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Abstract

This paper provides a simple procedure to fit gen-
erative networks to target distributions, with the
goal of a small Wasserstein distance (or other op-
timal transport cost). The approach is based on
two principles: (a) if the source randomness of the
network is a continuous distribution (the “semi-
discrete” setting), then the Wasserstein distance
is realized by a deterministic optimal transport
mapping; (b) given an optimal transport mapping
between a generator network and a target distribu-
tion, the Wasserstein distance may be decreased
via a regression between the generated data and
the mapped target points. The procedure here
therefore alternates these two steps, forming an
optimal transport and regressing against it, gradu-
ally adjusting the generator network towards the
target distribution. Mathematically, this approach
is shown to minimize the Wasserstein distance to
both the empirical target distribution, and also its
underlying population counterpart. Empirically,
good performance is demonstrated on the train-
ing and testing sets of the MNIST and Thin-8
data. The paper closes with a discussion of the un-
suitability of the Wasserstein distance for certain
tasks, as has been identified in prior work (Arora
et al., 2017; Huang et al., 2017).

1. Introduction

A generative network g models a distribution by first sam-
pling x ~ p from some simple distribution y (e.g., a multi-
variate Gaussian), and thereafter outputting g(z); this sam-
pling procedure defines a pushforward distribution g#p.
A common training procedure to fit g#u to a target dis-
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Figure 1. The goal in this example is to fit the initial distribution
(the blue central line) to the target distribution (the red outer ring).
The algorithm alternates OTS and FIT steps, first (OTS) associ-
ating input distribution samples with target distribution samples,
and secondly (FIT) shifting input samples towards their targets,
thereafter repeating the process. Thanks to being gradual, and not
merely sticking to the first or second OTS, the process has a hope
of constructing a simple generator which generalizes well.

tribution ¥ is to minimize a divergence D(g#u, ) over a
collection of parameters defining g.

The original algorithms for this framework, named genera-
tive adversarial networks, alternatively optimized both the
generator network g, as well as a a second discriminator
of adversarial network: first the discriminator was fixed
and the generator was optimized to fool it, and second the
generator was fixed and the discriminator was optimized to
distinguish it from 2. This procedure was originally con-
structed to minimize a Jensen-Shannon Divergence via a
game-theoretic derivation (Goodfellow et al., 2014). Sub-
sequent work derived the adversarial relationship in other
ways, for instance the Wasserstein GAN used duality prop-
erties of the Wasserstein distance (Arjovsky et al., 2017).

This paper proposes a simple non-adversarial but still alter-
nating procedure to fit generative networks to target distribu-
tions. The procedure explicitly optimizes the Wasserstein-p
distance between the generator g# 1 and the target distribu-
tion . As depicted in Figure 1, it alternates two steps: given
a current generator g;, an Optimal Transport Solver (OTS)
associates (or “labels”) g;’s probability mass with that of
the target distribution ©, and then FIT uses this labeling to
find a new generator g;1; via a standard regression.

The effectiveness of this procedure hinges upon two key
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properties: it is semi-discrete, meaning the generators al-
ways give rise to continuous distributions, and it is gradual,
meaning the generator is slowly shifted towards the target
distribution. The key consequence of being semi-discrete is
that the underlying optimal transport can be realized with a
deterministic mapping. Solvers exist for this problem and
construct a transport between the continuous distribution
g# 1 and the target ; by contrast, methods forming only
batch-to-batch transports using samples from g#p are bi-
ased and do not exactly minimize the Wasserstein distance
(Bellemare et al., 2017; Genevay et al., 2018; Salimans et al.,
2018; Liu et al., 2018).

The procedure also aims to be gradual, as in Figure 1, slowly
deforming the source distribution into the target distribution.
While it is not explicitly shown that this gradual property
guarantees a simple generator, promising empirical results
measuring Wasserstein distance fo a test set suggest that the
learned generators generalize well.

Section 2 and Section 3 detail the method along with a vari-
ety of theoretical guarantees. Foremost amongst these are
showing that the Wasserstein distance is indeed minimized,
and secondly that it is minimized with respect to not just the
dataset distribution ©, but moreover the underlying v from
which © was sampled. This latter property can be proved
via the triangle inequality for Wasserstein distances, how-
ever such an approach introduces the Wasserstein distance
between v and ©, namely W (v, ), which is exponential in
dimension even in simple cases (Sriperumbudur et al., 2012;
Arora et al., 2017). Instead, we show that when a parametric
model captures the distributions well, then bounds which
are polynomial in dimension are possible.

Empirical results are presented in Section 4. We find that
our method generates both quantitatively and qualitatively
better digits than the compared baselines on MNIST, and the
performance is consistent on both training and test datasets.
We also experiment with the Thin-8 dataset (Huang et al.,
2017), which is considered challenging for methods without
a parametric loss. We discuss limitations of our method and
conclude with some future directions.

2. Algorithm

We present our alternating procedure in this section. We
first describe the OTS and FIT steps in detail, and then give
the overall algorithm.

2.1. Optimal Transport Solver (OTS)

The Wasserstein-p distance W), between two probability
measures y’, v’ in a metric space (X, d) is defined as

1/p
/ d(z,y)? dv(x, y)) ,
X

Wp(/,/,y/) = (761}8}; V')

where I'(1/, V') is the collection of probability measures on
X x X with marginal distributions p’ and /. W,(i/,v') is
equal to the 1/p-th power of the optimal transport cost

Te(u',v):= inf
C('UJ ) yer(p,v')

/ c(z,y) dy(z,y)
X

with cost function ¢(z, y) 1= d(z, y)P.

By Kantorovich duality (Villani, 2003, Chapter 1),

T ) = s [ p@di(a)+ [ b))
eWEDP. JX X

2.1)
where @, is the collection of (i, 1) where ¢ € Lq(du’)
and ¢ € Lq(dv') (which means ¢ and v are absolutely
Lebesgue integrable functions with respect to p’, v"), and

o(z) +Y(y) < c(z,y) for almost all , y).

In our generative modeling case, ' = g#u is a pushfor-
ward of the simple distribution p by g, and v/ = 7 is an
empirical measure, meaning the uniform distribution on
a training set {y1, ..., yn }. When g# is continuous, the
optimal transport problem here becomes semi-discrete, and
the maximizing choice of ¢ can be solved analytically, trans-
forming the problem to optimization over a vector in RY
(Genevay et al., 2016; Peyré & Cuturi, 2018):

1 N
Te(g#p,0) = sup /Xsa(x)dg#u(x)Jrﬁzw(yi)

ppede i—1

= sup
(S <I>’C é JHERN

. 1 M.
= sup / m_in(C(:v,yi)*wi)dg#u(w)JrNZ%

PeRN J X ° i=1
2.2)

where ¢); := 1(y;), and <I>’c g is the collection of functions

¢ € L1(d(g#p)) such that () +1b; < c(x, y;) for almost
all z and 7 = 1, ..., N. The third equality comes from the
maximizing choice of ¢: p(z) = min;(c(z,y;) — ;) =
Y¢(x), the c-transform of 1.

Our OTS solver, presented in Algorithm 1, uses SGD to
maximize eq. (2.2), or rather to minimize its negation

. 1 M
— i i) — 1d - — i 2.3
. mintetass) —doagut) - 5 3 @

OTS is similar to Algorithm 2 of (Genevay et al., 2016),
but without averaging. Note as follows that Algorithm 1 is
convex in 1&, and thus a convergence theory of OTS could
be developed, although this direction is not pursued here.

Proposition 2.4. Equation (2.3) is a convex function of 1&
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Algorithm 1 Optimal Transport Solver (OTS)
Input: continuous generated distribution g#y, training
dataset (y1, ..., yn) corresponding to U, cost function c,
batch size B, learning rate 7).
Output: ¢ = (¢1,...,¥N)
Initialize ¢ := 0 and ¢)(©) € RY.
repeat
Generate samples x = (z1, ..., xg) from g#pu.
Define loss I(x) == & Zle min; (c(z;,yi) — i) +
% sz\il V.
Update t(t+1) 1= ¢p(®) 4 ¢ Vl(x).
Update t :=1¢ + 1.
until Stopping criterion is satisfied.
return ¢(®).

Proof. 1t suffices to note that min; (c(g(x),y;) — ;) is a
minimum of concave functions and thus concave; eq. (2.3)
is therefore concave since it is a convex combination of
concave functions with an additional linear term. O]

In the semi-discrete setting where g#p is continuous
and 7 is discrete, it can be proved that the Kantorovich
optimal transference plan computed via eq. (2.1) is in-
deed a Monge optimal transference plan characterized by
arg min, (x, ;) — 1;, which is a deterministic mapping pro-
viding the regression target for our FIT step.

Proposition 2.5. Assume X = R%, g4 is continuous, and
the cost function c(x,y) takes the form of c(x — y) and is a
strictly convex, superlinear function on R%. Given the opti-
mal 1/AJf0r eq. (2.3), then T (z) := Yorg min, c(z,00)— i’ which
is a Monge transference plan, is the unique Kantorovich op-
timal transference plan from g#pu to v.

(The proof is technical, and appears in the Appendix.)

We give some remarks to Proposition 2.5. First, Wasserstein-
p distances on £, metric with p > 1 satisfy strict convexity
and superlinearity (Gangbo & McCann, 1996), while p = 1
does not. On the other hand, in practice we have found that
for p = 1, Algorithm 1 still converges to near-optimal trans-
ference plans, and this particular choice of metric generates
crisper images than others.

Second, the continuity of g#u, which is required for the
uniqueness of OT plans may be violated in practice, but can
be theoretically circumvented by adding an arbitrarily small
perturbation to g’s output. On the other hand, since the opti-
mal plan lies in the set ¢(z) + ¢ (y) = ¢(z, y) almost surely
(Villani, 2009, Theorem 5.10), it has to have the “argmin
form” in Proposition 2.5. Thus, the only condition in which
T(x) = Yorg min, ¢(x,ys)—i; 0€s not characterize a unique
Monge OT plan, is the existence of ties when computing
arg min, which does not happen in practice. We give some
additional discussion about this issue in the Appendix.

A drawback of Algorithm 1 is that computing minimum
on the whole dataset has O(N') complexity, which is costly
for extremely large datasets. We will revisit this issue in
Section 4.

2.2. Fitting the Optimal Transference Plan (FIT)

Given an initial generator g, and an optimal transference
plan T between g#u and ¥ thanks to OTS, we update g to
obtain a new generator g’ by simply sampling z ~ p and
regressing the new generated sample ¢'(z) towards the old
OT plan T'(g(z)), as detailed in Algorithm 2.

Under a few assumptions detailed in Section 3.1, Al-
gorithm 2 is guaranteed to return a generator g’ with
strictly lesser optimal transport cost T.(g'#u,0) <
Bongpuc(, T(x)) < Bongpuc(z, T(x)) = Te(g#p, D),
where T" denotes an exact optimal plan between g#p and
U; Section 3.1 moreover considers the case of a merely
approximately optimal T, as returned by OTS.

Algorithm 2 Fitting Optimal Transport Plan (FIT)

Input: sampling distribution pu, old generator g with

parameter 6, transference plan 7', cost function ¢, batch

size B, learning rate 7.

Output: new generator g’ with parameter ¢’.

Initialize ¢ := 0 and ¢’ with parameter 8'(°) = 6.

repeat
Generate random noise z = (21, ..., zg) from p.
Define loss I(z) := & Zle c(g'(2),T(9(2))).
Update 0+ := ¢'() — .V l(z).
Update t :=1¢ + 1.

until Stopping criterion is satisfied.

return ¢’ with parameter 6'(*).

2.3. The Overall Algorithm

The overall algorithm, presented in Algorithm 3, alternates
between OTS and FIT: during iteration ¢, OTS solves for the
optimal transport map 7" between old generated distribution
gi# 1 and ©, then FIT regresses g;1#p towards T#g; # 11
to obtain lower Wasserstein distance.

3. Theoretical Analysis

‘We now analyze the optimization and generalization prop-
erties of our Algorithm 3: we will show that the method
indeed minimizes the empirical transport cost, meaning
Te(gi#u, V) — 0, and also generalizes to the transport cost
over the underlying distribution, meaning 7..(g;#u, v) —
0.
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Algorithm 3 Overall Algorithm
Input: sampling distribution g, training dataset
(y1, ..., yn) corresponding to 7, initialized generator gg
with parameter 6, cost function c, batch size B, learning
rate 7).
Output: final generator g with parameter 6.
Initialize i := 0 and g, with parameter #(©) = ¢,.
repeat
Compute ;= OTS(g;#u, 7, ¢, B,n).
Get T; as Tj(z) := argmin,, (v, y;) — V.
Compute g;+1 := FIT(y, g;, T3, ¢, B, n) with parame-
ter U1,
Update ¢ := i + 1.
until Stopping criterion is satisfied.
return g with parameter 6(*).

3.1. Optimization Guarantee: 7.(g;#u, ) — 0.

Our analysis works for costs 7. whose §-th powers satisfy
the triangle inequality, such as 7. := W} over any metric
space and 3 = 1/p, if p > 1 (Villani, 2003, Theorem 7.3).

Our method is parameterized by a scalar « € (0, 1/2) whose
role is to determine the relative precisions of OTS and FIT,
controlling the gradual property of our method. Defining

Cu(f,g) == [c(f(z),9(x))du(z), we assume that for
each round ¢, there exist error terms €y, €2, €¢ Such that:

(1) Round 7 of OTS finds transport 7T; satisfying
T (gitn. 0) < CL(T; 0 g, i) < T (gihi, 1) (1 + €on)

(approximate optimality), and 77 (T #g,#41, 7) < €on <
TP (gi#p, ¥) (approximate pushforward);

(2) Round 7 of FIT finds g, satisfying

— 2«
CP(T: 0 g,. a
T e M( i © i, i)

< (1 —2a)TP(gi#n, v) (progress of FIT).

1
CP(T; 0 gi, gis1) < € <

In addition, we assume each g;#u is continuous to guaran-
tee the existence of Monge transport plan.

(1) is satisfied by Algorithm 1 since it represents a convex
problem; moreover, it is necessary in practice to assume
only approximate solutions. (2) holds when there is still
room for the generative network to improve Wasserstein
distance: otherwise, the training process can be stopped.

« is a tunable parameter of our overall algorithm: a large
« relaxes the optimality requirement of OTS (which allows
early stopping of Algorithm 1) but requires large progress
of FIT (which prevents early stopping of Algorithm 2), and
vice versa. This gives us a principled way to determine the
stopping criteria of OTS and FIT.

Given the assumptions, we now show 7.(g;#u, 7) — 0. By
triangle inequality,

Tcﬁ (gi+1 #Ma ﬁ)
< TP giv1 1, TAtgi#tn) + T2 (Tidtgi#tp, 0)
< TP (gior1#1, Tidtgid1n) + con-

Since g;i1#p is continuous, Te(git1#u, Ti#tgi#tp) is
realized by some deterministic transport 7 satisfying

T{#giv1#1 = Ti#9:#u, whereby

TP (g, Tittgi#tn) = Ch (T} 0 gis1, git1)
= C(T; 0 gi, git1) < €n.

Combining these steps with the upper bounds on €4, and
€fit,

TP (gisr#1,0) < e + e < (1 — )T (g, )
< e TP (gi#n, v).

Summarizing these steps and iterating this inequality gives
the following bound on 7.(g:#u, ), which goes to 0 as
t—0.

Theorem 3.1. Suppose (as discussed above) that T? satis-
fies the triangle inequality, each g;# 1 is continuous, and the
OTS and FIT iterations satisfy (1) (2), then To(gi#u, ) <
e T (gt D).

3.2. Generalization Guarantee: 7.(g;#u,v) — 0.

In the context of generative modeling, generalization means
that the model fitted via training dataset © not only has low
divergence D(g;#u, V) to U, but also low divergence to v,
the underlying distribution from which 7 is drawn i.i.d.. If
T. satisfies triangle inequality, then

7::(91'##7 V) < 72(92'##7 I;) + 7?(’% V)a

and the second term goes to 0 with sample size n — oo,
but the sample complexity depends exponentially on the
dimensionality (Sriperumbudur et al., 2012; Arora et al.,
2017; Huang et al., 2017). To remove this exponential
dependence, we make parametric assumptions about the
underlying distribution v; a related idea was investigated in
detail in parallel work (Bai et al., 2019).

Our approach is to assume the Kantorovich potential 1[),
defined on 7, is induced from a function 1) € ¥ defined on
v, where U is a function class with certain approximation
and generalization guarantees. Since neural networks are
one such function classes (as will be discussed later), this
is an empirically verifiable assumption (by fitting a neural
network to approximate zﬁ), and is indeed verified in the
Appendix.
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For this part we use slightly different notation: for a fixed
sample size n, let (g,, Ty, V) denote the earlier (g, T, ¥).
We first suppose the following approximation condition:
Suppose that for any € > 0, there exists a class of functions
¥ so that

sup /wcdu+/wdu < e+sup /wcdu+/¢du;
€L (v) YeW
3.2)
thanks to the extensive literature on function approximation
with neural networks (Hornik et al., 1989; Cybenko, 1989;
Yarotsky, 2016), there are various ways to guarantee this,
for example increasing the depth of the network. A second
assumption is a generalization condition: given any sample
size n and function class W, suppose there exists D,, ¢ > 0
so that with probability at least 1 — § over a draw of n
examples from v (giving rise to empirical measure ),
every ¢ € U satisfies

/wdu < Dyy +/wdﬁn;

thanks to the extensive theory of neural network general-
ization, there are in turn various ways to provide such a
guarantee (Anthony & Bartlett, 1999), for example through
VC-dimension of neural networks.

(3.3)

Combining these two assumptions,

c\dn 5 = € n d
Telgn#tinv) wSERV>{/‘” dguth) + [ 0 u}
Se+ztelg{/wcd(gn##)+/¢d1/}
SDn,‘I!"_E"‘ilGlI‘I)J {/wcd(gn#,u)‘F/i/Jdﬁn}

<D,y+e+ sup {/wcd(gn#u)Jr/wdﬁn}
wELl(ﬁn)

< Dn,\I/ + e+ 7;(9”#/1’7 ﬁn)

This can be summarized as follows.

Theorem 3.4. Let € > 0 be given, and suppose assumptions
eqs. (3.2) and (3.3) hold. Then, with probability at least
1 — 6 over the draw of n examples from v,

By the earlier discussion, D,, y — 0 and ¢ — 0 as n — oo,
whereas the third term goes to 0 as discussed in Section 3.1.

4. Experimental Results
4.1. Experimental Setup

We briefly describe the datasets, baselines, and metrics in
our experiments. Detailed descriptions of network archi-
tectures and the computations of evaluation metrics can be
found in the Appendix.

Datasets. We evaluate our generative model on the
MNIST and Thin-8 128 x 128 datasets (Lecun et al., 1998;
Huang et al., 2017). On MNIST, we use the original
test/train split (Lecun et al., 1998), and each model is trained
on the training set and evaluated on both training and testing
sets. For Thin-8 we use the full dataset for training since
the number of samples is limited.

Baselines. We compare our model against several neu-
ral net generative models: (1) WGAN (Arjovsky et al.,
2017); (2) WGANGP (Gulrajani et al., 2017); (3) varia-
tional autoencoder (VAE) (Kingma & Welling, 2014); (4)
Wasserstein autoencoder (WAE) (Tolstikhin et al., 2017).
We experiment with both MLP and DCGAN as the genera-
tor architecture (Radford et al., 2015), and use DCGAN as
the default discriminator/encoder architecture as it achieves
better results for these baselines. Our method and WAE
allow optimizing general optimal transport costs, and we
choose to optimize the Wasserstein-1 distance on the ¢; met-
ric both for fair comparison with WGAN, and also since we
observed clearer images on both MNIST and Thin-8.

Metrics. We use the following metrics to quantify the
performance of different generative models: (1) Neural net
distance (NND-WC, NND-GP) (Arora et al., 2017) based on
DCGAN with weight clipping and gradient penalty respec-
tively; (2) Wasserstein-1 distance (WD) on ¢; metric; (3)
Inception score (IS) (Salimans et al., 2016); and (4) Fréchet
Inception distance (FID) (Heusel et al., 2017).

We chose the above metrics because they capture different
aspects of a generative model, and none of them is a one-
size-fit-all evaluation measure. Among them, NND-WC
and NND-GP are based on the adversarial game and thus
biased in favor of WGAN and WGANGP. WD measures
the Wasserstein distance between the generated distribution
and the real dataset, and favors WAE and our method. IS
and FID can be considered as neutral evaluation metrics, but
they require labeled data or pretrained models to measure
the performance of different models.

4.2. Qualitative Study

We first qualitatively investigate our generative model and
compare the samples generated by different models.

Samples of generated images. Figure 2 shows samples
generated by different models on the MNIST dataset. The
results show that our method with MLP (Figure 2(b)) and
DCGAN (Figure 2(c)) both generate digits with better vi-
sual quality than the baselines with the DCGAN architec-
ture. Figure 3 shows the generated samples on Thin-8 by
our method, WGANGP, and WAE. The results of WGAN
and VAE are omitted as they are similar to both WGANGP
and WAE consistently on Thin-8. When MLP is used as
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Figure 2. Real and generated samples on the MNIST dataset: (a) real samples; (b) samples generated by our model with MLP as the
generator network; (c) samples generated by our model with DCGAN as the generator network; (d) samples generated by WGAN; (e)
samples generated by WGANGP; (f) samples generated by WAE. DCGAN is used as the generator architecture in (d)(e)(f).
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Figure 3. Generated samples on the Thin-8 dataset. (a)(b)(c) are samples generated by different methods using MLP as the generator; and

(d)(e)(f) are samples when using DCGAN as the generator.

the generator architecture, our method again outperforms
WGANGP and WAE in terms of the visual quality of the gen-
erated samples. When DCGAN is used, the digits generated
by our method have slightly worse quality than WGANGP,
but better than WAE.

Importance of alternating procedure. We use this set
of experiments to verify the importance of the alternating
procedure that gradually improves the generative network.
Figure 4 shows: (a) the samples generated by our model;
and (b) the samples generated by a weakened version of
our model that does not employ the alternating procedure.
The non-alternating counterpart derives an optimal transport
plan in the first run, and then fits towards the derived plan.
It can be seen clearly the samples generated with such a
non-alternating procedure have considerably lower visual
quality. This verifies the importance of the alternating train-
ing procedure: fitting the generator towards the initial OT
plan does not provide good enough gradient direction to
produce a high-quality generator.

4.3. Quantitative Results

We proceed to measure the quantitative performance of the
compared models.

MNIST results. Table 1 shows the performance of dif-
ferent models on the MNIST training and testing sets. In
the first part when MLP is used to instantiate generators,
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Figure 4. Generated samples on MNIST with and without the al-
ternating procedure.

our model achieves the best performance in terms of all the
five metrics. The results on neural network distances (NND-
WC and NND-GP) are particularly interesting: even though
neural network distances are biased in favor of GAN-based
models because the adversarial game explicitly optimizes
such distances, our model still outperforms GAN-based
models without adversarial training. The second part shows
the results when DCGAN is the generator architecture. Un-
der this setting, our method achieves the best results among
all the metrics except for neural network distances. Com-
paring the performance of our method on the training and
testing sets, one can observe its consistent performance and
similar comparisons against baselines. This phenomenon
empirically verifies that our method does not overfit.
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Table 1. Quantitative results on the MNIST training and testing sets. Note that the Wasserstein distance on training and testing sets of

different sizes are not directly comparable.

METHOD | ARCH | MNIST TRAINING MNIST TEST
\ \ NND-WC NND-GP WD IS FID \ NND-WC NND-GP WD FID
WGAN 0.29 5.82 140.710 7.51 31.28 0.29 6.05 142.48 31.91
WGANGP 0.13 2.61 107.61 8.89  8.46 0.12 3.02 112.22  8.99
VAE MLP 0.53 4.26 101.06  7.10 52.42 0.52 4.42 110.49 51.88
WAE 0.18 3.64 90.91 8.42 11.12 0.15 3.80 101.46 11.49
OURS 0.11 2.56 66.68 9.77 3.21 0.10 2.79 82.87 3.56
WGAN 0.11 4.69 125.63  7.02 27.64 0.10 4.86 132.97 28.44
WGANGP 0.08 0.83 93.61 8.65 4.65 0.07 1.66 104.15 5.45
VAE DCGAN 0.48 3.68 106.63  6.96 42.10 0.46 3.89 115.59 41.95
WAE 0.18 3.29 90.96 8.35 12.28 0.15 3.53 101.02 12.66
OURS 0.10 2.28 70.13 9.54 3.76 0.09 2.55 82.79 4.18
Thin-8 results. There are no meaningful classifiers to _ .
compute IS and FID on the Thin-8 dataset. We thus only Table 2. Quantitative results on the Thin-8 dataset.
use NND-WC, NND-GP and WD as the quantitative met- METHOD | ARCH | NND-WC NND-GP WD
rics, and Table 2 shows the results. Our method obtains the WGAN 3.12 258.05 3934
best results among all the metrics with both the MLP and W%IZIEGP MLP g ﬁ igg;g %ggg
DCGAN ar.chlltectures. For NND-WC, all methods ex;.)e(.:t WAE 307 111.79 1945
ours have similar results of around 3.1: we suspect this is OURS 2.87 80.48 1016
due to. the' weight chpplng effect, whlch is verified by tuning WGAN 310 157 84 2431
the clipping factor in our exploration. NND-GP and WD WGANGP 3.04 79.47 1909
have consistent correlations for all the methods. This phe- VAE DCGAN 3.02 81.38 1820
nomenon is expected on a small-sized but high-dimensional WAE 3.11 88.04 1950
dataset like Thin-8, because the discriminator neural net- OURS 2.92 47.59 923

work has enough capacity to approximate the Lipschitz-1
function class on the samples. The result comparison be-
tween NND-WC and NND-GP directly supports the claim
(Gulrajani et al., 2017) that gradient-penalized neural net-
works (NND-GP) has much higher approximation power
than weight-clipped neural networks (NND-WC).

It is interesting to see that WGAN and WGANGP lead to
the largest neural net distance and Wasserstein distance, yet
their generated samples still have the best visual qualities
on Thin-8. This suggests that the success of GAN-based
models cannot be solely explained by the restricted approxi-
mation power of discriminator (Arora et al., 2017; Huang
etal., 2017).

Time cost. Table 3 reports the training time of different
models on MNIST. For moderate sized datasets such as
MNIST, our method is faster than WGAN and WGANGP
but slower than VAE and WAE. Compared with GAN-based
models, our method does not have a discriminator which
saves time. On the other hand, the loss function of eq. (2.3)
requires computing ¢(z,y;) — 1; for the whole dataset,
which can be costly. That being said, a useful trick to accel-
erate our model is to take gradient of @Z over a moderately-
sized subsample (for example 1%) of dataset in the first
iterations, then gradually increase the subsample data size

Table 3. Training time per iteration on MNIST.

METHOD ‘WGAN WGANGP VAE WAE OURS

TIME (MS) | 26.17 47.03 7.38 7.22  11.08

to cover the whole dataset.

5. Discussion of Limitations

‘We have also run our method on the CelebA and CIFAR10
datasets (Liu et al., 2015; Krizhevsky, 2009). On CelebA,
our method generates clear faces with good visual quality
and with meaningful latent space interpolation, as shown
in Figure 5(a) and Figure 5(b). However, we observe that
the good visual quality partly comes from the average face
effect: the expressions and backgrounds of generated images
lack diversity compared with GAN-based methods.

Figure 6 shows the results of our method on CIFAR10. As
shown, our method generates identifiable objects, but they
are more blurry than GAN-based models. VAE generates
objects that are also blurry but less identifiable. We compute
the Wasserstein-1 distance of the compared methods on
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(a) Generated samples (b) Latent space walk

Figure 5. Samples generated by our method on CelebA, and a
latent space interpolation.

(a) Our method (b) VAE

Figure 6. Samples generated by our method and VAE on CI-
FAR10.

CIFAR10: our method (655), WGAN-GP (849) and VAE
(745). Our method achieves the lowest Wasserstein distance
but does not have better visual quality than GAN-based
models on CIFAR10.

Analyzing these results, we conjecture that minimizing
Wasserstein distances on pixel-wise metrics such as ¢; and
{5 leads to a mode-collapse-free regularization effect. For
models that minimize the Wasserstein distance, the primary
task inherently tends to cover all the modes disregarding
the sharpness of the generated samples. This is because not
covering all the modes will result in huge transport cost. In
GAN:s, the primary task is to generate sharp images which
can fool the discriminator, and some modes can be dropped
towards this goal. Consequently, the objective of our model
naturally prevents it from mode collapse, but at the cost of
generating more blurry samples. We propose two potential
remedies to the blurriness issue: one is to use a perceptual
loss (Bojanowski et al., 2018); and the other is to incorpo-
rate adversarial metric into the framework. We leave them
as future work.

6. Related Work

Optimal Transport. Optimal transport is an old yet vi-
brant topic (Villani, 2003; 2009; Peyré & Cuturi, 2018).
Genevay et al. (2016) give the stochastic formulation of
semi-discrete optimal transport used in our solver. Lei et al.

(2019) provide a geometric view of semi-discrete optimal
transport. Seguy et al. (2018) propose to parameterize the
Kantorovich potential via neural networks. They also pro-
pose to train generative networks by fitting towards the
optimal transport plan between latent code and data, which
can be considered as a special case of the non-alternating
procedure we discussed earlier.

Generative models and OT. Combining generative mod-
eling and optimal transport has been studied extensively.
One line of research comes from the dual representation of
Wasserstein distance via the Kantorovich-Rubinstein equal-
ity (Arjovsky et al., 2017; Gulrajani et al., 2017). Another
line optimizes the primal form of Wasserstein distance by
relaxing it to a penalized form (Bousquet et al., 2017; Tol-
stikhin et al., 2017). Genevay et al. (2017) give a comparison
of WGAN and WAE from the view of optimal transport. By
contrast, our work evaluate Wasserstein distance in dual
space, and then optimizes it using its primal form.

The idea of computing optimal transport between batches
of generated and real samples has been used in both non-
adversarial generative modeling (Genevay et al., 2018; Xie
et al., 2018), as well as adversarial generative modeling
(Salimans et al., 2018; Liu et al., 2018). However, mini-
mizing batch-to-batch transport distance does not lead to
the minimization of the Wasserstein distance between the
generated and target distributions (Bellemare et al., 2017).
Instead, our method computes the whole-to-whole optimal
transport via the semi-discrete formulation.

Generalization properties of Wasserstein distance.
Sriperumbudur et al. (2012) analyze the sample complexity
of evaluating integral probability metrics. Arora et al. (2017)
show that KL-divergence and Wasserstein distances do not
generalize well in high dimensions, but their neural net dis-
tance counterparts do generalize. Huang et al. (2017) give
reasons for the advantage of GAN over VAE, and collects
the Thin-8 dataset to demonstrate the advantage of GAN:S,
which is used in our experiments. In this work we have
compared both our theoretical and empirical findings with
those in (Arora et al., 2017; Huang et al., 2017).

7. Conclusion and Future Work

We have proposed a simple alternating procedure to gen-
erative modeling by explicitly optimizing the Wasserstein
distance between the generated distribution and real data.
We show theoretically and empirically that our method does
optimize Wasserstein distance to the training dataset, and
generalizes to the underlying distribution. Interesting future
work includes combining our method with adversarial and
perceptual losses, and theoretical analysis on how gradual
fitting contributes to smoother manifolds and better general-
1zation.
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