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Abstract

We extend the fair machine learning literature by
considering the problem of proportional centroid
clustering in a metric context. For clustering n
points with k centers, we define fairness as propor-
tionality to mean that any n/k points are entitled
to form their own cluster if there is another cen-
ter that is closer in distance for all n/k points.
We seek clustering solutions to which there are
no such justified complaints from any subsets of
agents, without assuming any a priori notion of
protected subsets. We present and analyze al-
gorithms to efficiently compute, optimize, and
audit proportional solutions. We conclude with
an empirical examination of the tradeoff between
proportional solutions and the k-means objective.

1. Introduction

The data points in machine learning are often real human
beings. There is legitimate concern that traditional ma-
chine learning algorithms that are blind to this fact may
inadvertently exacerbate problems of bias and injustice in
society (Julia Angwin & Lauren Kirchner, 2016). Moti-
vated by concerns ranging from the granting of bail in the
legal system to the quality of recommender systems, re-
searchers have devoted considerable effort to developing
fair algorithms for the canonical supervised learning tasks of
classification and regression (Dwork et al., 2012; Kleinberg
et al., 2016; Hardt et al., 2016; Kleinberg et al., 2017; Zafar
et al., 2017a; Corbett-Davies et al., 2017; Pleiss et al., 2017;
Zafar et al., 2017b; Kearns et al., 2018; Goel et al., 2018;
Hashimoto et al., 2018).

We extend this work to a canonical problem in unsupervised
learning: centroid clustering. In centroid clustering, we
want to partition data into k clusters by choosing k “centers”
and then matching points to one of the centers. This is a clas-
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sic context for clustering work (Gonzalez, 1985; Shmoys
et al., 1997; Charikar et al., 2002; Arya et al., 2004), and is
perhaps best known as the setting for the celebrated k-means
heuristic (independently discovered many times, see (Jain,
2010) for a brief history). We provide a novel group based
notion of fairness as proportionality, inspired by recent re-
lated work on the fair allocation of public resources (Aziz
et al., 2017; Conitzer et al., 2017; Fain et al., 2018; Garg
et al., 2018). We suppose that data points represent the indi-
viduals to whom we wish to be fair, and that these agents
prefer to be clustered accurately (that is, they prefer their
cluster center to be representative of their features). A solu-
tion is fair if it respects the entitlements of groups of agents,
where we assume that a subset of agents is entitled to choose
a center for themselves if they constitute a sufficiently large
fraction of the population with respect to the total number
of clusters (e.g., 1/k of the population, if we are clustering
into k groups). The guarantee must hold for all subsets
of sufficient size, and therefore does not hinge on any par-
ticular a priori knowledge about which points should be
protected. This is in line with other recent observations that
information about which individuals should be protected
may not be available in practice (Hashimoto et al., 2018).

Consider a motivating example where proportional cluster-
ing might be preferable to more standard clusterings that try
to minimize the k-means or k-median objective. Suppose
there are 3 spherical clusters in the data: A, B, and C, and
we are computing a 3-clustering. A, B, and C each contain
1/3 of the total data. The radius of A is very large compared
to the radii of B and C, and A is very far away from B and
C compared to the radius of A. The radii of B and C are
very small, and B and C are close relative to the radius of
A. More simply, A is a large sphere very far away from two
small spheres B and C, which are close together.

Simply placing centers at the middle of A, B, and C is
proportional. However, the global k-means or k-median
minimizer places 1 center for B and C to share, and uses the
remaining 2 centers to cover A. Such a solution is arbitrarily
not-proportional as the radii of B and C become arbitrarily
small. Essentially, the global optimum forces B and C to
share a center in order to pay for the high variance in A.

To interpret this example, suppose we are clustering home
locations to decide where to build public parks. B and C are
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dense urban centers, and A is a suburb. Minimizing total
distance seems reasonable, but the global optimum builds 2
parks for A, and only 1 that B and C must share. Alterna-
tively, A, B, and C might represent clusters of patients in a
medical study. Both solutions distinguish A from B and C,
but the global optimum obscures the secondary difference
between B and C. In both instances, B or C could represent
a protected group (e.g., home location may be racially di-
vided, and race or sex could cause differences in medical
data), in which case proportionality provides a guarantee
even if we do not have access to this information.

1.1. Preliminaries and Definition of Proportionality

We have a set N of |[N'| = n individuals or data points,
and a set M of |[M| = m feasible cluster centers. We
will sometimes consider the important special case where
M = N (i.e., where one is only given a single set of points
as input), but most of our results are for the general case
where we make no assumption about M N N. For all
1,7 € N'U M, we have a distance d(i, j) satisfying the
triangle inequality. Our task is centroid clustering as treated
in the classic k-median, k-means, and k-center problems.
We wish to open a set X C M of |X| = k centers (as-
sume |[M] > k), and then match all points in N to their
closest center in X. For a particular solution X and agent
i € N, let D;(X) = mingex d(i,z). In general, a good
clustering solution X will have small values of D;(X), al-
though the aforementioned objectives differ slightly in how
they measure this. In particular, the k-median objective is
> ienr Di(X), the k-means objective is D, v/ (D; (X))?,
and the k-center objective is max;ear D;(X).

To define proportional clustering, we assume that individ-
uals prefer to be closer to their center in terms of distance
(i.e., ensuring that the center is more representative of the
point). Any subset of at least r[# | individuals is entitled
to choose 7 centers. We call a solution proportional if there
does not exist any such sufficiently large set of individuals
who, using the number of centers to which they are enti-
tled, could produce a clustering among themselves that is
to their mutual benefit in the sense of Pareto dominance.
More formally, a blocking coalition is a set S C N of at
least r[ 7] points and a set Y C M of at most  centers
such that D;(Y) < D;(X) forall i € S. It is easy to see
that because D;(X) = min,¢ x d(i, x), this is functionally
equivalent to Definition 1; a larger blocking coalition neces-
sarily implies a blocking coalition with a single center. We
provide a brief example parsing the definition, along with
its approximation, in the full version of this paper (Chen
etal., 2019).

Definition 1. Let X C M with |X| = k. S C N is a block-
ing coalition against X if |S| > [#] and Iy € M such
that Vi € S, d(i,y) < D;(X). X C N is proportional if
there is no blocking coalition against X.

Equivalently, X is proportional if V.S C N with [S| > [ %]
and for all y € M, there exists i € S with d(i,y) > D;(X).
It is important to note that this quantification is over all
subsets of sufficient size. Hence, in attempting to satisfy
the guarantee for a particular subset .S, one cannot simply
consider a single ¢ € .S and ignore all of the other points, as
S\{i} may itself be a subset to which the guarantee applies.

Proportionality has many advantages as a notion of fairness
in clustering, beyond the intuitive appeal of groups being
entitled to a proportional share of centers. We name a few
of these advantages explicitly.

e Proportionality implies (weak) Pareto optimality:
namely, for any proportional solution X, there does not
exist another solution X’ such that D;(X’) < D;(X)
foralli € NV.

e Proportionality is oblivious in the sense that it does
not depend on the definition of sensitive attributes or
protected sub-groups.

e Proportionality is robust to outliers in the data, since
only groups of points of sufficient size are entitled to
their own center.

e Proportionality is scale invariant in the sense that a
multiplicative scaling of all distances does not affect
the set of proportional solutions.

e Approximately proportional solutions can be efficiently
computed, and one can optimize a secondary objective
like k-median subject to proportionality as a constraint,
as we show in Section 2 and Section 3.

e Proportionality can be efficiently audited, in the sense
that one does not need to compute the entire pairwise
distance matrix in order to check for violations of pro-
portionality, as we show in Section 4.

In the worst case, proportionality is incompatible with all
three of the classic k-center, k-means, and k-median objec-
tives; i.e., there exist instances for which any proportional
solution has an arbitrarily bad approximation to all objec-
tives. We present such an instance in the the full version
of this paper (Chen et al., 2019), and show in Section 5
that this behavior also arises in real-world datasets. Fur-
thermore, as we show in Section 2 and observe empirically
in Section 5, proportional solutions may not always exist.
We therefore consider the natural approximate notion of
proportionality that relaxes the Pareto dominance condition
by a multiplicative factor.

Definition 2. X C M with |X| = k is p-approximate
proportional (hereafter p-proportional) if VS C N with
|S| > [%] and for all y € M, there exists i € S with
p-d(i,y) = Di(X).
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1.2. Results and Outline

In Section 2 we show that proportional solutions may
not always exist. In fact, one cannot get better than a 2-
proportional solution in the worst case. In contrast, we give
a greedy algorithm (Algorithm 1) and prove Theorem 1:
The algorithm yields a (1 + \@) -proportional solution in
the worst case.

In Section 3, we treat proportionality as a constraint and
seek to optimize the k-median objective subject to that con-
straint. We show how to write approximate proportionality
as m linear constraints. Incorporating this into the standard
linear programming relaxation of the k-median problem,
we show how to use the rounding from (Charikar et al.,
2002) to find an O(1)-proportional solution that is an O(1)-
approximation to the k-median objective of the optimal
proportional solution.

In Section 4, we show that proportionality is approximately
preserved if we take a random sample of the data points of
size O(k3), where the O hides low order terms. This imme-
diately implies that for constant k, we can check if a given
clustering is proportional as well as compute approximately
proportional solutions in near linear time, comparable to the
time taken to run the classic k-means heuristic.

In Section 5, we provide a local search heuristic that effi-
ciently searches for a proportional clustering. Our heuristic
is able to consistently find nearly proportional solutions in
practice. We test our heuristic and Algorithm 1 empirically
against the celebrated k-means heuristic in order to under-
stand the tradeoff between proportionality and the k-means
objective. We find that the tradeoff is highly data dependent:
Though these objectives are compatible on some datasets,
there exist others on which these objectives are in conflict.

1.3. Related Work

Unsupervised Learning. Metric clustering is a well stud-
ied problem. There are constant approximation polynomial
time algorithms for both the k-median (Jain & Vazirani,
1999; Charikar et al., 2002; Arya et al., 2004; Mettu & Plax-
ton, 2004; Byrka et al., 2017) and k-center objective (Gon-
zalez, 1985; Shmoys et al., 1997). Proportionality is a con-
straint on the centers as opposed to the data points; this
makes it difficult to adapt standard algorithmic approaches
for k-medians and k-means such as local search (Arya et al.,
2004), primal-dual (Jain & Vazirani, 1999), and greedy dual
fitting (Jain et al., 2002). For instance, our greedy algorithm
in Section 2 grows balls around potential centers, which is
very different from how balls are grown in the primal-dual
schema (Jain & Vazirani, 1999; Mettu & Plaxton, 2004).
Somewhat surprisingly, in Section 2 we show that for the
problem of minimizing the k-median objective subject to
proportionality as a constraint, we can extend the linear pro-

gram rounding technique of (Charikar et al., 2002) to get a
constant approximation algorithm. However, the additional
constraints we add in the linear program formulation render
the primal-dual and other methods inapplicable.

In (Chierichetti et al., 2017) and subsequent generaliza-
tions (Rosner & Schmidt, 2018; Bera et al., 2019), the au-
thors consider fair clustering in terms of balance: There are
red and blue points, and a balanced solution has roughly
the same ratio of blue to red points in every cluster as in
the overall population. The authors are motivated to extract
features that cannot discriminate between status in different
groups. This ensures that subsequent regression or classifi-
cation on these features will be fair between these groups.
In contrast, we assume that our data points prefer to be
accurately clustered, and that an unfair solution provides
accurate clusters for some groups, while giving other large
groups low quality clusters. Finally, we note that there is a
line of work in fair unsupervised learning concerned with
constructing word embeddings that avoid bias (Bolukbasi
et al., 2016; Caliskan et al., 2017), but these problems seem
orthogonal to our concerns in clustering.

Supervised Learning. The standard model in fair super-
vised learning (Dwork et al., 2012; Kleinberg et al., 2016;
Kleinberg et al., 2017; Zafar et al., 2017b;a) has a set of
protected agents given as input to an algorithm which must
classify agents into a positive and negative group. Most of
these notions of fairness do not apply in any natural way
to unsupervised learning problems. Our work further dif-
fers from the supervised learning literature in that we do
not assume information about which agents are to be pro-
tected. Instead, we provide a fairness guarantee to arbitrary
groups of agents, including protected groups even if we
do not know their identity, similar to the ideas considered
in (Kearns et al., 2018) and (Hashimoto et al., 2018).

Fair Resource Allocation. Our notion of proportionality
is derived from the notion of core in economics (Scarf,
1967; Foley, 1970). The core has been adapted as a natural
generalization to groups of the idea of fairness as propor-
tionality (Fain et al., 2016; 2018), similar to other group
fairness concepts for public goods that explicitly consider
shared resources (Conitzer et al., 2017; Aziz et al., 2017).
In clustering, the public goods are the centers themselves,
and the “agents” are the data points, which share the centers.
The fair clustering problem differs in that it is framed in
terms of costs instead of positive utility, and agents only
care about their most preferred good. That is, an agent’s cost
for a clustering solution is just the distance to the closest
center, as opposed to much of the previous resource alloca-
tion literature where agents have additive utility across the
allocated goods. One can interpret our work as results for
computing the core for a resource allocation problem where
agents have a min-cost function with respect to allocations.
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2. Existence and Computation of
Proportional Solutions

We begin with a negative result: in the worst case, there
may not be an exact proportional solution. Claim 1 is stated
for arbitrary A/ and M, but the impossibility remains even
when N' = M. We present both proofs in the full version
of this paper (Chen et al., 2019). The idea is to create two
groups of points very far away from one another with & = 3,
ensuring that one group will be served by only one center.

Claim 1. For all p < 2, a p-proportional solution is not
guaranteed to exist.

2.1. Computing a (1 + \/5) -Approximate Proportional
Clustering

Claim 1 establishes that we should focus our attention on
designing an efficient approximation algorithm. We give
a simple and efficient algorithm that achieves a (1 + \/5)—
proportional solution, very close to the existential lower
bound of 2. For notational ease, let B(z,0) = {i € N :
d(i,z) < 6}. That is, B(z,d) is the ball (defined on N)
of distance § about center z. For simplicity of exposition,
we present Algorithm 1 as a continuous algorithm where a
0 parameter is smoothly increasing. The algorithm can be
easily discretized using priority queues.

Algorithm 1 Greedy Capture

L6+ 0; X+ 0; N+ N

2: while N # 0 do

3:  Smoothly increase §

4:  while 3z € X s.t. |B(z,0) N N| > 1do

5 N + N\B(z,9)

6:  while 3z € (M\X) s.t. [B(z,0) N N| > [£] do
7

8

9:

X+ XU{z}
N « N\B(z,0)
return X

Algorithm 1 runs in O(mn) time." In essence, the algorithm
grows balls continuously around the centers, and when the
ball around a center has “captured” [ %] points, we greedily
open that center and disregard all of the captured points.
Open centers continue to greedily capture points as their
balls continue to expand. Though (Jain & Vazirani, 1999;
Mettu & Plaxton, 2004) similarly expand balls about points
to compute approximately optimal solutions to the k-median
problem, there is a crucial difference: They grow balls
around data points rather than centers.

Theorem 1. Algorithm 1 yields a (1 + \/2)-proportional
clustering, and there exists an instance for which this bound
is tight.

'To state running times simply, we use the convention that f(n)
is O(g(n)) if f(n) is O(g(n)) up to poly-logarithmic factors.

Proof. Let X be the solution computed by Algorithm 1.
First note that X uses at most k centers, since it only opens
a center when [ | unmatched points are absorbed by the
ball around that center, and this can happen at most k times.
Now, suppose for a contradiction that X is not a (1 4 1/2)-
proportional clustering. Then there exists S C A with
|S| > [%]and y € M such that

VieS, (14+v2)-d(i,y) < Dy(X). (1)

Let r, be the distance of the farthest agent from y in .S,
that is, r, := max;egs d(4,y), and call this agent ¢*. There
are two cases. In the first case, B(x,r,) NS = ( for all
z € X. This immediately yields a contradiction, because it
implies that Algorithm 1 would have opened y. In particular,
note that S C B(y,r,), soif SN B(x,r,) =0 forall z €
X, then B(y,r,) would have had at least | 7| unmatched
points.
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Figure 1. Diagram for Proof of Theorem 1

In the second case, dz € X and 37 € N such that
i € B(x,ry) N S. This case is drawn below in Figure 1. By
the triangle inequality, d(z,y) < d(i,x) + d(i,y). There-
fore, d(i*,z) < ry, +d(i,z) + d(i,y). Also, d(i,z) < ry,
since ¢ € B(z,r,). Consider the minimum multiplicative
improvement of ¢ and ¢*:

min (d(i,x) d(i ,x))
d(i,y)" d(i*,y)
min d(i,z) ry+d(i,z)+d(i,y)
= (d(i,y)’ Ty >
. Ty d(Z,y)
< min (gt 2+ 2)
< I?géc(min (z, 24+1/2) =1+V2

which violates equation 1. It is not hard to show that there
exists an instance for which Algorithm 1 yields exactly this
bound, and we present this example in the full version of
this paper (Chen et al., 2019). O
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2.2. Local Capture Heuristic

We observe that while our Greedy Capture algorithm (Al-
gorithm 1) always produces an approximately proportional
solution, it may not produce an exactly proportional solu-
tion in practice, even on instances where such solutions
exist (see Figure 3a and Figure 3b). We therefore introduce
a Local Capture heuristic for searching for more propor-
tional clusterings. Algorithm 2 takes a target value of p as
a parameter, and proceeds by iteratively finding a center
that violates p-fairness and swapping it for the center in the
current solution that is least demanded.

Algorithm 2 Local Capture Heuristic

input p
1: Initialize X as a random subset of k centers from M.
2: repeat
3: fory e Mdo
4: Sy%{ZEdi1y<DZ(X)}
5: if |S,| > [%] then
6: x* < argmin,c y[{i € N : dip = D;(X)}]
7. X « (X\{z"}) U{y}
8: until no changes occur
9: return X

Every iteration of Algorithm 2 (the entire inner for loop)
runs in O(mn2) time. There is no guarantee of conver-
gence (for a given input p, there may not even exist a p-
proportional solution), but if Algorithm 2 terminates, then it
returns a p-proportional solution. In our experiments (see
Section 5), we search for the minimum p for which the algo-
rithm terminates in a small number of iterations via binary
search over possible input of p. In (Arya et al., 2004), the
authors also evaluate a local search swapping procedure for
the k-median problem, but their swap condition is based on
the relative k-median objective of two solutions, whereas
our swap condition is based on violations to proportionality.

3. Proportionality as a Constraint

One concern with the previous algorithms is that they may
find a proportional clustering with poor global objective
(e.g., k-median), even when exact proportional clusterings
with good global objectives exist. For example, suppose
k = 2 and there are two easily defined clusters, containing
40% and 60% of the data respectively. It is possible that Al-
gorithm 1 will only open centers inside of the larger cluster.
This is proportional, but undesirable from an optimization
perspective (note that the “correct” clustering of such an ex-
ample is still proportional). Here, we show how to address
this concern by optimizing the k-median objective subject
to proportionality as a constraint. Later, in Section 5, we em-
pirically study the tradeoff between the k-means objective
and proportionality on real data.

Minimize » Y d(i, j)z; )
iEN jJEM

Subject to > =1 VieN (3)
JEM

Zijfyj VjEM,ViGN 4)

>y <k ©)
JEM

Z yy > 1 VieM (6)
J'€B(jYR;)

Zij,Yj; € [0,1} VjEM,ViEN @)

Figure 2. Proportional k-median Linear Program

We consider the k-median and k-means objectives to be
reasonable measures of the global quality of a solution. We
see minimizing the k-center objective more as a competing
notion of fairness, and so we focus on optimizing the k-
median objective subject to proportionality.”> Minimizing
the k-median objective without proportionality is a well
studied problem in approximation algorithms, and several
constant approximations are known (Charikar et al., 2002;
Arya et al., 2004; Mettu & Plaxton, 2004). Most of this
work is in the model where A/ C M, and we follow suit in
this section. We show the following.

Theorem 2. Suppose there is a p-proportional clustering
with k-median objective c. In polynomial time in m and
n, we can compute a O(p)-proportional clustering with
k-median objective at most 8c.

In particular, we can compute a constant approximate pro-
portional clustering with k-median objective at most eight
times the minimum k-median objective proportional clus-
tering. Note that the exact running time will depend on the
algorithm used to solve the linear program. In the remainder
of this section, we will sketch the proof of Theorem 2. We
begin with the standard linear programming relaxation of the
k-median minimization problem, and then add a constraint
to encode proportionality. The final linear program is shown
in Figure 2. Recall that B(z,6) = {i € N : d(i,z) < §}.

In the LP, z;; is an indicator variable equal to 1 if ¢ € N is
matched to j € M. y; is an indicator variable equal to 1 if
j € X, i.e., if we want to use center j € M in our clustering.
Objective 2 is the k-median objective. Constraint 3 requires
that every point be matched, and constraint 4 only allows a
point to be matched to an open center. Constraint 5 allows

2A constant approximation algorithm for minimizing the k-
median objective immediately implies a constant approximation
algorithm for minimizing the k-means objective by running the
algorithm on the squared distances (Mettu & Plaxton, 2004).



Proportionally Fair Clustering

at most k centers to be opened, and constraint 7 relaxes the
indicator variables to real values between 0 and 1.

Constraint 6 is the new constraint that we introduce. Our
crucial lemma argues that constraint 6 approximately en-
codes proportionality. Let R; be the minimum value such
that [B(j, R;)| > [%]. In other words, R; is the distance
of the [ %] farthest point in A/ from j.

Lemma 1. Let X be a clustering, and lety > 1. If Vj € M
there exists some x € X such that d(j,x) < vRj, then X is
(1 + v)-proportional. If X is y-proportional, then Vj € M
there exists some x € X such that d(j,z) < (1 +v)R;.

Proof. Suppose that Vj € M there exists some x € X such
that d(j, z) < vR;. Suppose for a contradiction that X is
not (1 + ~y)-proportional. Then there exists S C A with
|S| > [#]and j € MsuchthatVi € S, (147)-d(i,7) <
D;(X). By assumption, 3z € X such that d(j, z) < yR;,
so by the triangle inequality D;(X) < d(4,7) + d(j,x) <
d(i,j) + vR;. Therefore, Vi € S, v-d(i,5) < D;i(X) —
d(i,j) < vR;. However, by definition of R;, since |S| =
[ %], there must exist some 7 € S such that d(i, j) > R;.

Suppose that X is y-proportional. Let j € M. Consider
the set S of the closest [} ] points in N to j. By defi-
nition of proportionality 37 € S and x € X such that
~vd(i,j) > d(i,x). Therefore, by the triangle inequality,
d(j,z) < d(i,5) + d(i,2) < (1 + v)d(i,7). By defini-

tion of S, d(i,j) < R;, so there exists x € X such that
d(j,z) < (1+7v)R;. H

Now, suppose there is a p-proportional clustering X with
k-median objective c. Then we write the linear program
shown in Figure 2 with v = p + 1 in constraint 6. Lemma 1
guarantees that X is feasible for the resulting linear program,
so the fractional solution has k-median objective at most c.
We then round the resulting fractional solution. In (Charikar
et al., 2002), the authors give a rounding algorithm for the
the linear program in Figure 2 without Constraint 6. We
show that a slight modification to this rounding algorithm
also preserves Constraint 6 to a constant approximation.

Lemma 2. (Proved in Full Version (Chen et al., 2019)) Let
{y;},{#i;} be afractional solution to the linear program in
Figure 2. Then there is an integer solution {y;},{zi;} that
is an 8-approximation to the objective, and that opens k cen-
ters. Furthermore, for all j € M, Zj’eB(j,szj) Yy > 1.

Given Lemma 2, applying Lemma 1 again implies that the
result of the rounding is (27(1 + p) + 1)-proportional, since
we set ¥ = 1 + p. Since the k-median objective of the
fractional solution is at most ¢, the fact that the k-median
objective of the rounded solution is at most 8c follows di-
rectly from the proof from (Charikar et al., 2002). We note
that the constant factor of 27 can be improved to 13 in the
special case where ' = M. Interestingly, the ostensibly

similar primal-dual approach of (Jain & Vazirani, 1999)
does not appear amenable to the added constraint of pro-
portionality (in particular, the reduction to facility location
from (Jain & Vazirani, 1999) is no longer straightforward).

4. Sampling for Linear-Time
Implementations and Auditing

In this section, we study proportionality under uniform ran-
dom sampling (i.e., draw |N| individuals i.i.d. from the
uniform distribution on A/). In particular, we show that pro-
portionality is well preserved under random sampling. This
allows us to design efficient implementations of Algorithm 1
and Algorithm 2, and to introduce an efficient algorithm for
auditing proportionality. We first present the general prop-
erty and then demonstrate its various applications.

4.1. Proportionality Under Random Sampling

For any X C M of size k and center y € M, define
RN, X,y) ={i € N : D{(X) > p-d(i,y)}. Note that
solution X is not p-proportional with respect to N if and
only if there is some y € M such that M#y)' > 1 A
random sample approximately preserves this fraction for all
solutions X and deviating centers y. The following theorem
is a consequence of Hoeffding’s inequality, and we present
a brief proof in the full version of this paper (Chen et al.,
2019). The important idea in the proof is that we take a
union bound over all possible solutions and deviations, and
there are only k(’g) such combinations.

Theorem 3. Given N, M and parameter p > 1, fix pa-
rameters €,8 € [0,1]. Let N C N of size (’:—; log %) be
chosen uniformly at random. Then, with probability at least
1 — 9, the following holds for all (X, y):
RN, X, y)| IR(N,X,y)|’

<
|V V]

hd
~k

In order to apply the above theorem, we say that a solution
X is p-proportional to (1 + €)-deviations if for all y € M
and for all S C N\ where |S]| > (1 + €)%, there exists some
i € S such that p - d(i,y) > D;(X). Note that if X is
p-proportional to 1-deviations, it is simply p-proportional.
We immediately have the following:

Corollary 1. Let N C N be a uniform random sample of
size [N = Q (}:—j In %) Suppose X C M with | X| =k is
p-proportional with respect to N. Then with probability at
least 1 — 6, X is p-proportional to (1 + €)-deviations with
respect to .

4.2. Linear Time Implementation

We now consider how to take advantage of Theorem 3 to
optimize Algorithm 1 and Algorithm 2. First, note that
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Algorithm 1 takes O(mn) time, which is quadratic in input
size. A corollary of Theorem 3 is that we can approximately
implement Algorithm 1 in nearly linear time, comparable to
the running time of the standard k-means heuristic.
Corollary 2. Algorithm 1, when run on M and a random
sample N C N of size [N
that is (1 + \/2)-proportional to (1 + €)-deviations with
high probability in O (’:—jm) time.

~ 3
=0 (’z—z) provides a solution

We also get a substantial speedup for our Local Capture
algorithm. Recall that Local Capture (Algorithm 2) is an it-
erative algorithm that takes a target value of p as a parameter,
and if it converges, returns a p-proportional clustering. With-
out sampling, each iteration of Algorithm 2 takes O(mn?)
time. Another corollary of Theorem 3 is that it is sufficient
to run the Local Capture on a random sample of k3 /2 out
of the n points in AV in order to search for a clustering that
is p-proportional with respect to (1 + ¢)-deviations.

4.3. Efficient Auditing

Alternatively, one might still want to run a non-proportional
clustering algorithm, and ask whether the solution produced
happens to be proportional. We call this the Audit Problem.
Given V', M, and X C N with | X| < k, find the minimum
value of p such that X is p-proportional. It is not too hard to
see that one can solve the Audit Problem exactly in O((k +
m)n) time by computing for each y € M, the quantity p,,
the [ 7] largest value of I;Ez'(,)g/()) . We subsequently find the y
that maximizes p,. Again, this takes quadratic time, which
can be worse than the time taken to find the clustering itself.

Consider a slightly relaxed (e, §)-Audit Problem where we
are asked to find the minimum value of p such that X is
p-proportional to (1 + ¢€)-deviations with probability at least
1 — 6. This problem can be efficiently solved by using a
random sample N C A of points to conduct the audit.

Corollary 3. The (¢, 0)-Audit Problem can be solved in

0 ((k+m) ’ﬁ)

time.

5. Implementations and Empirical Results

In this section, we study proportionality on real data taken
from the UCI Machine Learning Repository (Dheeru &
Karra Taniskidou, 2017). We consider three qualitatively
different data sets used for clustering: Iris, Diabetes, and
KDD. For each data set, we only have a single set of points
given as input, so we take A" = M to be the set of all points
in the data set. We use the standard Euclidean L2 distance.

Iris. This data set contains information about the petal
dimensions of three different species of iris flowers. There
are 50 samples of each species.

Diabetes. The Pima Indians Diabetes data set contains
information about 768 diabetes patients, recording features
like glucose, blood pressure, age and skin thickness.

KDD. The KDD cup 1999 data set contains information
about sequences of TCP packets. Each packet is classified
as normal or one of twenty-two types of intrusions. Of
these 23 classes, normal, “neptune”, and “smurf” account
for 98.3% of the data. The data set contains 18 million
samples; we work with a subsample of 100,000 points.>

5.1. Proportionality and k-means Objective Tradeoff

We compare Greedy Capture (Algorithm 1) and Local Cap-
ture (Algorithm 2) with the k-means++ algorithm (Lloyd’s
algorithm for k-means minimization with the k-means++
initialization (Arthur & Vassilvitskii, 2007)) for a range
of values of k. For the Iris data set, Local Capture and
k-means++ always find an exact proportional solution (Fig-
ure 3a), and have comparable k-means objectives (Fig-
ure 4a). The Iris data set is very simple with three natural
clusters, and validates the intuition that proportionality and
the k-means objective are not always opposed.

The Diabetes data set is larger and more complex. As shown
in Figure 3b, k-means++ no longer always finds an exact
proportional solution. Local Capture always finds a better
than 1.01-proportional solution. As shown in Figure 4b, the
k-means objectives of the solutions are separated, although
generally on the same order of magnitude.

For the KDD data set, proportionality and the k-means ob-
ject appear to be in conflict. Greedy Capture’s performance
is comparable to Local Capture on KDD, so we omit it for
clarity. In Figures 3c and 4c, note that the gap between p and
the k-means objective for the k-means++ and Local Capture
algorithms is between three and four orders of magnitude.
We suspect this is due to the presence of significant outliers
in the KDD data set. This is in keeping with the theoretical
impossibility of simultaneously approximating the optima
on both objectives, and demonstrates that this tension arises
in practice as well as theory.

5.2. Proportionality and Low k-means Objective

Note that if one is allowed to use 2k centers when k is given
as input, one can trivially achieve the proportionality of
Local Capture and the k-means objective of the k-means++

3We run k-means++ on this entire 100,000 point sample. For
efficiency, we run our Local Capture algorithm by further sampling
5,000 points uniformly at random to treat as A" and sampling 400
points via the k-means++ initialization to treat as M. For the sake
of a fair comparison, we generate a different sample of 400 centers
using the k-means++ initialization that we use to determine the
value of p we report for both Local Capture and the k-means++
algorithm. The k-means objective is measured on the original
100,000 points for both algorithms.
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Figure 4. k-means objective

algorithm by taking the union of the two solutions. Think-
ing in this way leads to a different way of quantifying the
tradeoff between proportionality and the k-means objective:
Given an approximately proportional solution, how many
extra centers are necessary to get comparable k£-means ob-
jective as the k-means++ algorithm? For a given data set,
the answer is a value between 0 and &, where larger numbers
indicate more incompatibility, and lower numbers indicate
less incompatibility.

To answer this question, we compute the union of cen-
ters found by Local Capture and the k-means++ algorithm.
We then greedily remove centers as long as doing so does
not increase the minimum p such that the solution is p-
proportional (defined on k, not 2k) by more than a mul-
tiplicative factor of «, and does not increase the k-means
objective by more than a multiplicative factor 3.

On the KDD dataset, we set « = 1.2 and 3 = 1.5, so the
proportionality of the result is within 1.2 of Local Capture
in Figure 3c, and the k-means objective is within 1.5 of
k-means++ in Figure 4c. We observe that this heuristic uses
at most 3 extra centers for any £ < 10. So while there is real
tension between proportionality and the k-means objective,
this tension is still not maximal. In the worst case, one might
need to add k centers to a proportional solution to compete
with the k-means objective of the k-means++ algorithm, but
in practice we find that we need at most 3 for £ < 10.

6. Conclusion and Open Directions

We have introduced proportionality as a fair solution con-
cept for centroid clustering. Although exact proportional
solutions may not exist, we gave efficient algorithms for
computing approximate proportional solutions, and con-
sidered constrained optimization and sampling for further
applications. Finally, we studied proportionality on real
data and observed a data dependent tradeoff between pro-
portionality and the k-means objective. While this tradeoff
is in some sense a negative result, it also demonstrates that
proportionality as a fairness guarantee matters in the sense
that it meaningfully constrains the space of solutions.

We have shown that p-proportional solutions need not exist
for p < 2, and always exist for p > 1 + V2. Closing this
approximability gap is one outstanding question. Another
is whether there is a more efficient and easily interpretable
algorithm for optimizing total cost subject to proportional-
ity, as our approach in Section 3 requires solving a linear
program on the entire data set. We would ideally like a
more efficient and easily interpretable primal-dual or lo-
cal search type algorithm. More generally, what other fair
solution concepts for clustering should be considered along-
side proportionality, and can we characterize their relative
advantages and disadvantages? Finally, can the idea of
proportionality as a group fairness concept be adapted for
supervised learning tasks like classification and regression?
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