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Supplementary Material
A. Proof of Lemma 1
For any real x such that 0 < x < 1, it is easy to show that the
Taylor series expansion of−x lnx at 1 is

∑∞
z=1

(−1)z

z x(x−
1)z . Applying this result to the term −λi lnλi in H and
taking the quadratic approximation of the series expansion
gives

Q =

n∑
i=1

λi(1− λi) = 1−
n∑
i=1

λ2
i (S1)

since by definition
∑n
i=1 λi = trace(LN ) = 1. The term∑n

i=1 λ
2
i in (S1) can be expressed as

n∑
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λ2
i = trace(L2

N ) (S2)
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s2
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w2
ij

 , (S5)

where (a) is due to the matrix symmetry of LN , (b) is due
to the definition that LN = c · L, and (c) is due to the
definition of L such that [L]ii = si, and [L]ij = wij when
(i, j) ∈ E and [L]ij = 0 otherwise. Furthermore, define

S = trace(L) =

n∑
i=1

[L]ii =
∑
i∈V

si = 2
∑

(i,j)∈E

wij . (S6)

Using the relation c = 1
trace(L) , we obtain the expression

Q = 1 − c2
(∑

i∈V s
2
i + 2

∑
(i,j)∈E w

2
ij

)
, where c = 1

S

and S =
∑
i∈V si = 2

∑
(i,j)∈E wij .

B. Proof of Theorem 1
The assumption λmax < 1 implies 0 < λi ≤ λmax < 1 for
all nonzero eigenvalues λi. Following the definition of H ,

we can rewrite H as

H = −
n∑
i=1

λi lnλi (S7)

= −
∑
i:λi>0

λi lnλi (S8)

= −
∑
i:λi>0

λi(1− λi)
lnλi

1− λi
. (S9)

Since for all λi > 0, lnλmin ≤ lnλi ≤ lnλmax < 0 and
0 < 1 − λmax ≤ 1 − λi ≤ 1 − λmin < 1, we obtain the
relation

− lnλmax

1− λmin
≤ − lnλi

1− λi
≤ − lnλmin

1− λmax
. (S10)

Using Q =
∑n
i=1 λi(1−λi) =

∑
i:λi>0 λi(1−λi) in (S1)

and applying (S10) to (S9) yields

−Q lnλmax

1− λmin
≤ H ≤ −Q lnλmin

1− λmax
. (S11)

When G is a complete graph with identical edge weight
x > 0, it can be shown that the eigenvalues of L have
1 eigenvalue at 0 and n − 1 identical eigenvalues at nx
(Merris, 1994). Since the trace normalization constant c =

1
trace(L) = 1

(n−1)nx , the eigenvalues of LN = c · L are
λn = 0 and λi = nx

(n−1)nx = 1
n−1 for all 1 ≤ i ≤ n − 1,

which implies H = ln(n − 1). It is easy to see that in
this case Q = 1 − 1

n−1 = 1 − λmin = 1 − λmax and
− lnλmax = − lnλmin = ln(n − 1). Consequently, the
bounds in (S11) become exact and H = ln(n− 1) when G
is a complete graph with identical edge weight.

C. On the condition λmax < 1 in Theorem 1
Here we show that the condition λmax < 1 is always sat-
isfied with any graph G ∈ G having a connected subgraph
with at least 3 nodes. By definition, λmax ≤ 1 since it is the
largest eigenvalue of the scaled matrix LN = L/trace(L).
Since any connected subgraph with at least 3 nodes will
contribute to at least 2 positive eigenvalues of LN (Van
Mieghem, 2010; Chen & Hero, 2013) and all eigenvalues of
LN sum to 1, we have λmax < 1.

D. Proof of Corollary 1
Since

∑n
i=1 λi = 1, the condition λmin = Ω(λmax) implies

λmax and λmin are of the same order 1
n+

, where n+ is the
number of positive eigenvalues of LN . When the condition
n+ = Ω(n) also holds, then λmax = a

n and λmin = b
n for

some constants a, b such that a ≥ b > 0, and we obtain

lim
n→∞

− 1

lnn
· lnλmax

1− λmin
= lim
n→∞

1

lnn
· lnn− ln a

1− b
n

= 1.

(S12)
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Similarly,

lim
n→∞

− 1

lnn
· lnλmin

1− λmax
= 1. (S13)

Taking the limit of H
lnn and applying (S12) and (S13) to the

bounds in (S11), we obtain

lim
n→∞

H

lnn
−Q = 0, (S14)

which completes the proof.

E. Proof of Corollary 2
Following the proof of Corollary 1, if n+ = Ω(n) and
λmin = Ω(λmax), then λmax = a

n and λmin = b
n for some

constants a, b such that a ≥ b > 0. We have

lim
n→∞

H − Ĥ
lnn

= lim
n→∞

H

lnn
−Q+Q− Ĥ

lnn
(S15)

(a)
= lim

n→∞
Q− Ĥ

lnn
(S16)

(b)
= lim

n→∞
Q−Q · lnn− ln a

lnn
(S17)

= 0, (S18)

where (a) uses (S14) and (b) uses the definition of Ĥ in
(1) and λmax = a

n . This implies the approximation error
H − Ĥ decays with lnn. That is, H − Ĥ = o(lnn).

F. Proof of Corollary 3
Let µmax denote the largest eigenvalue of the graph Lapla-
cian matrix L of a graph G ∈ G. Then it is known that
n
n−1smax ≤ µmax ≤ 2smax, where the lower bound is
proved in (Fiedler, 1973) and the upper bound is proved in
(Anderson Jr & Morley, 1985). These bounds suggest that
µmax has asymptotically the same order as smax. Moreover,
since by definition LN = c ·L, it holds that λmax = c ·µmax

and hence λmax = O(c · smax). Following the proof of
Corollary 1, if n+ = Ω(n) and λmin = Ω(λmax), then
λmax = a

n and λmin = b
n for some constants a, b such that

a ≥ b > 0, and 2c · smax = γ
n for some γ > 0 since

λmax = O(c · smax). Similar to the proof of Corollary 2,
we have

lim
n→∞

H − H̃
lnn

= lim
n→∞

H

lnn
−Q+Q− H̃

lnn
(S19)

(a)
= lim
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Q− H̃

lnn
(S20)

(b)
= lim

n→∞
Q−Q · lnn− ln γ

lnn
(S21)

= 0, (S22)

where (a) uses (S14) and (b) uses the definition of H̃ in (2)
and 2c · smax = γ

n . This implies the approximation error
H − H̃ decays with lnn. That is, H − H̃ = o(lnn).

G. Proof of Theorem 2
Let L and L′ denote the graph Laplacian matrix of G and
G′, respectively, and let LN = c · L and L′N = c′ · L′ be
the corresponding trace-normalized matrices. Since S =
trace(L) = 2

∑
(i,j)∈E wij and ∆S = 2

∑
(i,j)∈∆E ∆wij ,

it is easy to show that trace(L′) = S + ∆S = 1/c′. We
have

c′ − c =
1

S + ∆S
− 1

S
=

−∆S

(S + ∆S)S
= −cc′∆S

(S23)

since c′ = 1/trace(L′) and c = 1/trace(L). This then
implies c′ = c

1+c∆S and

∆c = c′ − c =
−c2∆S

1 + c∆S
. (S24)

Using the expression of quadratic approximation for VNGE
in Lemma 1 and the relation that G′ = G⊕∆G, we have

Q−Q′

= (c+ ∆c)2

∑
i∈V

(si + ∆si)
2 + 2

∑
(i,j)∈E

(wij + ∆wij)
2


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∑
i∈V

s2
i + 2
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w2
ij

 (S25)

= (2∆c+ ∆c2)

∑
i∈V

s2
i + 2

∑
(i,j)∈E

w2
ij + ∆Q


+ c2∆Q, (S26)

where ∆Q = 2
∑
i∈∆V si∆si +

∑
i∈∆V ∆s2

i +
4
∑

(i,j)∈∆E wij∆wij + 2
∑

(i,j)∈∆E ∆w2
ij , and we use

the convention ∆si = 0 and ∆wij = 0 when there are
no changes made in the nodal strength of node i and
in the weight of edge (i, j) from G to G′, respectively.
Since Q = 1 − c2

(∑
i∈V s

2
i + 2

∑
(i,j)∈E w

2
ij

)
, replac-

ing
∑
i∈V s

2
i +2

∑
(i,j)∈E w

2
ij with 1−Q

c2 in (S26) and using
the relation c′ = c+ ∆c yields

Q′ =

(
c′

c

)2

Q− c′2∆Q− 2∆c+ ∆c2

c2
. (S27)
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(a) Approximation error
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(b) CTRR

Figure S1. Approximation error and computation time reduction ratio (CTRR) of FINGER under different average degree d of WS model.
The red solid line and blue dashed line refer to the results of Ĥ and H̃ , respectively. Both Ĥ and H̃ achieve at least 97% speed-up relative
to the computation of H in all cases. It is observed that H̃ has larger approximation error than Ĥ but better CTRR.

Using the result from (S24) that c
′

c = 1
1+c∆S , we can further

simplify (S27) as

Q′ =
Q

(1 + c∆S)2
−
(

c

1 + c∆S

)2

∆Q− 1

(1 + c∆S)
2 + 1

(S28)

=
Q− 1

(1 + c∆S)2
−
(

c

1 + c∆S

)2

∆Q+ 1, (S29)

which completes the proof.

H. Finite-size analysis and asymptotic
equivalence of JS distance using FINGER

Beyond asymptotic analysis, we believe our results can
provide new insights to finite-size analysis, especially based
on the facts that: (i) our entropy inequality H̃ ≤ Ĥ ≤ H is
a finite-size result; (ii) The VNGE approximation error rate
o(lnn) is in fact optimal in n for any finite-size analysis,
since Theorem 1 shows that the rate is tight for complete
graphs with identical edge weights.

Furthermore, based on the asymptotic equivalence results of
VNGE, it is straightforward to establish asymptotic equiv-
alence of JS distance using FINGER as described in Al-
gorithms 1 and 2. Let JS denote the exact JS distance
and JSFINGER denote the approximate JS distance using the
VNGE computation from FINGER (either Ĥ or H̃). Using
Corollaries 2 and 3, the properly scaled absolute approxima-
tion error (SAAE) of JS distance, |JS−JSFINGER|√

lnn
, converges

to 0 as n→∞, which proves |JS− JSFINGER| = o(
√

lnn)
and JSFINGER√

lnn
is asymptotically a distance metric.

I. Additional experimental results on
synthetic random graphs

The effect of average degree d on Watts-Strogatz graphs.
Figure S1 displays the approximation error and computation
time reduction ratio (CTRR) of FINGER-Ĥ and FINGER-
H̃ under different average degree d of WS model, which
is defined as H − Ĥ and H − H̃ , respectively. It can be
observed that when fixing d, the approximation error decays
with the edge rewiring probability for both Ĥ and H̃ . In
addition, for the same edge rewiring probability, larger d
yields less approximation error. Using FINGER, both Ĥ and
H̃ achieve at least 97% speed-up relative to the computation
of H in all cases. The approximate VNGE H̃ always attains
better CTRR than Ĥ but at the price of larger approximation
error due to the fact that H̃ ≤ Ĥ ≤ H .

Figure S2 displays the scaled approximation error (SAE)
and computation time reduction ratio of Ĥ via FINGER
for WS model under varying number of nodes n and two
different settings of the average degree d. Their behaviors
are similar to the case of d = 50 as displayed in Figure 2
(c).

The effect of graph size n on FINGER-H̃ . In compari-
son to Ĥ via FINGER in Figure 2, Figure S3 displays the
SAE and CTRR of H̃ for the three different random graph
models and varying number of nodes n. Consistent with
the findings in Section 3, the SAE of H̃ for ER and WS
graphs obeys the o(lnn) approximation error analysis as
established in Corollary 3 since they have balanced eigen-
spectrum. On the other hand, the SAE of BA graphs grows
logarithmically with n due to imbalanced eigenspectrum.
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Figure S2. Scaled approximation error (SAE) and computation time reduction ratio (CTRR) of Ĥ via FINGER for WS model under
varying number of nodes n. Their behaviors are similar to the case of d = 50 as displayed in Figure 2 (c).
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(a) ER model
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(b) BA model
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(c) WS model (d = 50)
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Figure S3. Scaled approximation error (SAE) and computation time reduction ratio (CTRR) of H̃ via FINGER for different random graph
models and varying number of nodes n. The SAE of ER and WS graphs validates the o(lnn) approximation error analysis in Corollary 3,
whereas the SAE of BA graphs grows logarithmically with n due to imbalanced eigenspectrum. The CTRR attains nearly 100% speed-up
relative to H for moderate-size graphs (n ≥ 1500).
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(a) Dissimilarity (anomaly) metrics of Wikipedia-sEN (b) Dissimilarity (anomaly) metrics of Wikipedia-FR

(c) Dissimilarity (anomaly) metrics of Wikipedia-GE

Figure S4. Anomaly detection in consecutive monthly Wikipedia hyperlink networks via different dissimilarity metrics. The corresponding
computation time and Pearson correlation coefficient are reported in Table 2. Similar to the observations in Figure 3, FINGER-JSdist
(Fast) best aligns with the anomaly proxy in all datasets. FINGER-JSdist (Incremental) has efficient computation time but less consistency
(second best PCC among all methods).

Fixing n, larger average degree or more graph regularity
leads to less approximation error. Comparing to Ĥ , the
CTRR of H̃ attains nearly 100% speed-up relative to H for
relatively small-size graphs (n ≥ 1500).

J. Implementation details for VNGE-NL and
VNGE-GL

We note that in the Wikipedia application, we omit the edge
direction for all methods except VNGE-GL since the result-
ing performance is almost identical. The implementation
of VNGE-GL indeed considers the edge direction. We also
note that in these two applications, the Jensen-Shannon dis-
tances of VNGE-NL and VNGE-GL are ineffective. There-
fore, we use the consecutive difference of their approximate
VNGE as the anomaly score, and take the absolute value of
the anomaly score for anomaly ranking.

K. Additional results for anomaly detection in
evolving Wikipedia hyperlink networks

Additional Wikipedia network plots. The plots of dissim-
ilarity (anomaly) metrics of different methods in Section 4
for consecutive monthly hyperlink networks of Wikipedia-

sEN, Wikipedia-FR, and Wikipedia-GE are shown in Figure
S4. Their performance in terms of the computation time and
Pearson correlation coefficient are reported in Table 2. Sim-
ilar to the observations in Figure 3, FINGER-JSdist (Fast)
best aligns with the anomaly proxy in all datasets. FINGER-
JSdist (Incremental) has efficient computation time but less
consistency (still attains second best PCC among all meth-
ods).

Rank correlation coefficients. In addition to PCC, we fur-
ther use the Spearman’s rank correlation coefficient (SRCC)
to evaluate the consistency of each method with the anomaly
proxy in this task. The results are summarized in Table S1.
Similar to the results using PCC, FINGER-JS (Fast) attains
the best SRCC among all the compared methods in the
four Wikipedia networks. This result again confirms that
JS distance via FINGER indeed learns the similar notion of
anomaly as indicated by the anomaly proxy.

L. Addition descriptions for bifurcation
detection of cell reprogramming in
dynamic genomic networks

Genome architecture is important in studying cell develop-
ment, but its dynamics and role in determining cell iden-
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Table S1. Performance comparison of Spearman’s rank correlation coefficient (SRCC) between the anomaly proxy and each method in
the Wikipedia application. FINGER attains the best SRCC across all datasets.

Datasets
FINGER
-JS (Fast)

FINGER
-JS (Inc.) DeltaCon RMD

λ dist.
(Adj.)

λ dist.
(Lap.) GED

VNGE
-NL

VNGE
-GL

Wiki
(sEN) 0.5055 0.3849 0.4518 0.4518 0.4208 0.0402 -0.1355 -0.0542 0.2231

Wiki
(EN) 0.7973 0.5039 -0.4620 -0.4620 -0.3014 -0.5981 -0.7759 -0.1823 0.4840

Wiki
(FR) 0.7026 0.4563 0.2652 0.2652 0.4297 -0.4355 -0.6125 -0.4792 0.3938

Wiki
(GE) 0.6591 0.4930 0.3167 0.3167 0.3707 -0.4343 -0.5695 -0.0156 0.2606

Figure S5. Chromatin contact matrix from Hi-C over a time course of 12 samples, which correspond to -48 hour (hr), 0 hr, 8 hr, , 80 hr
over 6 days.

tity are not well understood. Myogenic differentiation 1
(MYOD1) is a master transcription factor that directly con-
verts human fibroblasts to myogenic cells as studied in
(Weintraub et al., 1989; Weintraub, 1993). Very recently,
Liu et al. (Liu et al., 2018a) studied the chromatin contact
map (genome-wide structure) through chromosome con-
formation capture (Hi-C) during the conversion of human
fibroblasts to myogenic cells. To understand cell reprogram-
ming, one major question is detecting when the phase transi-
tion occurs for cell identity conversion. Liu et al. conducted
experiments and constructed a 1Mb binned chromatin con-
tact matrix (namely, Hi-C matrix) of dimension 2894 over
a 6-day time course, leading to 12 sampled measurements.
It was found that there exists a bifurcation point at the 6th
sample (the measurement at 32 hour), suggesting that the
cell reprogramming can be interpreted as a genome-wide
dynamic system (Del Vecchio et al., 2017) (i.e., a graph

sequence) as displayed in Figure S5, where the bifurcation
occurs when a small structure change made to the cellular
system causes a significant system-wide change for genome.

Liu et al. further used complex graph analysis techniques
involving the temporal difference score (TDS) and multiple
graph centrality features (Chen et al., 2016) to construct a
representative statistic for expressing the states of the stud-
ied dynamic genomic contact network as displayed in Figure
4, which is used in this paper as the ground-truth statistic for
comparing the performance of detecting bifurcation point
using different dissimilarity and distance metrics. In partic-
ular, given the TDS of a graph dissimilarity method over
measurements, a bifurcation point is defined as the saddle
point of the TDS curve excluding the first and last measure-
ments (i.e., t = 1 and t = T ). The detected bifurcation
point(s) of each method is displayed in Figure 4.
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Table S2. Detection rate on synthesized anomalous events in the dynamic communication networks.

DoS attack (X%)
FINGER
-JS (Fast)

FINGER
-JS (Inc.) DeltaCon RMD

λ dist.
(Adj.)

λ dist.
(Lap.) GED

VNGE
-NL

VNGE
-GL VEO

Cosine
distance

Bhattacharyya
distance

Hellinger
distance

1 % 24 % 10% 14% 14% 10% 24% 14% 22% 22% 14% 12% 10% 12%
3 % 75% 62% 58% 58% 12% 23% 36% 39% 39% 36% 35% 14% 16%
5 % 90% 77% 90% 90% 12% 28% 41% 67% 67% 41% 37% 37% 34%
10 % 91% 91% 91% 91% 91% 91% 81% 91% 91% 46% 46% 67% 71%

M. Additional results using VEO as a baseline
As the VEO score only applies to unweighted undirected
graphs, we omit the edge weights in the bifurcation dataset
and find that VEO incorrectly detects graph index 8 as a bi-
furcation instance. In addition, for the synthesized anomaly
detection task, VEO only attains {46, 41, 36, 14}% detec-
tion rate when the DoS attack fraction X = {10, 5, 3, 1}%,
respectively, as given in Table S2.

N. Additional results using degree
distribution as dissimilarity metric

For the synthesized anomalous event detection task, in addi-
tion to the dissimilarity metrics in Table 3, we also compare
the performance of some distance metrics defined on degree
distributions – the cosine distance, the Bhattacharyya dis-
tance and the Hellinger distance. We exclude the Kullback-
Leibler divergence as the degree distributions of two graphs
usually do not have a common support. On the synthe-
sized dataset, Table S2 shows that their performance is not
competitive to FINGER and other dissimilarity metrics.


