
Particle Flow Bayes’ Rule

A. Existence of Unified Flow Operator
Theorem 2.3. For the optimal control problem in Eq. (13) and Eq. (14), there exists an open-loop control w∗ =
w∗(q(x, 0), t) such that the induced state q∗(x, t) satisfies q∗(x,∞) = p(x|Om+1). Moreover, w∗ has a fixed expression
with respect to p(x|Om) and p(om+1|x) across different m.

Proof. By Theorem 2.2, w̃∗(q(x, t), t) := ∇x log q(x, t) can induce the optimal state q̃∗(x,∞) = p(x|Om+1) and achieve
a zero loss, d = 0. Hence, w̃∗ is an optimal closed-loop control for this problem.

Although in general closed-loop control has a stronger characterization to the solution, in a deterministic system like Eq. (14),
the optimal closed-loop control and the optimal open-loop control will give the same control law and thus the same optimality
to the loss function(Dreyfus, 1964). Hence, there exists an optimal open-loop control w∗ = w∗(q(x, 0), t) such that the
induced optimal state also gives a zero loss and thus q∗(x,∞) = p(x|Om+1).

More specifically, when the system is deterministic, a state q(x, t) is just a deterministic result of the initial state q(x, 0) and
the dynamics. The optimal flow determined by w̃∗(q(x, t), t) is

f = ∇x log p(x|Om)p(om+1|x)−∇x log q(x, t).

The continuity equation gives
∂q(x, t)

∂t
=−∇x · (q∇x log p(x|Om)p(om+1|x))

+ ∆xq(x, t)

:= g(p(x|Om)p(om+1|x), q(x, t))

Hence, for any x,

q(x, t) =q(x, 0) +

∫ t

0

g(p(x|Om)p(om+1|x), q(x, t)) dτ.

The dynamcis g is a fixed function of p(x|Om), p(om+1|x) and q(x, t), so the solution of this initial value problem(IVP)
q(x, t) is a fixed function of p(x|Om), p(om+1|x), q(x, 0) and t, which can be written as

q(x, t) = Solve-IVP(p(x|Om), p(om+1|x), q(x, 0), t).

Finally, we can write the optimal open-loop control as

w∗(q(x, 0), t)

=∇x log(Solve-IVP(p(x|Om), p(om+1|x), q(x, 0), t)).

Hence, w∗(q(x, 0), t) has a fixed form across different m.

B. Adjoint Method
To explain it more clearly, let us denote the evolution of the n-th particles at the m-th stage by xnm(t) for t ∈ [0, T]. Note
that xnm(T) = xnm+1(0). (Then the notation xnm in the main text will become xnm(T).)

Recall the loss for each task:

L(T) =
1

MN

M∑
m=1

N∑
n=1

(log qnm(xnm(T), T)− log p(xnm(T),Om)) .

The loss of one particle xn is

Ln :=
1

M

M∑
m=1

Lnm,

where
Lnm := −ynm(T)− log p(xnm(T),Om)

Particle Flow Bayes’ Rule

and ynm(t) := − log qnm(xnm(t), t).

First, an adjoint process is defined as

pm(t) :=
∂Ln

∂[xnm(t), ynm(t)]
.

Denote fm(x(t), θ) = fθ(Xm, om+1,x(t), t). During the m-th stage, the adjoint process follows the following differential
equation

dpm
dt

= − ∂

∂[xnm(t), ynm(t)]

[
fm(xnm(t), θ)

∇x · fm(xnm(t), θ)

]>
pm(t). (21)

Note that

pm(T) =
∑
m′≥m

1

M

∂Lnm′

∂[xnm(T), ynm(T)]
. (22)

Claim: The gradient of the loss is the solution of a backward ODE. That is to say, ∂L
n

∂θ = z1(0), if zM (T) = 0 and

dzm(t)

dt
=−

[
∂fm
∂θ (xnm(t), θ)

∂
∂θ

[
∇x · fm(xnm(t), θ)

]]> pm(t), (23)

and zm(T) = zm+1(0), for m = 0, · · · ,M − 1.

Proof. First, we can compute d
dt
∂Ln

∂θ :

d

dt

∂Ln

∂θ
=

∂

∂θ

M∑
m=1

(
∂Ln

∂xnm(t)

> dxnm(t)

dt
+

∂Ln

∂ynm(t)

dynm(t)

dt

)

=
∂

∂θ

M∑
m=1

[
pm(t)>

[
fm(xnm(t), θ)

∇x · fm(xnm(t), θ)

]]
=

M∑
m=1

[
∂fm
∂θ (xnm(t), θ)

∂
∂θ

[
∇x · fm(xnm(t), θ)

]]> pm(t)

Next, we have

0− ∂Ln

∂θ
= −

∫ T

t=0

d

dt

∂Ln

∂θ
=

M∑
m=1

∫ T

t=0

−
[

∂fm
∂θ (xnm(t), θ)

∂
∂θ

[
∇x · fm(xnm(t), θ)

]]> pm(t) = zM (T)− z1(0).

Hence, ∂L
n

∂θ = z1(0) if zM (T) = 0.

An algorithm for computing ∂L
∂θ is summarized in Algorithm 2. A nice python package of realizing this algorithm is provided

by Chen et al. (2018).

Particle Flow Bayes’ Rule

Algorithm 2 Adjoint Method of Computing the Gradient
Function Grad(θ,X0, p(o|x),OM):

Denote fmθ = fθ(Xm, om+1,x(t), t) . notation
Set yn0 = − log p(xn0) for each xn0 ∈ X0

For all n = 1 to N do
For m = 0 to M − 1 do[

xnm+1

ynm+1

]
←
[
xnm
ynm

]
+

∫ T

0

[
fmθ
∇ · fmθ

]
dt

Set pnM (T) = 0 and znM (T) = 0
For m = M to 1 do

pnm(T)← pnm(T) + 1
M

∂Lnm
∂[xnm,y

n
m]

Solve ODEs in Eq. (4), Eq. (8), Eq. (21) and Eq. (23) for xnm(t), pnm(t) and znm(t) backwardly from T to 0
Set xnm−1(T) = xnm(0), pnm−1(T) = pnm(0) and znm−1(T) = znm(0)

return 1
N

∑N
n=1

∂Ln

∂θ = 1
N

∑N
n=1 z

n
1 (0)

C. Experiment Details
C.1. Parameterization

Overall we parameterize the flow velocity as

f = h
(

1
N

∑N
n=1φ(xnm), om+1,x(t), t

)
,

where both φ and h are neural networks. For instance, let ctx = [1
N

∑N
n=1φ(xnm)>, o>m+1] be the context of this conditional

flow, where φ is a dense feed-forward neural network, a specific neural architecture we use in the experiment is

f =Gatedk
(
· · · [ctx,Gated2

(
[ctx,Gated1

(
[ctx,x(t)>]>, t

)
]>, t

)
]> · · · , t

)
, (24)

where Gatedj(y, t) = (Wjy + bj) ∗ σ(tvj + cj) + tcj , (25)

where ∗ is element-wise multiplication. The number of layers k can be tuned, but in general h is a shallow network.

C.2. Evaluation Metric

MMD2 The maximum mean discrepancy (MMD) of the true posterior p and the estimated posterior q is defined as

MMD[F , p, q] := sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]).

When F is a unit ball in a characteristic RKHS, Gretton et al. (2012) showed that the squared MMD is

MMD2[F , p, q] = E[k(x, x′)]− 2E[k(x, y)] + E[k(y, y′)],

where x, x′ ∼ p and y, y′ ∼ q.

Cross-entropy Evaluating the KL divergence is equivalent to evaluating the cross-entropy.

Ex∼p − log q(x) ≈ 1

n

N∑
n=1

(− log q(xn)), (26)

where q(x) is approximated by kernel density estimation on the set of particles obtained from different sampling methods.

Integral Evaluation When the true posterior is a Gaussian distribution N (µ,Σ), the expectation of the following test
functions have closed-form expressions.

• E[x] = µ
• E[x>Ax] = tr(AΣ) + µ>Aµ
• E[(Ax+ a)>(Bx+ b)] = tr(AΣB>) + (Aµ+ a)>(Bµ+ b)

Particle Flow Bayes’ Rule

D. More Experimental Results
D.1. Multivariate Guassian Model

3.44
3.46

KBR

0 20 40 60 80 100
number of observations

1.0

1.5

2.0

2.5

cr
os

s-
en

tro
py PFBR

SMC

0.25
0.50
0.75 KBR

0 20 40 60 80 100
number of observations

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

m
m

d2 (
RB

F) PFBR
SMC

2
4 KBR

0 20 40 60 80 100
number of observations

0.25
0.50
0.75
1.00
1.25
1.50
1.75

|E
p[

h]
E q

[h
]| PFBR

SMC

(a) cross-entropy (b) MMD2 with RBF kernel (c) Integral estimation

Figure 7: Experimental results on 2 dimensional multivariate Gaussian model.

D.2. LDS Model

0.09
0.10 KBR

0 5 10 15 20 25
number of observations

0.000

0.002

0.004

0.006

m
m

d2 (
La

pl
ac

ia
n)

PFBR
SMC

0.075
0.100
0.125

KBR

64 128 256 512 1024
paricle size

−0.0025
0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150

m
m

d2 (
La

pl
ac

ia
n) PFBR

SMC

6
8

KBR

0 5 10 15 20 25
number of observations

0.0
0.1
0.2
0.3
0.4
0.5

m
m

d2 (
Po

ly
no

m
ia

l)

PFBR
SMC

5
10 KBR

64 128 256 512 1024
paricle size

−0.2

0.0

0.2

0.4

0.6

m
m

d2 (
Po

ly
no

m
ia

l)

PFBR
SMC

(a) MMD2 with Laplacian kernel (b) MMD2 with Polynomial kernel

0.00
0.05 KBR

0 5 10 15 20 25
number of observations

−0.002

0.000

0.002

0.004

m
m

d2 (
Si

gm
oi

d) PFBR
SMC

0.03
0.04
0.05

KBR

64 128 256 512 1024
paricle size

−0.010

−0.005

0.000

0.005

m
m

d2 (
Si

gm
oi

d) PFBR
SMC

0.1

0.2
KBR

0 5 10 15 20 25
number of observations

−0.002
0.000
0.002
0.004
0.006
0.008
0.010

m
m

d2 (
Co

sin
e) PFBR

SMC

0.12
0.13 KBR

64 128 256 512 1024
paricle size

−0.01

0.00

0.01

0.02

m
m

d2 (
Co

sin
e) PFBR

SMC

(c) MMD2 with Sigmoid kernel (c) MMD2 with Cosine kernel

0.4
0.6 KBR

0 5 10 15 20 25
number of observations

0.025
0.050
0.075
0.100
0.125
0.150
0.175

||E
p[
x]

−
E q

[x
]||

2

PFBR
SMC

0.500
0.525
0.550
0.575 KBR

64 128 256 512 1024
paricle size

0.00
0.05
0.10
0.15
0.20
0.25

||E
p[
x]

−
E q

[x
]||

2

PFBR
SMC

2
3 KBR

0 5 10 15 20 25
number of observations

0.1

0.2

0.3

0.4

|E
p[
h]

−
E q

[h
]| PFBR

SMC

2
3 KBR

64 128 256 512 1024
paricle size

0.0
0.1
0.2
0.3
0.4
0.5

|E
p[
h]

−
E q

[h
]| PFBR

SMC

(d) Integral estimation on h(x) = x (e) Integral estimation on h(x) = (Ax+ a)>(Bx+ b)

Figure 8: Experimental results on LDS model.

