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Abstract
We present a particle flow realization of Bayes’
rule, where an ODE-based neural operator is used
to transport particles from a prior to its posterior
after a new observation. We prove that such an
ODE operator exists. Its neural parameterization
can be trained in a meta-learning framework, al-
lowing this operator to reason about the effect of
an individual observation on the posterior, and
thus generalize across different priors, observa-
tions and to sequential Bayesian inference. We
demonstrated the generalization ability of our par-
ticle flow Bayes operator in several canonical and
high dimensional examples.

1. Introduction
In many data analysis tasks, it is important to estimate
unknown quantities x ∈ Rd from observations Om :=
{o1, · · · , om}. Given prior knowledge π(x) and likelihood
functions p(ot|x), the essence of Bayesian inference is to
compute the posterior p(x|Om) ∝ π(x)

∏m
t=1 p(ot|x) by

Bayes’ rule. For many nontrivial models, the prior might
not be conjugate to the likelihood, making the posterior
not in a closed form. Therefore, computing the posterior
often results in intractable integration and poses significant
challenges. Typically, one resorts to approximate inference
methods such as sampling (e.g., MCMC) (Andrieu et al.,
2003) or variational inference (Wainwright & Jordan, 2003).

In many real problems, observations arrive sequentially on-
line, and Bayesian inference needs be performed recursively,

updated posterior︷ ︸︸ ︷
p(x|Om+1) ∝

current posterior︷ ︸︸ ︷
p(x|Om)

likelihood︷ ︸︸ ︷
p(om+1|x) . (1)

That is the estimation of p(x|Om+1) should be computed
based on the estimation of p(x|Om) obtained from the last
iteration and the presence of the new observation om+1.
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It therefore requires algorithms which allow for efficient
online inference. In this case, both standard MCMC and
variational inference become inefficient, since the former
requires a complete scan of the dataset in each iteration, and
the latter requires solving an optimization for every new
observation. Thus, sequential Monte Carlo (SMC) (Doucet
et al., 2001; Balakrishnan & Madigan, 2006) or stochastic
approximations, such as stochastic gradient Langevin dy-
namics (Welling & Teh, 2011) and stochastic variational in-
ference (Hoffman et al., 2012), are developed to improve the
efficiency. However, SMC suffers from the path degeneracy
problems in high dimensions (Daum & Huang, 2003; Snyder
et al., 2008), and rejuvenation steps are designed but may
violate the online sequential update requirement (Canini
et al., 2009; Chopin et al., 2013). Stochastic approximation
methods are prescribed algorithms that cannot exploit the
structure of the problem for further improvement.

To address these challenges, the seminal work of Kernel
Bayes Rule (KBR) views the Bayes update as an operator
in reproducing kernel Hilbert spaces (RKHS) which can
be learned and directly produce the posterior from prior
after each observation (Fukumizu et al., 2012). In the KBR
framework, the posterior is represented as an embedding
µm := Ep(x|Om)[φ(x)] using a feature map φ(·) associ-
ated with a kernel function; then the kernel Bayes operator
K(·, o) will take this embedding as input and produce the
embedding of the updated posterior,

updated embedding︷ ︸︸ ︷
µm+1 = K(

current embedding︷︸︸︷
µm , om+1 ). (2)

Another novel aspect of KBR method is that it contains a
training phase and a testing phase, where the structure of the
problem at hand (e.g., the likelihood) is taken into account
in the training phase, and in the testing phase, the learned
operator K will directly operate on the current posterior µm
to produce the output. However, despite the nice concepts
of KBR operator, it only works well for a limited range of
problems due to its strong theoretical assumptions.

In this work, we aim to lift the limitation of KBR operator,
and will design a novel continuous particle flow operator
F to realize the Bayes update, for which we call it par-
ticle flow Bayes’ rule (PFBR). In the PFBR framework
(Fig. 1), a prior distribution π(x), or, the current posterior
πm(x) := p(x|Om) is approximated by a set of N equally
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Figure 1: PFBR framework: sequential Bayesian inference as a deterministic flow of particles.

weighted particles Xm = {x1
m, . . . ,x

N
m}; and then, given

an observation om+1, the flow operator F(Xm,xnm, om+1)
will transport each particle xnm to a new particle xnm+1 to
approximate the new posterior p(x|Om+1). That is,

updated particle︷ ︸︸ ︷
xnm+1 = F(Xm,

current particle︷︸︸︷
xnm , om+1), (3)

where Xm+1 = {x1
m+1, . . . ,x

N
m+1} will be used as sam-

ples from the new posterior p(x|Om+1). Furthermore, this
PFBR operator F can be applied recursively to Xm+1 and a
new observation om+2 to produce Xm+2, and so on.

In a high-level, we model the PFBR operator F as a contin-
uous deterministic flow, which propagates the locations of
particles and the values of their probability density simulta-
neously through a dynamical system described by ordinary
differential equations (ODEs). A natural question is whether
a fixed ODE-based Bayes operator applicable to different
prior distributions and likelihood functions exists. In our
paper, we resolve this important theoretical question by
making a novel connection between PFBR operator and the
Fokker-Planck equation of Langevin dynamics. The proof
of existence also provides a basis for our parameterization
of PFBR operator using DeepSet (Zaheer et al., 2017).

Similar to KBR, PFBR have a training phase and a testing
phase. However, the training procedure is very different as
it adopts a meta-learning framework (Andrychowicz et al.,
2016), where multiple related Bayesian inference tasks with
different priors and observations are created. PFBR operator
F will learn from these tasks how to update the posteriors
given new observations. During test phase, the learned
PFBR will be applied directly to new observations without
either re-optimization or storing previous observations. We
conduct various experiments to show that the learned PFBR
operator can generalize to new Bayesian inference tasks.

Related work. There is a recent surge of interests in ODE-
based Bayesian inference (Chen et al., 2018; Zhang et al.,
2018; Grathwohl et al., 2018; Lei et al., 2017). These works
focus on fitting a single target distribution. Consequently,
the learned flow can not generalize directly to a new dataset,
a new prior or to sequential setting without re-optimization.

2. Bayesian Inference as Particle Flow
We present details in this section from four aspects: (1)
How to map sequential Bayes inference to particle flow?
(2) What is the property of such particle flow? (3) Does a
shared flow-based Bayesian operator F exist? (4) How to

parameterize the flow operator F?

2.1. PFBR: Particle Flow Bayes’ Rule

The problem mapping from sequential Bayesian inference
to particle flow goes as follows. Initially, N particles X0 =
{x1

0, . . . ,x
N
0 } are sampled i.i.d. from a prior π(x). Given

an observation o1, the operator F will transport the particles
toX1 = {x1

1, . . . ,x
N
1 } to estimate the posterior p(x|O1) ∝

π(x)p(o1|x). We define this transformation as the solution
of an ODE. That is, ∀n,{

dx
dt = f(X0, o1,x(t), t), ∀t ∈ (0, T ]
x(0) = xn0

gives
==⇒ xn1 = x(T ).

The flow velocity f takes observation o1 as input and deter-
mines both direction and speed of the change of x(t). In
this ODE model, each particle xn0 sampled from the prior
gives an initial value x(0), and then the flow velocity f
will evolve the particle continuously and deterministically.
At terminate time T , we will take solution x(T ) as the
transformed particle xn1 for estimating the posterior.

Applying this ODE-based transformation sequentially as
new observations o2, o3, . . . arrive, we can define a recursive
particle flow Bayes operator, called PFBR, as

xnm+1 = F(Xm, om+1,x
n
m)

:= xnm +
∫ T

0
f(Xm, om+1,x(t), t) dt. (4)

The set of obtained particles Xm+1 can be used to perform
Bayesian inference such as estimating the mean and quanti-
fying the uncertainty of any test function by averaging over
these particles.

At this moment, we assume f has a form of f(X , o,x(t), t),
and will be shared across different sequential stages. In
section 2.3, a rigorous discussion on the existence of a
shared flow velocity of this form will be made. Next, we
will discuss further properties of this continuous particle
flow which will help us study the existence of such operator
for Bayesian inference, and design the parameterization and
the learning for the flow velocity.

2.2. Property of Continuous Deterministic Flow

The continuous transformation of x(t) described by ODE
dx/dt = f defines a deterministic flow for each particle.
Let q(x, t) be the probability density of the continuous
random variable x(t). The change of this density is also de-
termined by f . More specifically, q follows the continuity
equation (Batchelor, 2000):

∂q(x, t)/∂t = −∇x · (qf), (5)
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where ∇x· is the divergence operator. Continuity equation
is the mathematical expression for the law of local conser-
vation of mass - mass can neither be created nor destroyed,
nor can it ”teleport” from one place to another.

Given continuity equation, one can describe the change of
log-density by another differential equation (Theorem 2.1).

Theorem 2.1. If dx/dt = f , then the change in log-density
follows the differential equation (Chen et al., 2018)

d log(q(x, t))/dt = −∇x · f. (6)

Since for any physical quantity q(x, t), the distinguish be-
tween material derivative d/dt and partial derivative ∂/∂t
is important, we clarify the definition before the proof of
this theorem.

Definition 2.1. Material derivative of q(x, t) is defined as

dq/dt = ∂q/∂t+∇xq · dx/dt. (7)

Note that dq/dt defines the rate of change of q in a given
particle as it moves along its trajectory x = x(t) in the flow,
while ∂q/∂t means the rate of change of q at a particular
point x that is fixed in the space.

Proof of Theorem 2.1. By continuity equation, ∂q
∂t =

−∇xq · f − q∇x · f ⇒ dq
dt = −q∇x · f . By chain rule, we

have d log q
dt = 1

q
dq
dt = 1

q (−q∇x · f) = −∇x · f .

Theorem 2.1 gives the same result as the Instantaneous
Change of Variables Theorem stated by Chen et al. (2018).
However, our statement is more accurate using the notation
of material and partial derivatives. Our proof is simpler and
intuitively clearer using continuity equation. This also helps
us to see the connection to other physics problems such as
fluid dynamics and electromagnetism.

With theorem 2.1, we can compute the log-density of the
particles by integrating across (0, T ] for each n:

log qm+1(xnm+1) = log qm(xnm)−
∫ T

0
∇x · f dt. (8)

2.3. Existence of Flow-based Bayes’ Rule

Does a unified flow velocity f exist for different Bayesian
inference tasks involving different priors and observations?
If it does, what is the form of this function? These questions
are non-trivial even for simple Gaussian case.

For instance, let the prior π(x) = N (0, σx) and the likeli-
hood p(o|x) = N (x, σ) both be one dimensional Gaussian
distributions. Given an observation o = 0, the posterior
distribution is N (0, (σ · σx)/(σ + σx)). It means the ODE
dx/dt = f needs to push a zero mean Gaussian distribution
with covariance σx to another zero mean Gaussian distribu-
tion with covariance (σ · σx)/(σ + σx) for any σx. It is not
clear whether such a unified flow velocity function f exists
and what is the form for it.

To resolve the existence issue, we will first establish a con-
nection between the deterministic flow in Section 2.2 and the
stochastic flow: Langevin dynamics. Then we will leverage
the connection between closed-loop control and open-loop
control to show the existence of a unified f .

2.3.1. CONNECTION TO STOCHASTIC FLOW

Langevin dynamics is a stochastic process

dx(t) =∇x log p(x|Om)p(om+1|x) dt+
√

2dw(t), (9)

where dw(t) is a standard Brownian motion. Given a fixed
initial location x(0), multiple runs of the Langevin dynam-
ics to time t will result in multiple random locations of x(t)
due to the randomness of w(t). This stochastic flow is very
different in nature comparing to the deterministic flow in
Section 2.2, where a fixed location x(0) will always end up
with the same location x(t).

Nonetheless, while Langevin dynamics is a stochastic flow
of a continuous random variable x(t), the probability den-
sity q(x, t) of x(t) follows a deterministic evolution ac-
cording to the associated Fokker-Planck equation (Jordan
et al., 1998)

∂q/∂t =−∇x · (q∇x log p(x|Om)p(om+1|x))

+ ∆xq(x, t), (10)

where ∆x = ∇x · ∇x is the Laplace operator. Fur-
thermore, if the so-called potential function Ψ(x) :=
− log p(x|Om)p(om+1|x) is smooth and e−Ψ ∈ L1(Rd),
the Fokker-Planck equation has a unique stationary solution
in the form of a Gibbs distribution (Jordan et al., 1998),

q(x,∞) = e−Ψ/Z = p(x|Om)p(om+1|x)/Z. (11)

Clearly, this stationary solution is the posterior distribution
p(x|Om+1).

Now we will rewrite the Fokker-Planck equation in Eq. (10)
into the form of the deterministic flow in Eq. (5) from Sec-
tion 2.2, and hence identify the corresponding flow velocity.

Theorem 2.2. Assume the deterministic transformation of
a continuous random variable x(t) is dx/dt = f , where

f = ∇x log p(x|Om)p(om+1|x)−∇x log q(x, t) (12)

and q(x, t) is the probability density of x(t). If the poten-
tial function Ψ is smooth and e−Ψ ∈ L1(Rd), then q(x, t)
converges to p(x|Om+1) as t→∞.

Proof. By continuity equation in Eq. (5), the probability
density q(x, t) of x(t) satisfies ∂q/∂t = −∇x ·

(
q
(
−

∇xΨ(x)−∇x log q(x, t)
))

. It is easy to see this equation
is the same as the Fokker-Planck equation in Eq. (10), by de-
composing the Laplace as ∆xq = ∇x · (q∇x log q). Under
the conditions for the potential function Ψ, since Fokker-
Planck equation has a unique stationary distribution q(x,∞)
equal to the posterior distribution p(x|Om+1), the determin-
istic flow in Eq. (12) will also converge to p(x|Om+1).
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The implication of Theorem 2.2 is that we can construct a
deterministic flow of particles to obtain the posterior and
hence establish the existence. However, the flow veloc-
ity in Eq. (12) depends on the intermediate density q(x, t)
which changes over time. This seemingly suggests that f
can not be expressed as a fixed function of p(x|Om) and
p(om+1|x). In the next section, we show that this depen-
dence on q(x, t) can be removed using theory of optimal
control for deterministic systems.

2.3.2. CLOSED-LOOP TO OPEN-LOOP CONVERSION

Now the question is: whether the term ∇x log q(x, t) in
Eq. (12) can be made independent of q(x, t), or whether
there is a equivalent form which can achieve the same flow.
To investigate this question, we consider the the following
deterministic optimal control problem

min
w

d(q(x,∞), p(x|Om+1)) (13)

s.t.
dx

dt
= ∇x log p(x|Om)p(om+1|x)− w, (14)

where d can be any metric defined on the set of densities over
Rd. In Eq. (13), we are optimizing over w, which is usually
called the control. By Theorem 2.2, w = ∇x log q(x, t)
is apparently an optimal solution. Furthermore, the cor-
responding flow velocity derived by Fokker-Planck equa-
tion can be regarded as the continuous steepest descent of
KL(q(x, t)||p(x|Om+1)) under Wasserstein distance (Jor-
dan et al., 1998). We are seeking an alternative expression to
the above optimal solution which only depends on p(x,Om)
and p(om+1|x). First, we introduce the terminology below
from optimal control literature.

Definition 2.2. In optimal control literature, a control in
a feed-back form w = w(q(x, t), t) is called closed-loop.
In contrast, another type of control w = w(q(x, 0), t) is
called open-loop. An open-loop control is determined when
the initial state q(x, 0) is observed, whereas, a closed-loop
control can adapt to the encountered states q(x, t).

Theorem 2.3. For the optimal control problem in Eq. (13)
and Eq. (14), there exists an open-loop control w∗ =
w∗(q(x, 0), t) such that the induced state q∗(x, t) satis-
fies q∗(x,∞) = p(x|Om+1). Moreover, w∗ has a fixed
expression with respect to p(x|Om) and p(om+1|x) across
different m.

Proof. By Theorem 2.2, w̃∗(q(x, t), t) := ∇x log q(x, t)
can induce the optimal state q̃∗(x,∞) = p(x|Om+1) and
achieve a zero loss, d = 0. Hence, w̃∗ is an optimal closed-
loop control for this problem.

Although in general closed-loop control has a stronger
characterization to the solution, in a deterministic system
like Eq. (14), the optimal closed-loop control and the opti-
mal open-loop control will give the same control law and
achieve the same optimal loss (Dreyfus, 1964). Hence, there

exists an optimal open-loop control w∗ = w∗(q(x, 0), t)
such that the induced state also gives a zero loss and thus
q∗(x,∞) = p(x|Om+1). More details are provided in
Appendix A to express w∗ as a fixed function of q(x, 0),
p(x|Om), p(om+1|x) and t.

Conclusion of a unified f . In sequential Bayesian infer-
ence, we will set q(x, 0) as p(x|Om). Therefore, Theo-
rem 2.3 shows that there exists a fixed and deterministic
flow velocity f of the form

∇x log p(x|Om)p(om+1|x)− w∗(p(x|Om), t), (15)

which can transform p(x|Om) to p(x|Om+1) and in turns
define a unified particle flow Bayes operator F .

2.4. Parametrization

We design a practical parameterization of f based on the
expression of the unified flow f in Eq. (15).

(i) p(x|Om)⇒ Xm: Since we do not have full access to the
density p(x|Om) but have samples Xm = {x1

m, . . . ,x
N
m}

from it, we can use these samples as surrogates for p(x|Om).
A related example is feature space embedding of distribu-
tions (Smola et al., 2007), µX (p) :=

∫
Xφ(x)p(x) dx ≈

1
N

∑N
n=1φ(xn), xn ∼ p. Ideally, if µX is an injective map-

ping from the space of probability measures over X to the
feature space, the resulting embedding can be treated as a
sufficient statistic of the density and any information we
need from p(x|Om) can be preserved. Hence, we represent
p(x|Om) by 1

N

∑N
n=1 φ(xnm), where φ(·) is a nonlinear

feature mapping to be learned. Since we use a neural ver-
sion of φ(·), this representation can also be regarded as a
DeepSet (Zaheer et al., 2017).

(ii) p(om+1|x)⇒ (om+1,x(t)): In both Langevin dynam-
ics and Eq. (15), the only term containing the likelihood is
∇x log p(om+1|x). Consequently, we can use this term as
an input to f . In the case when the likelihood function is
fixed, we can also simply use the observation om+1, which
results in similar performance in our experiments.

Overall we parameterize the flow velocity as

f = h
(

1
N

∑N
n=1φ(xnm), om+1,x(t), t

)
, (16)

where h and φ are neural networks (See specific architecture
we use in Appendix C.1). Let θ ∈ Θ be their parameters
which are independent of t. From now on, we write f =
fθ(Xm, om+1,x(t), t). In the next section, we will propose
a meta learning framework for learning these parameters.

3. Learning Algorithm
Since we aim to learn a generalizable Bayesian operator, we
need to create multiple inference tasks as the training set
and design the corresponding learning algorithm.
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Multi-task Framework. The training set Dtrain contains
multiple inference tasks. Each task is a tuple

T := (π(x), p(·|x),OM := {o1, . . . , oM}) ∈ Dtrain
which consists of a prior distribution, a likelihood function
and a sequence of M observations. A task with M sequen-
tial observations can also be interpreted as a sequence of M
sub-tasks with 1 observation:

τ := (p(x|Om), p(·|x), om+1) ∈ (π(x), p(·|x),OM ).

Therefore, each task is a sequential Bayesian inference and
each sub-task corresponds to one step Bayesian update.

Cumulative Loss Function. For each sub-task we define
a loss KL(qm(x)||p(x|Om+1)), where qm(x) is the dis-
tribution transported by F at m-th stage and p(x|Om+1)
is the target posterior (see Fig. 1 for illustration). Mean-
while, the loss for the corresponding sequential task will be∑M

m=1KL(qm(x)||p(x|Om)), which sums up the losses of
all intermediate stages. Since its optimality is independent
of normalizing constants, it is equivalent to minimize the
negative evidence lower bound (ELBO)

L(T ) =

M∑
m=1

N∑
n=1

(log qm(xnm)− log p(xnm,Om)) . (17)

The above expression is an empirical estimation using par-
ticles xnm. In each iteration during training phase, we will
randomly sample a task from Dtrain and update the PFBR
operator F by the loss gradient.

3.1. Training Tasks Creation

Similar to some meta learning problems, the distribution of
training tasks will essentially affect learner’s performance
on testing tasks (Dai et al., 2017). Depending on the na-
ture of the Bayesian problem, we propose two approaches
to construct the multitask training set: one is data driven,
and the other is based on generative models. The general
principle is that the collection of training priors have to be
diverse enough or representative of those may be seen in
testing time.

Data-Driven Approach. We can use the posterior distri-
bution obtained from last Bayesian inference step as the
new prior distribution. If the posterior distribution has an
analytical (but unnormalized) expression, we will directly
use this expression.

More precisely, since each Bayesian inference step will gen-
erate a set of particles, Xm = {x1

m, . . . ,x
N
m}, correspond-

ing to the posterior distribution p(x|Om), we can apply a
kernel density estimator on top of these samples to obtain
an empirical density function

π̂(x;Xm) = 1
N

∑N
n=1

1√
2πσd

e−
‖x−xnm‖

2

2σ2 , (18)

where σ is the kernel bandwidth. Then this density function

Algorithm 1 Overall Learning Algorithm
θ ← random initialization
For itr = 1 to #iterations do
T = (π(x), p(·|x),OM )← sampled from Dtrain
X0 = {xn0}Nn=1

i.i.d.∼ π(x) . initial particles
θ ← θ − η Grad(θ,X0, π(x), p(·|x),OM)
if mod(itr, k) = 0 then

Perform a validation step on Dvali . validation

return best θ∗ in validation steps
Remark. See Appendix B for both derivation and algorithm
steps of Grad().

with a set of samples from it will be used as the new prior
for the next training task. This approach has two attractive
properties. First, it does not require any prior knowledge of
the model and thus is generally applicable to most problems.
Second, it provides us a way of breaking a long sequence
(π(x), p(·|x),OM ) with large M into multiple tasks with
shorter sequences

(π(x), p(·|x), o1:m) ∪ (π̂(x;Xm), p(·|x).om+1:M ), (19)

This will help make the training procedure more efficient.
This approach will be particularly suited to sequential
Bayesian inference and is used in later experiments.

Generative Model Approach. Another possibility is to
sample priors from a flexible generative model, such as a
Dirichlet process Gaussian mixture model (Antoniak, 1974).
We will leave the experimental evaluation of this approach
for future investigation.

3.2. Overall Learning Algorithm

Learning the PFBR operator F is learning the parameters θ
of fθ to minimize the following loss for multiple tasks

L(Dtrain) =
1

|Dtrain|
∑

T ∈Dtrain

L(T ),

where L(T ) is the loss for a single task defined in Eq. (17).
Both the particle location xnm and its density value qm(xnm)
in L(T ) are results of forward propagation determined by
fθ according to ODEs in Eq. (4) and Eq. (8). The training
procedure is similar to other deep learning optimizations,
except that an ODE technique called adjoint method (Chen
et al., 2018) is used to compute the gradient dL/dθ with
very low memory cost. The overall algorithm under a meta-
learning framework is summarized in Algorithm 1.

3.3. Efficient Learning Tricks

We introduce two techniques to improve training efficiency
for large scale problems. Its application to an experiment
which contains millions of data points is demonstrated in
Section 4. These two techniques can be summarized as
mini-batch embedding and sequence-segmentation.



Particle Flow Bayes’ Rule

The loss function L(T ) in Eq. (17) contains a summation
from m = 1 to M and also a hidden inner-loop summation

log p(xnm,Om) = log π(xnm) +
∑m
t=1 log p(ot|xnm). (20)

Thus the evaluation cost of L(T ) is quadratic with respect
to the length M of the observation sequences. Therefore,
we need to reduce the length for large scale problems.

Mini-batch embedding. Previously we defined om as a
single observation. However, we can also view it as a
batch of L observations, i.e., om = {o1

m, . . . , o
L
m}. Each

Bayesian update corresponding to this mini-batch will
become p(x|Om+1) ∝ p(x|Om)

∏L
l=1 p(o

l
m|x). If we

rewrite p(om|x) =
∏L
l=1 p(o

l
m|x), this is essentially the

same as our previous expression. Therefore, we can replace
om by {olm}Ll=1 and input these samples simultaneously as a
set to the flow fθ. To reduce the input dimension, we resort
to a set-embedding 1

L

∑L
l=1 g(olm), where g is a neuralized

nonlinear function to be learned. Depending on the structure
of the model, one define the embedding as a Deepset (Za-
heer et al., 2017), or, if the posterior is not invariant with
respect to the order of the observations (e.g. hidden Markov
models), one need to use a set-embedding that is not order
invariant. To conclude, for a mini-batch Bayesian update,
the parameterization of flow velocity can be modified as

f = h
(

1
N

∑N
n=1φ(xnm), 1

L

∑L
l=1g(olm+1),x(t), t

)
.

Sequence-segmentation. We will use the approach in
Eq. (19) to break a long sequence into short ones. More
precisely, suppose we have particles {xnm∗}Nn=1 at m∗-th
stage. We can cut the sequence at position m∗ and generate
a new task using the second half. The prior for the new
sequence will be an empirical density estimation π̂(x;Xm∗)
as defined in Eq. (18). Then, for all stages m > m∗, the
terms in Eq. (20) becomes

log p(x,Om) ≈ log π̂(xnm;Xm∗) +

m∑
t=m∗+1

log p(ot|xnm).

We can apply this technique for multiple times to split a
long sequence into multiple segments.

4. Experiments
We conduct experiments on multivariate Gaussian model,
hidden Markov model and Bayesian logistic regression to
demonstrate the generalization ability of PFBR and also its
accuracy for posterior estimation.

Evaluation metric. For multivariate Gaussian model and
Gaussian linear dynamical system, we could calculate the
true posterior. Therefore, we can evaluate:
(i) Cross-entropy Ex∼p − log q(x);
(ii) Maximum mean discrepancy (Gretton et al., 2012)

MMD2 = Ex,x′∼p; y,y′∼q[k(x, x′)− 2k(x, y) + k(y, y′)];

(iii) Integral evaluation discrepancy ‖Eph(x)− Eqh(x)‖2;

where we use Monte Carlo method to compute Ex∼p[·] for
the first two metrics. For the integral evaluation, we choose
some test functions h where the exact value of Eph(x) has a
closed-form expression. For the experiments on real-world
dataset, we estimate the commonly used prediction accuracy
due to the intractability of the posterior.

Multivariate Gaussian Model. The prior x ∼ N (µx,Σx),
the observation conditioned on prior o|x ∼ N (x,Σo) and
the posterior all follow Gaussian distributions. In our exper-
iment, we use µx = ~0,Σx = I and Σo = 3I . We test the
learned PFBR on different sequences of 100 observations
O100, while the training set only contains sequences of 10
observations, which are ten times shorter than sequences in
the testing set. However, since we construct a set of differ-
ent prior distributions to train the operator, the diversity of
the prior distributions allows the learned F to generalize to
compute posterior distributions in a longer sequence.

We compare the performances with KBR (Fukumizu et al.,
2012) and one-pass SMC (Balakrishnan & Madigan, 2006).
Both PFBR and KBR are learned from the training set and
then used as algorithms on the testing set, which consists of
25 sequences of 100 observations {Oj100 ∼ N (xj ,Σo)}25

j=1

conditioned on 25 different xj sampled from N (0, I). We
compare estimations of p(x|Ojm) across stages from m = 1
to 100 and the results are plotted in Fig. 2. Since KBR’s
performance reveals to be less comparable in this case, we
leave its results to Appendix D. We can see from Fig. 2
that as the dimension of the model increases, our PFBR has
more advantages over one-pass SMC.

Gaussian Mixture Model. Following the same setting
as Welling & Teh (2011), we conduct an experiment
on an interesting mixture model, where the observations
o ∼ 1

2

(
N (x1, 1.0) + N (x1 + x2, 1.0)

)
and the prior

x1, x2 ∼ N (0, 1). The same as Dai et al. (2016), we set
(x1, x2) = (1,−2) so that the resulting posterior will have
two modes: (1,−2) and (−1, 2). During training, multi-
ple sequences are generated, each of which consists of 30
observations.

Compared to Welling & Teh (2011) and Dai et al. (2016),
our experiment is more challenging. First, they are only
fitting one posterior given one sequence of observations via
optimization, while PFBR will operate on sequences that
are NOT observed during training without re-optimization.
Second, they are only estimating the final posterior, while
we aim at fitting every intermediate posteriors. Even for
one fixed sequence, it is not easy to fit the posterior and
capture both two modes, which can be seem from the results
reported by Dai et al. (2016). However, our learned PFBR
can operate on testing sequences and the resulting posteriors
look closed enough to true posterior (See Fig. 3).

Hidden Markov Model — LDS. Our PFBR method can be
easily adapted to hidden Markov models, where we will esti-
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(a) Cross entropy Ep(x|Om) − log qm for dimension 3, 5 and 8 (b) Squared MMD with RBF kernel for dimension 3, 5 and 8

Figure 2: Experimental results for Gaussian model. We use 256 obtained particles as samples from p(x|Om) and compare it with true
posteriors. Each evaluation result is computed over 25 tasks and the shaded area shows the standard error. More results in Appendix D.
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Figure 3: Visualization of the evolution of posterior density from
left to right. In the end, PFBR density is closer to the true density
than SMC density.

mate the marginal posterior distribution p(xm|Om). For in-
stance, consider a Gaussian linear dynamical system (LDS):

xm = Axm−1 + εm, om = Bxm + δm,

where εm ∼ N (0,Σ1) and δm ∼ N (0,Σ2). The particles
can be updated by recursively applying two steps:

(i) x̃nm = Axnm−1 + εm, (ii) xnm = F(X̃m, x̃nm, om+1),

where X̃m := {x̃nm}Nn=1. The second step is a Bayesian
update from p(xm|Om−1) to p(xm|Om) given the likeli-
hood p(om|xm). The only tricky part is we do not have a
tractable loss function in this case because of the integration
p(xm|Om−1) =

∫
p(xm|xm−1)p(xm−1|Om−1) dxm−1.

Hence, at each stage m, we use the particles X̃m to con-
struct an empirical density estimation π̂(x; X̃m) as defined
in Eq. (18) and then define the loss at each stage m as∑N

n=1 log qm(xnm)− log p(om|xnm)− log π̂(xnm; X̃m),

where we replace the intractable density p(xm|Om−1) by
π̂. Given this loss, the PFBR operator F can be learned.

In the experiment, we sample a pair of 2 dimensional ran-
dom matrices A and B for the LDS model. We learn both
PFBR and KBR from a training set containing multiple
different sequences of observations. For KBR, we use an
adapted version called Kernel Monte Carlo Filter (Kana-
gawa et al., 2013), which is designed for state-space models.
We use Kalman filter (Welch & Bishop, 2006) to compute
the true marginal posterior for evaluation purpose.

Fig. 4 compares our method with KBR and SMC (impor-
tance sampling with resampling) on a testing set containing
25 new sequences of ordered observations. We see that our
learned PFBR can generalize to test sequences and achieve
better and stabler performances.
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Figure 4: Experimental results for LDS. Only results evaluated
on the testing set are shown. Left: estimation errors on every stage
m ∈ [25]. Right: estimation errors for different particle sizes,
which are firstly averaged over 25 stages for each task, and then
averaged over 25 tasks. The error bar shows the standard error
over tasks. We use the same PFBR operator trained with 1024
particles, even though during testing phase, we apply it on particles
of difference sizes. See Appendix D for more results.

Comparison to Variational SMC. Autoencoding SMC
(AESMC), Filtering Variational Objectives, and Variational
SMC are three recent variational inference approaches that
approximate the posterior based on SMC and a neural pro-
posal (Le et al., 2018; Maddison et al., 2017; Naesseth et al.,
2018). Since they share similar ideas, we implemented
AESMC as a representative. We tried both MLP and GRU
as mentioned in these papers. A comparison is made for
10-dimensional LDS (Table 1), which shows PFBR is better
even with much fewer particles.

Inference Time Comparison. Table 1 also shows the in-
ference time for updating posterior given one new observa-
tion. Though PFBR takes more time for the same #particles
(e.g.256), to get closer to PFBR’s performance, others need
to use much more particles (e.g. 4096).

Bayesian Logistic Regression (BLR). We consider logis-
tic regression for digits classification on the MNIST8M 8
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Algo #particles cpu time (s) gpu time (s) cross-entropy
PFBR 256 0.23 0.26 16.56
SMC 256 0.07 0.02 26.78

ASMC-mlp 256 0.17 0.07 19.66
ASMC-gru 256 0.18 0.07 19.38
ASMC-mlp 4096 2.23 0.25 17.63
ASMC-gru 4096 2.26 0.26 17.24

SMC 8192 3.87 0.12 17.60

Table 1: Numbers are averaged over 25 sequences with 25 obser-
vations each. For PFBR, gpu is faster when #particles is larger.

vs. 6 dataset which contains about 1.6M training samples
and 1932 testing samples. We reduce the dimension of the
images to 50 by PCA, following the same setting as Dai et al.
(2016). Two experiments are conducted on this dataset. For
both experiments, we compare our method with SMC, SVI
(stochastic variational inference (Hoffman et al., 2012)),
PMD (particle mirror descent (Dai et al., 2016)), SGD
Langevin (stochastic gradient Langevin dynamics (Welling
& Teh, 2011)) and SGD NPV (stochastic version of non-
parametric variational inference (Gershman et al., 2012)).
This is a large dataset, so we use the techniques discussed
in Section 3.3 to facilitate training efficiency.

BLR-Meta Learning. In the first experiment, we create
a multi-task environment by rotating the first and second
components of the features reduced by PCA through an
angle ψ uniformly sampled from [−15◦, 15◦]. Note that
the first two components account for more variability in the
data. With a different rotation angle ψ, the classification
boundary will change and thus a different classification
task will be created. Also, a different sequence of image
samples will result in different posterior distributions and
thus corresponds to a different inference task.

We learn the operator F from a set of training tasks, where
each task corresponds to a different rotation angle ψ. After
that, we use F as Bayes’ Rule for testing tasks and compare
its performances with other stochastic methods or sampling
methods. Test is done in an online fashion: all algorithms
start with a set of particles sampled from the prior (hence
the prediction accuracy at 0-th step is around 0.5). Each
algorithm will make a prediction to the encountered batch
of 32 images, and then observe their true labels. After
that, each algorithm will update the particles and make a
prediction to the next batch of images. Ideally we should
compare the estimation of posteriors. However, since it is
intractable, we evaluate the average prediction accuracy at
each stage. Results are shown in Fig. 5.

Note that we have conducted a sanity check to confirm the
learned operator F does not ignore the first 2 rotated dimen-
sions and use the rest 48 components to make predictions.
More precisely, if we zero out the first two components of
the data and learn F on them. The accuracy of the particles
dropps to around 65%. This further verifies that the learned
PFBR indeed can generalize across different tasks.
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Figure 5: Bayesian logistic regression on MNIST. Left: The
average online prediction accuracy 1

m

∑m
t=1 rt is evaluated, where

rt is the accuracy for the t-th batch of images. The shaded area
presents standard deviation of results over 10 testing tasks. Right:
We collect some examples when the random initialization is farther
from the posterior and gives worse initial prediction. PFBR F
updates those particles to gradually achieve a higher accuracy.

BLR-Variational Inference. For the second experiment on
MNIST, we use PFBR as a variational inference method.
That is to say, instead of accurately learning a general-
izable Bayesian operator, the estimation of the posterior
p(x|Otrain) is of more importance. Thus here we do not
use the loss function in Eq. (17) summing over all in-
termediate states, but emphasize more on the final error
KL(q(x)||p(x|Otrain)). After the training is finished, we
only use the transported particles to perform classification
on the test set but do not further use the operator F . The
result is shown in Fig. 6, where x-axis shows number of
visited samples during training. Since we use a batch size
of 128 and consider 10 stages, the first gradient step of our
method starts after around 103 samples are visited.
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Figure 6: PFBR as a variational inference method. The predic-
tion accuracy of PFBR is comparable with state-of-art variational
inference and sampling methods.

5. Conclusion and Future Work
In this paper, we have explored the possibility of learning
an ODE-based Bayesian operator that can perform online
Bayesian inference in testing phase and verified its general-
ization ability through both synthetic and real-world experi-
ments. Further investigation on the parameterization of flow
velocity f (e.g. use a stable neural architecture (Haber &
Ruthotto, 2018) with HyperNetwork (Ha et al., 2017)) and
generating diverse prior distributions through a Dirichlet
process can be made to explore a potentially better solution
to this challenging problem.



Particle Flow Bayes’ Rule

Acknowledgements
This project was supported in part by NSF IIS-1218749,
NIH BIGDATA 1R01GM108341, NSF CAREER IIS-
1350983, NSF IIS-1639792 EAGER, NSF IIS-1841351 EA-
GER, NSF CNS-1704701, ONR N00014-15-1-2340, Intel
ISTC, NVIDIA, Google and Amazon AWS.

References
Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I.

An introduction to mcmc for machine learning. Machine
Learning, 50:5–43, 2003.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., and de Freitas, N. Learning to learn
by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pp. 3981–3989,
2016.

Antoniak, C. Mixtures of Dirichlet processes with appli-
cations to Bayesian nonparametric problems. Annals of
Statistics, 2:1152–1174, 1974.

Balakrishnan, S. and Madigan, D. A one-pass sequential
monte carlo method for bayesian analysis of massive
datasets. Bayesian Analysis, 1(2):345–361, 06 2006.

Batchelor, G. Kinematics of the Flow Field, pp. 71–130.
Cambridge Mathematical Library. Cambridge University
Press, 2000.

Canini, K. R., Shi, L., and Griff iths, T. L. Online inference
of topics with latent dirichlet allocation. In Proceedings
of the Twelfth International Conference on Artificial In-
telligence and Statistics (AISTATS), 2009.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 31, pp. 6572–6583. Cur-
ran Associates, Inc., 2018.

Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. Smc2: an
efficient algorithm for sequential analysis of state space
models. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 75(3):397–426, 2013.

Dai, B., He, N., Dai, H., and Song, L. Provable bayesian in-
ference via particle mirror descent. In Proceedings of the
19th International Conference on Artificial Intelligence
and Statistics, pp. 985–994, 2016.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. arXiv preprint arXiv:1704.01665, 2017.

Daum, F. and Huang, J. Curse of dimensionality and particle
filters. In 2003 IEEE Aerospace Conference Proceedings,
volume 4, 2003.

Doucet, A., de Freitas, N., and Gordon, N. Sequential Monte
Carlo Methods in Practice. Springer-Verlag, 2001.

Dreyfus, S. Some types of optimal control of stochastic
systems. Journal of the Society for Industrial and Applied
Mathematics Series A Control, 2(1):120–134, 1964. doi:
10.1137/0302010.

Fukumizu, K., Song, L., and Gretton, A. Kernel Bayes’
rule: Bayesian inference with positive definite kernels.
In accepted to Journal of Machine Learning Research
(JMLR), 2012.

Gershman, S., Hoffman, M., and Blei, D. M. Nonparametric
variational inference. In Langford, J. and Pineau, J. (eds.),
Proceedings of the 29th International Conference on Ma-
chine Learning (ICML-12), pp. 663–670, New York, NY,
USA, 2012. ACM.

Grathwohl, W., Chen, R. T., Betterncourt, J., Sutskever,
I., and Duvenaud, D. Ffjord: Free-form continuous dy-
namics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., and
Smola, A. A kernel two-sample test. JMLR, 13:723–773,
2012.

Ha, D., Dai, A., and Le, Q. V. HyperNetworks. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2017.

Haber, E. and Ruthotto, L. Stable architectures for deep
neural networks. Inverse Problems, 34(1):014004, 2018.

Hoffman, M., Blei, D. M., Wang, C., and Paisley, J. Stochas-
tic variational inference. In International Conference on
Machine Learning, 2012.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational
formulation of the fokker–planck equation. SIAM Journal
on Mathematical Analysis, 29(1):1–17, 1998.

Kanagawa, M., Nishiyama, Y., Gretton, A., and Fukumizu,
K. Filtering with state-observation examples via kernel
monte carlo filter. arXiv e-prints, December 2013.

Le, T. A., Igl, M., Rainforth, T., Jin, T., and Wood, F. Auto-
encoding sequential monte carlo. In International Con-
ference on Learning Representations, 2018.

Lei, N., Su, K., Cui, L., Yau, S.-T., and Xianfeng Gu, D.
A Geometric View of Optimal Transportation and Gen-
erative Model. arXiv e-prints, art. arXiv:1710.05488,
October 2017.



Particle Flow Bayes’ Rule

Maddison, C. J., Lawson, J., Tucker, G., Heess, N., Norouzi,
M., Mnih, A., Doucet, A., and Teh, Y. Filtering vari-
ational objectives. In Advances in Neural Information
Processing Systems, pp. 6573–6583, 2017.

Naesseth, C., Linderman, S., Ranganath, R., and Blei, D.
Variational sequential monte carlo. In International Con-
ference on Artificial Intelligence and Statistics, 2018.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. A
hilbert space embedding for distributions. In Algorithmic
learning theory, pp. 13–31. Springer, 2007.

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. Ob-
stacles to high-dimensional particle filtering. Monthly
Weather Review, 136(12):4629–4640, 2008.

Wainwright, M. J. and Jordan, M. I. Graphical models,
exponential families, and variational inference. Techni-
cal Report 649, UC Berkeley, Department of Statistics,
September 2003.

Welch, G. and Bishop, G. An introduction to the kalman
filter. Technical Report TR-95-041, Department of Com-
puter Science, University of North Carolina at Chapel
Hill, 2006.

Welling, M. and Teh, Y.-W. Bayesian learning via stochastic
gradient langevin dynamics. In International Conference
on Machine Learning (ICML), pp. 681–688, 2011.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in Neural Information Processing Systems, pp.
3391–3401, 2017.

Zhang, L., E, W., and Wang, L. Monge-amp\ere flow for
generative modeling. arXiv preprint arXiv:1809.10188,
2018.


