical analysis that accounts for the
possible poor performance of the MCMC method has
not yet been announced.

e Transport Maps and QMC The method of (Parno,
2015) aims to learn a transport map T : X — X such
that the pushforward measure 724 () corresponds to P,
where () is a distribution for which quantisation by a
point set {Z;}1_, is easily performed, for instance us-
ing quasi-Monte Carlo (QMC) (Dick & Pillichsham-
mer, 2010). Then quantisation of P is provided by the
point set {T'(Z;)}?_,. The flexibility in the construc-
tion of a transport map allows several algorithms to be
envisaged, but an end-to-end theoretical treatment is
not available at present.

e Stein Variational Gradient Descent (SVGD) A pop-
ular methodology due to (Liu & Wang, 2016) aims
to take an arbitrary initial point set {z%}?" ; and to
construct a discrete time dynamical system z! =
gs(xi1, ..., xt71), indexed by time ¢ and dependent
on p, such that lim;_, o, {x!}"_, provides a quantisa-
tion of P. This can be viewed as a discretisation of
a particular gradient flow that has P as a fixed point
(Liu, 2017). However, a generally applicable theoret-
ical analysis of the SVGD method itself is not avail-
able (note that a compactness assumption on X was
required in Liu, 2017). Note also that, unlike the other
methods discussed in this section, SVGD does not
readily admit an extensible construction; that is, the
number n of points must be a priori fixed.

e Stein Points (SP) The authors of (Chen et al., 2018b)
proposed to select a point set {x;}? ; that approxi-
mately minimises a kernel Stein discrepancy (KSD;
Liu et al., 2016; Chwialkowski et al., 2016; Gorham
& Mackey, 2017) between the empirical measure and
the target P. The KSD can be exactly computed with
a finite number of pointwise evaluations of V logp
and, for the (non-convex) minimisation, a variety of
numerical optimisation methods can be applied. In
contrast to the other methods just discussed, SP does
admit a end-to-end theoretical treatment when a grid
search procedure is used as the numerical optimisation
method (Thms. 1 & 2 in Chen et al., 2018b).

An empirical comparison of several of the above methods
on a selection of problems arising in computational statis-
tics was presented in (Chen et al., 2018b). The conclusion
of that work was that MED and SP provided broadly simi-
lar performance-per-computational-cost at the quantisation
task, where the performance was measured by the Wasser-
stein distance to the target and the computational cost was
measured by the total number of evaluations of either p or
its gradient. In some situations, SVGD provided superior
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Figure 1. Illustration of Monte Carlo points (MC; left) and Stein
Point Markov chain Monte Carlo (SP-MCMC; right) on a Gaus-
sian mixture target P. SP-MCMC provides better space-filling
properties than MC.

quantisation to MED and SP but this was achieved at a sub-
stantially higher computational cost. At the same time, it
was observed that all algorithms considered provided im-
proved quantisation compared to MCMC, but at a compu-
tational cost that was substantially higher than the corre-
sponding cost of MCMC.

In this paper, we propose Stein Point Markov chain Monte
Carlo (SP-MCMC), aiming to provide strong performance
at the quantisation task (see Fig. 1) but at substantially
reduced computational cost compared to the original SP
method. Our contributions are summarised as follows:

e The global optimisation subroutine in SP, whose com-
putational cost was exponential in dimension d, is re-
placed by a form of local search based on MCMC.
This allows us to make use of efficient transition ker-
nels for exploration of X', which in turn improves per-
formance in higher dimensions and reduces the overall
computational cost.

e Our construction requires a new Markov chain to be
initialised each time a point z,, is added, however the
initial distribution of the chain does not need to co-
incide with P. This enables us to develop an effi-
cient criterion for initialisation of the Markov chains,
based on the introduced notion of the “most influen-
tial” point in {z;}?~}', as quantified by KSD. This
turns our sequence of local searches into a global-like
search, and also leads to automatic “mode hopping”
behaviour when P is a multi-modal target.

e The consistency of SP-MCMC is established under a
V -uniform ergodicity condition on the Markov kernel.

e SP-MCMC is shown, empirically, to outperform
MCMC, MED, SVGD and SP when applied to pos-
terior computation in the Bayesian statistical context.

The paper is structured as follows: In Section 2 we review
the central notions of Stein’s method and KSD, as well as
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recalling the original SP method. The novel methodology
is presented in Section 3. This is assessed experimentally
in Section 4 and theoretically in Section 5. Conclusions are
drawn in Section 6.

2. Background

In Section 2.1 we recall the construction of KSD, then in
Section 2.2 the SP method of (Chen et al., 2018b), which is
based on minimisation of KSD, is discussed.

2.1. Discrepancy and Stein’s Method

A discrepancy is a notion of how well an empirical mea-
sure, based on a point set {z;}?; C X, approximates a
target P. One popular form of discrepancy is the integral
probability metric (IPM) (Muller, 1997), which is based on
a set F consisting of functionals on X, and is defined as:

Drp({zi}isy) = supscr ‘% Doy fxi) — fX fd](jl‘)
The set F is required to be measure-determining in order
for the IPM to be a genuine metric. Certain sets JF lead
to familiar notions, such as the Wasserstein distance, but
direct computation of an IPM will generically require ex-
act integration against P; a demand that is not met in the
Bayesian context. In order to construct an IPM that can
be computed in the Bayesian context, (Gorham & Mackey,
2015) proposed the notion of a Stein discrepancy, based
on Stein’s method (Stein, 1972). This consists of find-
ing an operator A, called a Stein operator, and a function
class G, called a Stein class, which satisfy the Stein iden-
tity [, AgdP = 0 for all g € G. Taking F = AG to be
the image of G under A in (1) leads directly to the Stein
discrepancy:

Dag,p({zi}iey) = supgeg |5 Yoimy Ag(i)| (@)

A particular choice of A and G was studied in (Gorham
& Mackey, 2015) with the property that exact computation
can be performed based only on point-wise evaluation of
Vlogp. The computation of this graph Stein discrepancy
reduced to solving d independent linear programs in paral-
lel with O(n) variables and constraints.

To eliminate the the reliance on a linear program solver,
(Liu et al., 2016; Chwialkowski et al., 2016; Gorham &
Mackey, 2017) proposed kernel Stein discrepancies, al-
ternative Stein discrepancies (2) with embarrassingly par-
allel, closed-form values. For the remainder we assume
that p > 0 on X. The canonical KSD is obtained by
taking the Stein operator .4 to be the Langevin operator
Ag = %V - (pg) and the Stein class G = B(K?) to be
the unit ball of a space of vector-valued functions, formed
as a d-dimensional Cartesian product of scalar-valued re-
producing kernel Hilbert spaces I (RKHS) (Berlinet &

Thomas-Agnan, 2004). (Throughout we use V- to denote
divergence and (-, -) to denote the Euclidean inner prod-
uct.) Recall that an RKHS K is a Hilbert space of functions
with inner product (-, -);, and induced norm || - ||, and there
is a function k£ : X x X — R, called a kernel, such that
Vz € X, we can write the evaluation functional f(x) =
(f k(- x)) ¥Vf € K. It is assumed that the mixed deriva-
tives 9%k(z,y)/02' 0y’ and all lower-order derivatives are
continuous and uniformly bounded. For & bounded, with
piecewise smooth boundary denoted 90X, outward normal
denoted n and surface element denoted do(x), the condi-
tions §, .. k(x,2")p(x)n(z)do(z') = 0, §,, Vok(z,z') -
n(z)p(z)do(z’) = 0 are sufficient for the Stein identity to
hold; c.f. Lemma 1 in (Oates et al., 2017). For X = R4,
a sufficient condition is [, ||V logp(x)||2dP(z) < oo;
cf. Prop. 1 of (Gorham & Mackey, 2017). The image
AG = B(Ky) is the unit ball of another RKHS, denoted
Ko, whose kernel is (Oates et al., 2017):

kO(‘T,ml) = Vm : Vz’k($7x/) + <V1k(x,x’), Vm’ Ing)(xl»
+ (Vaurk(z, x/)a V. log p(z))
+ k(z,2") (Vi logp(z), Ve logp(z'))  (3)
In this case, (2) corresponds to a maximum mean discrep-
ancy (MMD; Gretton et al., 2006) in the RKHS K and thus
can be explicitly computed. The Stein identity implies that
S ko(z,-)dP = 0. Thus we denote the KSD between the

empirical measure % Z?:l 0, and the target P (in a small
abuse of notation) as

Do, p({zi}iey) = /72 X0 jor ko(is ). (@)

Under regularity assumptions (Gorham & Mackey, 2017;
Chen et al., 2018b; Huggins & Mackey, 2018), the KSD
controls classical weak convergence of the empirical mea-
sure to the target. This motivates selecting the {z;}}_; to
minimise the KSD, and to this end we now recall the SP
method of (Chen et al., 2018b).

2.2. Stein Points

The Stein Point (SP) method due to (Chen et al.,
2018b) selects points {x;}7 ; to approximately minimise
Dy p ({z;i}). This is of course a challenging non-
convex and multivariate problem in general. For this rea-
son, two sequential strategies were proposed. The first,
called Greedy SP, was based on greedy minimisation of
KSD, whilst the second, called Herding SP, was based on
Frank-Wolfe minimisation of KSD. In each case, at itera-
tion j € {1,...,n} of the algorithm, the points {a;}/_}
have been selected and a global search method is used to
select the next point z; € X'. To limit scope we restrict the
discussion below to Greedy SP, as this has stronger theoret-
ical guarantees and has been shown empirically to outper-
form Herding SP. The convergence of Greedy SP was es-
tablished in Theorem 2 of (Chen et al., 2018b) when kg is a
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P-sub-exponential kernel (Def. 1 of Chen et al.). More pre-
cisely, assume that for some pre-specified tolerance § > 0,
the resulting point sequence satisfies the following identity
Vie{l,...,n}:

Dy, p({i}i_))’ < 5 + nf Dy, p({w:}121 U{2})*.

Then it was shown that 3 ¢, ¢ > 0 such that

Dy p({mi}iey) < e™/?y /28 ey 8 (5

so that KSD is asymptotically minimised. However, a sig-
nificant limitation of the SP method is that it requires a
global (non-convex) minimisation problem over X to be
(approximately) solved in order to select the next point. In
practice, the global search at iteration j can be facilitated
by a grid search over X, but this procedure entails a com-
putational cost that is exponential in the dimension d of X’
and even in modest dimension this becomes impractical.

The main contribution of the present paper is to re-visit
the SP method and to study its behaviour when the global
search is replaced with a local search, facilitated by a
MCMC method. To proceed, two main challenges must
be addressed: First, an appropriate local optimisation pro-
cedure must be developed. Second, the theoretical conver-
gence of the modified algorithm must be established. In
the next section we address the first challenge by present-
ing our novel methodological development.

3. Methodology

In Section 3.1 we present the novel SP-MCMC method.
Then in Section 3.2 we describe how the kernel & can be
pre-conditioned to improve performance in SP-MCMC.

3.1. SP-MCMC

In this paper, we propose to replace the global minimisation
atiteration j of the SP method of (Chen et al., 2018b) with a
local search based on a P-invariant Markov chain of length
m;, where the sequence (m;);en is to be specified. The
proposed SP-MCMC method proceeds as follows:

1. Fix an initial point z; € X.
2. Forj=2,....n:
i. Selectan index i* € {1,...,j — 1} according to

some criterion crit({z;}/_}), to be defined.

ii. Run a P-invariant Markov chain, initialised at
24+, for my iterations and denote the realised
sample path as (y;,;),"% -

iii. Setx; = y;; where ! € {1,...,m;} minimises
Do p({z: Y27 U {ys})-

It remains to specify the sequence (m;),en and the crite-
rion crit. Precise statements about the effect of these
choices on convergence are reserved for the theoretical
treatment in Section 5. For the criterion crit, three dif-
ferent approaches are considered:

e LAST selects the point last added: ¢* := j — 1.
e RAND selects i* uniformly at randomin {1,...,57—1}.

e INFL selects i* to be the index of a most influential
point in {x; 3;11 Specifically, we call x;« a most in-
fluential point if removing it from our point set cre-
ates the greatest increase in KSD. i.e. ¢* maximises

Dy, p({z:i Y2 \ {zi-}).

SP-MCMC overcomes the main limitation facing the orig-
inal SP method; the global search is avoided. Indeed, the
cost of simulating m; steps of a P-invariant Markov chain
will typically be just a fraction of the cost of implementing
a global search method. The number of iterations m; acts
as a lever to trade-off approximation quality against com-
putational cost, with larger m; leading on average to an
empirical measure with lower KSD. The precise relation-
ship is elucidated in Section 5.

Remark 1 (KSD has low overhead). A large number
of modern MCMC methods, such as the Metropolis-
adjusted Langevin algorithm (MALA) and Hamiltonian
Monte Carlo, exploit evaluations of V log p to construct a
P-invariant Markov transition kernel (Barp et al., 2018a).
If such an MCMC method is used, the gradient information
Vlog p(x;+) is computed during the course of the MCMC
and can be recycled in the subsequent computation of KSD.
Remark 2 (Automatic mode-hopping). Although the
Markov chain is used only for a local search, the initial-
isation criteria RAND and INFL offer the opportunity to
Jjump to any point in the set {xz}f;ll and thus can facilitate
global exploration of the state space X. The INFL criteria,
in particular, favours areas of X that are under-represented
in the point set and thus, for a multi-modal target P, one
can expect “mode hopping” from near an over-represented
mode to near an under-represented mode of P.

Remark 3 (Removal of bad points). A natural extension of
the SP-MCMC method allows for the possibility of remov-
ing a “bad” point from the current point set. That is, at
iteration j we may decide, according to some probabilistic
or deterministic schedule, to remove a point ;- that min-
imises Dy, p({x; )} \ {xs}). This extension was also
investigated and results are reserved for Section A.6.5.
Remark 4 (Sequence vs set). If the number n of points
is pre-specified, then after the n point is selected one can
attempt to further improve the point set by applying (e.g.)
co-ordinate descent to the KSD interpreted as a function
Dy, p : X™ — [0,00); see (Chen et al., 2018b). To limit
scope, this was not considered.
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3.2. Pre-conditioned Kernels for SP-MCMC

The original analysis of (Gorham & Mackey, 2017)
focussed on the inverse multiquadric (IMQ) kernel
k(z,2') = (1+ A 2|z — x’||§)5 for some length-scale
parameter A > 0 and exponent § € (—1,0); alterna-
tive kernels were considered in (Chen et al., 2018b), but
the IMQ kernel was observed to lead to the best empiri-
cal approximations as quantified objectively by the Wasser-
stein distance between the empirical measure and the tar-
get. Thus, in this paper we focus on the IMQ kernel. How-
ever, in order to improve the performance of the algorithm,
we propose to allow for pre-conditioning of the kernel; that
is, we consider

k(z,a) = (1+ A2 (z — 2')]2)” (6)

for some symmetric positive definite matrix A. The use of
pre-conditioned kernels was recently proposed in the con-
text of SVGD in (Detommaso et al., 2018), where A~!
was taken to be an approximation to the expected Hessian
— [ V.V log p(z)dP(z) of the negative log target. Note
that the matrix A can also form part of a MCMC transi-
tion kernel, such as the pre-conditioner matrix in MALA
(Girolami & Calderhead, 2011). Sufficient conditions for
when a pre-conditioned kernel ensures that KSD controls
classical weak convergence of the empirical measure to the
target are established in Section 5.

4. Experimental Results

In this section our attention turns to the empirical perfor-
mance of SP-MCMC. The experimental protocol is ex-
plained in Section 4.1 and specific experiments are de-
scribed in Sections 4.2, 4.3 and 4.4.

4.1. Experimental Protocol

To limit scope, we present a comparison of SP-MCMC
to the original SP method, as well as to MCMC, MED
and SVGD. All experiments involving SP-MCMC, SP or
SVGD in this paper were based on the IMQ kernel in (6)
with g = —%. The preconditioner matrix A was taken ei-
ther to be a sample-based approximation to the covariance
matrix of P (Secs. 4.2 and 4.3), generated by running a
short MCMC, or A « I (Sec. 4.4); however, in each ex-
periment A was fixed across all methods being compared.
The Markov chains used for SP-MCMC and MCMC in this
work employed either a random walk Metropolis (RWM)
or a MALA transition kernel, described in Appendix A.S.
Our implementations of MED and SVGD are described in
Appendix A.6.1.

Three experiments of increasing sophistication were con-
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Figure 2. Gaussian mixture experiment in dimension d = 2.

Columns (left to right): MCMC, SP-MCMC with LAST, SP-
MCMC with RAND, SP-MCMC with INFL. Top row: Point sets
of size n = 1000 produced by MCMC and SP-MCMC. (Point
colour indicates the mode to which they are closest.) Second
row: Trace plot of log Dxc,,p({zi}]_,) as j is varied from 1 to
n. Third row: Trace plots of the sequence (z;)j—, projected
onto the first coordinate. Bottom row: Distribution of the squared
jump distance ||z; — x;_1]/3 (green) compared to the quantities
ll5.m; —y;.11|3 associated with the Markov chains (orange) used
during the course of each method.

sidered.! First, in Section 4.2 we consider a simple Gaus-
sian mixture target in order to explore SP-MCMC and in-
vestigate sensitivity to the degrees of freedom in this new
method. Second, in Section 4.3 we revisit one of the exper-
iments in (Chen et al., 2018b), in order to directly compare
against SP, MCMC, MED and SVGD. Third, in Section 4.4
we consider a more challenging application to Bayesian
parameter inference in an ordinary differential equation
(ODE) model.

4.2. Gaussian Mixture Model

For exposition we let o2 =

d = 2 dimensional Gaussian mixture model P =
N (=1,0%14xa) + SN (1,0%145q) with modes at 1 =
[1,1] and —1. The performance of MCMC was compared
to SP-MCMC for each of the criteria LAST, RAND, INFL.
Note that in this section we do not address computational

0.5 and consider a

!Code to reproduce all experiments can be downloaded at
https://github.com/wilson-ye-chen/sp-mcmc.
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cost; this is examined in Secs. 4.3 and 4.4. For SP-MCMC
the sequence (m; ) cn was set as m; = 5. Results are pre-
sented in Fig. 2 with n = 1000.

The point sets produced by SP-MCMC with LAST and
INFL (top row) were observed to provide a better quantisa-
tion of the target P compared to MCMC, as captured by the
KSD of the empirical measure to the target (second row).
RAND did not distribute points evenly between modes and,
as a result, KSD was observed to plateau in the range of n
displayed. For MCMC, the proposal step-size h > 0 was
optimised according to the recommendations in (Roberts
& Rosenthal, 2001), but nevertheless the chain was ob-
served to jump between the two components of P only in-
frequently (third row, colour-coded). In contrast, after an
initial period where both modes are populated, SP-MCMC
under the INFL criteria was seen to frequently jump be-
tween components of P. Finally, we note that under INFL
the typical squared jump distance ||z; —x;_1||3 was greater
than the analogous quantities ||y/;,,,, —¥;,1/3 for the under-
lying Markov chains that were used (bottom row), despite
the latter being optimised according to the recommenda-
tions of (Roberts & Rosenthal, 2001), which supports the
view that more frequent mode-hopping is a property of the
INFL method. Based on the findings of this experiment,
we focus only on LAST and INFL in the sequel. The exten-
sion where “bad” points are removed, described in Remark
3, was explored in supplemental Section A.6.5.

4.3. IGARCH Model

Next our attention turns to whether SP-MCMC improves
over the original SP method and how it compares to exist-
ing methods such as MED and SVGD when computational
cost is taken into account. To this end we consider an iden-
tical experiment to (Chen et al., 2018b), based on Bayesian
inference for a classical integrated generalised autoregres-
sive conditional heteroskedasticity (IGARCH) model. The
IGARCH model (Taylor, 2011)

v = e FN(0,1)
o7 01+ Ooy; | + (1 — 02)07 4

Ot€t,

describes a financial time series (y;) with time-varying
volatility (o¢). The model is parametrised by § = (61, 62),
#, > 0and 0 < 65 < 1 and Bayesian inference for 6 is con-
sidered, based on data y = (y;) that represent 2,000 daily
percentage returns of the S&P 500 stock index (from De-
cember 6, 2005 to November 14, 2013). Following (Chen
et al., 2018b), an improper uniform prior was placed on
6. The domain X = R, x (0, 1) is bounded and, for this
example, the posterior P places negligible mass near the
boundary OX. This ensures that the boundary conditions
described in Sec. 2.1 hold essentially to machine precision,
as argued in (Chen et al., 2018b).

log EP

-10 [—— SP-MALA LAST
SP-MALA INFL
-11 |—— SP-RWM LAST
SP-RWM INFL
2 4

log n

eval

Figure 3. IGARCH experiment. The new SP-MCMC method was
compared against the original SP method of (Chen et al., 2018b),
as well as against MCMC, MED (Roshan Joseph et al., 2015) and
SVGD (Liu & Wang, 2016). The implementation of all existing
methods is described in Appendix A.6. Each method produced
an empirical measure % >, 0z, whose distance to the target
P was quantified by the energy distance E'p. The computational
cost was quantified by the number n.va of times either p or its
gradient were evaluated.

For objectivity, the energy distance Ep (Székely & Rizzo,
2004; Baringhaus & Franz, 2004) was used to assess close-
ness of all empirical measures to the target.”> SP-MCMC
was implemented with m; = 5 Vj. In addition to
SP-MCMC, the methods SP, MED, SVGD and standard
MCMC were also considered, with implementation de-
scribed in Appendix A.6. All methods produced a point
set of size n = 1000. The results, presented in Fig. 3, are
indexed by the computational cost of running each method,
which is a count of the total number 7.y, of times either p
or V log p were evaluated. It can be seen that SP-MCMC
offers improved performance over the original SP method
for fixed computational cost, and in turn over both MED
and SVGD in this experiment. Typical point sets produced
by each method are displayed in Fig. S1. The performance
of the pre-conditioned kernel on this task was investigated
in Appendix A.6.4.

4.4. System of Coupled ODEs

Our final example is more challenging and offers an op-
portunity to explore the limitations of SP-MCMC in higher
dimensions. The context is an indirectly observed ODE

€ S N(0,0°T)

yi = glult)) +e,
a(t) = fo(t,u), u(0) = ug
The energy distance Ep is equivalent to MMD based on the
conditionally positive definite kernel k(z,y) = —||z — y||2 (Se-

jdinovic et al., 2013). It was computed using a high-quality em-
pirical approximation of P obtained from a large MCMC output.
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Figure 4. ODE experiment, d-dimensional. The new SP-MCMC method was compared against the original SP method of (Chen et al.,
2018b), as well as against standard MCMC, MED (Roshan Joseph et al., 2015) and SVGD (Liu & Wang, 2016). Each method pro-

1

duced an empirical measure = > | ., whose distance to the target P was quantified by the kernel Stein discrepancy (KSD). The

n

computational cost was quantified by the number n.va of times either p or its gradient were evaluated.

and, in particular, Bayesian inference for the parameter 6 in
the gradient field. Here y; € RP, u(t) € RY and § € R< for
p,q,d € N. For our experiment, fy and g comprised two
instantiations of the Goodwin oscillator (Goodwin, 1965),
one low-dimensional with (¢,d) = (2,4) and one higher-
dimensional with (¢,d) = (8,10). In both cases p = 2,
o = 0.1 and 40 measurements were observed at uniformly-
spaced time points in [41, 80]. The Goodwin oscillator does
not permit a closed form solution, meaning that each evalu-
ation of the likelihood function requires the numerical inte-
gration of the ODE at a non-negligible computational cost.
SP-MCMC was implemented with the INFL criterion and
m; = 10 (d = 4), m; = 20 (d = 10). Full details of
the ODE and settings for MED and SVGD are provided in
Appendix A.6.6.

In this experiment, KSD was used to assess closeness of
all empirical measures to the target.> Naturally, SP and
SP-MCMC are favoured by this choice of assessment cri-
terion, as these methods are designed to directly minimise
KSD. Therefore our main focus here is on the comparison
between SP and SP-MCMC. All methods produced a point
set of size n = 1000. Results are shown in Fig. 4a (low-
dimensional) and Fig. 4b (high-dimensional). Note how
the gain in performance of SP-MCMC over SP is more sub-
stantial when d = 10 compared to when d = 4, supporting
our earlier intuition for the advantage of local optimisation
using a Markov kernel.

3The more challenging nature of this experiment meant accu-
rate computation of the energy distance was precluded, due to the
fact that a sufficiently high-quality empirical approximation of P
could not be obtained.

5. Theoretical Results

Let € be a probability space on which the collection of
random variables Y;; :  — X representing the [ state of
the Markov chain run at the j® iteration of SP-MCMC are
defined. Each of the three algorithms that we consider cor-
respond to a different initialisation of these Markov chains
and we use [E to denote expectation over randomness in the
Y; . For example, the algorithm called LAST would set
Yj1(w) = x;j_1. It is emphasised that the results of this
section hold for any choice of function crit that takes
values in X. As a stepping-stone toward our main result,
we first extend the theoretical analysis of the original SP
method to the case where the global search is replaced by a
Monte Carlo search based on m; independent draws from
P at iteration ¢ of the SP method.

Theorem 1 (i.i.d. SP-MCMC Convergence). Suppose
that the kernel kg satisfies [, ko(z,-)dP(x) = 0 and
Ezple"%0(%2)] < oo for some > 0. Let (m;)}—y CN
be a fixed sequence, and consider idealised Markov chains
with Y;; " P forall1 <1 < mj, j € N. Let
{z;}_, denote the output of SP-MCMC. Then, writing
a A'b=min{a,b}, 3 C > 0 such that

E D, p({ra}y)?] < € Wi, Roramd sty foler)

nAm;

The constant C' depends on kg and P, and the proof in Ap-
pendix A.1 makes this dependence explicit.

It follows that SP-MCMC with independent sampling from
P is consistent whenever each m; grows with n. When
m; = m for all j we obtain:

E [D}CO,P({xi}?:l)ﬂ S Clog(n/\m)/\supl,ex kg(r,a:)7

nAm

and by choosing m = n, we recover the rate (5) of the
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original SP algorithm which optimizes over all of X (Chen
et al., 2018b). For bounded kernels, the result improves
over the O(1/n + 1/4/m) independent sampling kernel
herding rate established in (Lacoste-Julien et al., 2015,
App. B). Thm. 1 more generally accommodates unbounded
kernels at the cost of a log(n A m) factor.

The role of Thm. 1 is limited to providing a stepping
stone to Thm. 2, as it is not practical to obtain exact sam-
ples from P in general. To state our result in the general
case, restrict attention to X = R?, consider a function V :
X — [1,00) and define the associated operators || f||y :=
sup,c [F(@)]/V (@), ullv = sup gy sy < | [ ful re-
spectively on functions f : X — R and on signed mea-
sures i on X'. A Markov chain (Y;);eny C X with nth step
transition kernel P” is called V-uniformly ergodic (Meyn
& Tweedie, 2012, Chap. 16) if IR € [0,00),p € (0,1)
such that |[P™(y, -) — P|lv < RV (y)p™ for all initial states
y € X and all n € N. The proof of the following is pro-
vided in Appendix A.2:

Theorem 2 (SP-MCMC Convergence).
[y ko(z,)dP(z) = 0 with Ez.p[e*ZD] < oo
for~y > O For a sequence (m;)j_y C N, let {z;}] de-
note the output of SP-MCMC, based on time-homogeneous
reversible Markov chains (Y;;),",, 7 € N, generated
using the same V -uniformly ergodic transition kernel.
Define Vi(s) = SUD,.p,(20)<s? ko(z,z)'/?V (x)* and

S; = /2log(n A'm;)/~. Then 3 C > 0 such that

Ve (S)V-(Si)

[D/Co ({xl}z 1) ] = 221 1 n m;

Suppose

We give an example of verifying the preconditions of Thm.
2 for MALA. Let P denote the set of distantly dissipa-
tive* distributions with V log p Lipschitz on X = R?. Let
CéT’T) be the set of functions & : R? x R? — R with
(z,y) = VLV k(z,y) continuous and uniformly bounded
forl € {0,...,r}. Let g(z,y) be a density for the proposal
distribution of MALA, and let a(x,y) denote the accep-
tance probability for moving from x to y, given that y has
been proposed. Let A(x) = {y € X : a(z,y) = 1}
denote the region where proposals are always accepted
and let R(z) = X \ A(z). Let I(z) = {y : |lyllz <
|z]l2}. MALA is said to be inwardly convergent (Roberts
& Tweedie, 1996, Sec. 4) if

lim q(z,y)dy =0 @)
lzlle—o0 J A(z)AI(2)
where AA B denotes the symmetric set difference (AUB)\
(A N B). The proof of the following is provided in Ap-
pendix A.3:

“The target P is said to be distantly dissipative (Eberle, 2016;

Gorham et al., 2019) if ko 2 liminf, o0 #(r) > 0 for x(r) =
inf{— o (Vlog[p(@)—p(y)].z—y) .

le—yli3

Hle—ylla =7

Theorem 3 (SP-MALA Convergence). Suppose ko has
the form (3), based on a kernel k € C(l Y and a target
P € P such that [ ko(z,-)dP(z) = 0. Let(m]) ', CN
be a fixed sequence and let {z;}_, denote the output of
SP-MCMC, based on Markov chains (Yj;),~, j € N,
generated using MALA transition kernel with step size h
sufficiently small. Assume P is such that MALA is in-
wardly convergent. Then MALA is V -uniformly ergodic for
V(z) =1+ ||z|2 and 3 C > 0 such that

E [Dicy,p(fai})?] < € 300, lostnams)

Our final result, proved in Appendix A.4, establishes that
the pre-conditioner kernel proposed in Sec. 3.2 can con-
trol weak congergence to P when the pre-conditionner A
is symmetric positive definite (denoted A > 0). It is a gen-
eralisation of Thm. 8 of Gorham & Mackey (2017), who
treated the special case of A = I:

Theorem 4 (Pre-conditioned IMQ KSD Controls Con-
vergence). Suppose kg is a Stein kernel (3) for a target
P € P and a pre-conditioned IMQ base kernel (6) with
B € (-1,0) and A > 0. If D, p({z:}1-1) — O then
% Yo 0, converges weakly to P.

6. Conclusion

This paper proposed fundamental improvements to the SP
method of (Chen et al., 2018b), establishing, in particu-
lar, that the global search used to select each point can be
replaced with a finite-length sample path from an MCMC
method. The convergence of the proposed SP-MCMC
method was established, with an explicit bound provided
on the KSD in terms of the V-uniform ergodicity of the
Markov transition kernel.

Potential extensions to our SP-MCMC method include the
use of fast approximate Markov kernels for P (such as the
unadjusted Langevin algorithm; see Appendix A.3), fast
approximations to KSD (Jitkrittum et al., 2017; Huggins &
Mackey, 2018), exploitation of conditional independence
structure in P (Wang et al., 2018; Zhuo et al., 2018) and ex-
tension to a general Riemannian manifold X (Liu & Zhu,
2018; Barp et al., 2018b). One could also attempt to use
our MCMC optimization approach to accelerate related al-
gorithms such as kernel herding (Chen et al., 2010; Bach
et al., 2012; Lacoste-Julien et al., 2015). Other recent ap-
proaches to quantisation in the Bayesian context include
(Futami et al., 2018; Hu et al., 2018; Frogner & Poggio,
2018; Zhang et al., 2018; Chen et al., 2018a; Li et al.,
2019), and an assessment of the relative performance of
these methods would be of interest. However, we note that
these approaches are not accompanied by the same level of
theoretical guarantees that we have established.
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