Particle Flow Bayes’ Rule

A. Existence of Unified Flow Operator

Theorem 2.3. For the optimal control problem in Eq. (13) and Eq. (14), there exists an open-loop control w* =
w*(q(x,0),t) such that the induced state q* (x,t) satisfies ¢*(x,00) = p(€|Om41). Moreover, w* has a fixed expression
with respect to p(x|Op,) and p(om+1|x) across different m.

Proof. By Theorem 2.2, w*(q(x,t),t) := V; log q(«, t) can induce the optimal state ¢* (x, 00) = p(x|O,,+1) and achieve
a zero loss, d = 0. Hence, w* is an optimal closed-loop control for this problem.

Although in general closed-loop control has a stronger characterization to the solution, in a deterministic system like Eq. (14),
the optimal closed-loop control and the optimal open-loop control will give the same control law and thus the same optimality
to the loss function(Dreyfus, 1964). Hence, there exists an optimal open-loop control w* = w*(g(x,0),t) such that the
induced optimal state also gives a zero loss and thus ¢* (¢, 00) = p(€|Opyy1).

More specifically, when the system is deterministic, a state ¢(, t) is just a deterministic result of the initial state ¢(«, 0) and
the dynamics. The optimal flow determined by w*(q(x, t),t) is
[ =V log p(|Om)p(om+1|w) — Vi log q(,t).
The continuity equation gives
0q(x,t)
ot

=~V (¢V.logp(z|Om)p(om+1|))
+ Agq(x,t)
= g(p(x|0m)p(0mi1|T), q(z, 1))

Hence, for any x,

q@z¢>:@cuo>+1£ 9(D(@|O)p(Omsn ), a(a, 1) do.

The dynamcis g is a fixed function of p(x|O,,), p(0m+1|x) and g(z, t), so the solution of this initial value problem(IVP)
q(z,t) is a fixed function of p(x|O,,), p(0m+1|2), ¢(x,0) and ¢, which can be written as

q(x,t) = Solve-IVP(p(x|O., ), p(0m+1|x), g(x,0), t).
Finally, we can write the optimal open-loop control as
w*(q(x,0),1)
:vr IOg(501V6'IVP(p(m‘0m)7p(0m+1 |.’I))7 q(a:, O)v t))

Hence, w*(q(x,0), t) has a fixed form across different m.

B. Adjoint Method

To explain it more clearly, let us denote the evolution of the n-th particles at the m-th stage by =7, (¢) for ¢t € [0, T]. Note
that ), (T") = @}, 1(0). (Then the notation «}, in the main text will become x;, (7").)

Recall the loss for each task:
N

L(T) = 5730 D2 S (log gy (@ (T), 7) — logp(a}, (T), O,n)).

m=1n=1

The loss of one particle =" is

| M
L" :=— L,
3 2 L

where
Ly, == —ym(T) = log p(z,(T), Orn)
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and yy;, (t) := —log gy, (27, (1), £).

First, an adjoint process is defined as
® oL™
Pm = .
Oy, (t), yp (1)]
Denote f,,,(x(t),0) = fo(Xm, 0m+1, x(t),t). During the m-th stage, the adjoint process follows the following differential
equation

dpm 9 fm (x5, (), 0) :| !
S m (D). 21
X ORPAD) [ Ve flep(0),0) | P @b
Note that oL
(T . (22)
Z Ma[w"( ) ym(T)}
Claim: The gradient of the loss is the solution of a backward ODE. That is to say, %; = 21(0), if zp;(T) = 0 and
it [ o )
=- " Pm(l), (23)
dt 55 (Ve fm(@n(1),6)] v
and z,,(T) = 2, +1(0), form =0,--- ,M — 1.
Proof. First, we can compute jt 83% :
doLm 9 if: oL Tdan(t)  OL™ dyn(t)
dt 00— 90 <= \ oxp,(t)  dt oyn (t) dt
M
_9 3 [ nT| _ Fm(@n(0),0) }
96 2~ Ve - fnla(1).0)
f: [ 5 8fm a:m(t) 0) }Tpm(t)
2| 2150 frlal(1),0)]
Next, we have
oL T gorr QLT s (7 (1), 6) ]T
0— __ [ eo _ 06 \®m "), m(t) = 217 (T) — 2,(0).
o0 /t=0 dt 06 Z/t=0 |: aﬁ[v fm( () 9)] D () ZM( ) Zl( )
Hence, % = 21(0) if zps(T) = 0. O

An algorithm for computing % is summarized in Algorithm 2. A nice python package of realizing this algorithm is provided
by Chen et al. (2018).
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Algorithm 2 Adjoint Method of Computing the Gradient

Function Grad (¢, Xy, p(o|x), Onr) ¢

Denote f7* = fo(Xm, 0m+1, 2(t), 1) > notation
Set yg = —logp(xf) for each xff € Ay

Foralln =11 N do

Form =0t M —1do

m+1 — m + / |: 6 :| dt
IENE A
Set p,(T) =0and 23, (T) =0
For m = M to 1 do
' 7 BL
P (T) < pr(T) + M B@r ]
Solve ODEs in Eq. (4), Eq. (8), Eq. (21) and Eq. (23) for «, (t), p,(t) and 2 () backwardly from T to 0
Set CCm 1(T) =z, (0)7 pﬁL—l(T) = p?n(o) and zm 1(T> = Z;nn(O)

n
;return*En 1 aLe :Nzn 121(0)

C. Experiment Details
C.1. Parameterization

Overall we parameterize the flow velocity as

7 =R (& X0, ominw). 1),

where both ¢ and h are neural networks. For instance, let ctx = [+ Zn 1@(xm) T, 0 1] be the context of this conditional
flow, where ¢ is a dense feed-forward neural network, a specific neural architecture we use in the experiment is

f =Gatedy, (- - - [ctx, Gatedy ([ctx, Gated; ([etx, z(¢)"]",¢)] ", 6)]" -+ ,¢t), (24)

where Gated; (y,t) = (W,y + b;) % o(tv; + ¢;) + te;, (25)

where * is element-wise multiplication. The number of layers & can be tuned, but in general h is a shallow network.

C.2. Evaluation Metric

MMD? The maximum mean discrepancy (MMD) of the true posterior p and the estimated posterior ¢ is defined as
MMD[F, p, q] := sup (Bonp[f ()] = Eynq[f(y)])-
€

When F is a unit ball in a characteristic RKHS, Gretton et al. (2012) showed that the squared MMD is
MMD?[F, p, ¢ = E[k(z,2")] — 2E[k(z, y)] + E[k(y,y")],

where z, 2’ ~ pandy,y’ ~ q.

Cross-entropy Evaluating the KL divergence is equivalent to evaluating the cross-entropy.
1
Eqnp —logg(z) & — > (~logq(a™)), (26)
n=1

where ¢(x) is approximated by kernel density estimation on the set of particles obtained from different sampling methods.

Integral Evaluation When the true posterior is a Gaussian distribution NV (1, ), the expectation of the following test
functions have closed-form expressions.

o Elx] =p
o Elz" Az] = tr(AY) + u" Au
o E[(Az +a)" (Bx +b)] =tr(AXBT) + (Au+a) " (Bu +b)
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D. More Experimental Results

D.1. Multivariate Guassian Model
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Figure 7: Experimental results on 2 dimensional multivariate Gaussian model.

D.2. LDS Model
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Figure 8: Experimental results on LDS model.



