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Abstract
An important class of non-convex objectives that
has wide applications in machine learning consists
of a sum of n smooth functions and a non-smooth
convex function. Tremendous studies have been
devoted to conquering these problems by lever-
aging one of the two types of variance reduction
techniques, i.e., SVRG-type that computes a full
gradient occasionally and SAGA-type that main-
tains n stochastic gradients at every iteration. An
interesting question that has been largely ignored
is how to improve the complexity of variance re-
duction methods for problems with a large condi-
tion number that measures the degree to which the
objective is close to a convex function. In this pa-
per, we present a simple but non-trivial boosting
of a state-of-the-art SVRG-type method for con-
vex problems (namely Katyusha) to enjoy an im-
proved complexity for solving non-convex prob-
lems with a large condition number (that is close
to a convex function). To the best of our knowl-
edge, its complexity has the best dependence on n
and the degree of non-convexity, and also matches
that of a recent SAGA-type accelerated stochastic
algorithm for a constrained non-convex smooth
optimization problem. Numerical experiments
verify the effectiveness of the proposed algorithm
in comparison with its competitors.

1. Introduction
The problem of interest in this paper belongs to the follow-
ing class of non-convex optimization problems:

min
x∈Rd

φ(x) :=
1

n

n∑
i=1

fi(x) + ψ(x), (1)
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where each fi is a L-smooth function, and ψ(x) is a “sim-
ple” closed convex function whose proximal mapping can
be efficiently computed. The above problem covers con-
strained and non-constrained smooth optimization as spe-
cial cases when ψ(x) is the indicator function of a convex
set and ψ = 0. This problem has broad applications in
machine learning, and has been studied by numerous pa-
pers (Reddi et al., 2016a;b;c; Lan & Yang, 2018; Allen-Zhu,
2018; Allen-Zhu & Hazan, 2016). A number of stochastic
algorithms were proposed by utilizing the finite-sum struc-
ture of the problem and smoothness of fi to derive faster
convergence than stochastic gradient methods. These algo-
rithms are based on two well-known variance-reduction tech-
niques, namely the SVRG-type variance reduction (Johnson
& Zhang, 2013) and the SAGA-type variance reduction (De-
fazio et al., 2014; Roux et al., 2012). The key difference
between these two variance reduction techniques is that
SVRG uses a full gradient that is computed periodically and
SAGA uses a full gradient that is computed from its main-
tained historical gradients for each component fi. Due to
this difference, SAGA might require much higher memory
than SVRG for many problems, which renders algorithms of
SVRG-type more favorable than algorithms of SAGA-type.

Since the proposal of non-convex SVRG for solving non-
convex problems in the form of (1) or its special case with
ψ = 0 (Reddi et al., 2016a; Allen-Zhu & Hazan, 2016),
several studies have tried to improve its complexity in terms
of the number of components n (Fang et al., 2018; Zhou
et al., 2018). To the best of our knowledge, the state-of-
the-art gradient complexity 1 of SVRG-type methods for
finding a solution x such that E[‖∇φ(x)‖] ≤ ε under the
condition ψ = 0 and ε ≤ 1/

√
n is given by O(L

√
n/ε2). It

was also shown in (Fang et al., 2018) that such a complexity
is a lower bound for the problem (1), hence it cannot be
improved in general.

However, most of previous studies have ignored the de-
gree of non-convexity of each component function with
few exceptions discussed later. A natural way to measure
the degree of non-convexity is by considering a notion of
µ-weak convexity. In particular a function f is said to be
µ-weakly convex if f(x) + µ

2 ‖x‖
2 is a convex function

1the number of stochastic gradient computations
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Table 1. Comparison of gradient complexities of variance reduction based algorithms for finding ε-stationary point of (1) with ψ = 0. The
best complexity result for each setting is marked in red color. The top two algorithms, namely SAGA and RapGrad use the SAGA-type
variance reduction technique, while others use the SVRG-type variance reduction technique. Õ(·) hides some logarithmic factor. ∗ marks
the result is only valid when L/µ ≤

√
n.

Algorithms L/µ ≥ Ω(n) L/µ ≤ O(n) Non-smooth ψ

SAGA (Reddi et al., 2016c) O(n2/3L/ε2) O(n2/3L/ε2) Yes
RapGrad (Lan & Yang, 2018) Õ(

√
nLµ/ε2) Õ((µn+

√
nLµ)/ε2) indicator function

SVRG (Reddi et al., 2016c) O(n2/3L/ε2) O(n2/3L/ε2) Yes
Natasha1 (Allen-Zhu, 2017a) NA O(n2/3L1/3µ2/3/ε2)

∗
Yes

RepeatSVRG (Allen-Zhu, 2017a) Õ(n3/4
√
Lµ/ε2) Õ((µn+ n3/4

√
Lµ)/ε2) Yes

4WD-Catalyst (Paquette et al., 2018) O(nL/ε2) O(nL/ε2) Yes
SPIDER (Fang et al., 2018) O(

√
nL/ε2) O(

√
nL/ε2) No

SNVRG (Zhou et al., 2018) O(
√
nL/ε2) O(

√
nL/ε2) No

Katalyst (this work) Õ(
√
nLµ/ε2) Õ((µn+ L)/ε2) Yes

for µ > 0, where ‖ · ‖ denotes the Euclidean norm. If f
is twice-differentiable, µ-weak convexity is equivalent to
that ∇2f(x) ≥ −µI . Hence, the smaller the µ, the closer
the function to a convex function. For a smooth function
with L-Lipchitz continuous gradient we define the condi-
tion number as L/µ. Therefore, an interesting question is
whether the gradient complexity of a SVRG-type method
can be further improved for (1) with µ-weakly convex func-
tions fi when µ is very small. In another word, whether
the gradient complexity can be made dependent on µ such
that the closer fi is to a convex function the smaller is the
complexity. In this paper, we provide an affirmative answer
to this question. We show that when the condition number
of each fi is large (i.e, L/µ ≥ Ω(n)), we can improve the
complexity to Õ(

√
nLµ/ε2), which is better than that re-

ported in (Fang et al., 2018; Zhou et al., 2018). To the best
of our knowledge, this is the best result for a SVRG-type
method for solving problem (1) under a large condition num-
ber, which also matches that of a recent work focusing on
developing an accelerated SAGA-type method for solving
constrained non-convex smooth optimization (Lan & Yang,
2018). We also establish a gradient complexity of Õ(µn/ε2)
in the case of L/µ < O(n), which improves the complexity
of (Fang et al., 2018; Zhou et al., 2018) when µ/L ≤ 1/

√
n,

and is also slightly better than that of (Lan & Yang, 2018).
The proposed algorithm is a simple but non-trivial boosting
of convex Katyusha (Allen-Zhu, 2017b). The idea is by call-
ing convex Katyusha for solving a sequence of regularized
convex problems, which is similar to that used in the Cat-
alyst technique for speeding up convex optimization (Lin
et al., 2015). However, the key difference and novelty of the
proposed algorithm is that we do not use any extrapolation
step and the acceleration is simply achieved by carefully
choosing the parameters (i.e., the number of epochs and the
number of iterations for the inner loop) for convex Katyusha
that are adaptive to the µ-weak convexity of the problem.

We refer to the proposed algorithm as Katalyst.

Before ending this section, we present a motivating example
of the considered easy non-convex problems with a large
condition number. Let us consider least-squares regression
with non-convex sparsity-promoting regularizers:

min
x∈Rd

1

n

n∑
i=1

`(a>i x, bi) + λR(x), (2)

where (ai, bi), i = 1, . . . , n denote a set of n observed data
with ai ∈ Rd representing the feature vector and bi ∈ R
representing the label of the i-th example, `(a>i x, bi) =
(a>i x − bi)2, R(x) denotes a non-convex regularizer that
enforces sparsity and λ > 0 is a regularization parame-
ter. Commonly used non-convex sparsity-promoting reg-
ularizers include logarithmic sum penalty (Candès et al.,
2008), transformed `1 norm (Zhang & Xin, 2014), smoothly
clipped absolute deviation (SCAD) regularization (Fan &
Li, 2001), minimax concave penalty (MCP) regulariza-
tion (Zhang, 2010). All of these regularizers can be writ-
ten as a (scaled) `1 norm minus a differentiable smooth
function. Let us consider the logarithmic sum penalty
R(x) =

∑d
i=1 log(|xi| + θ). It can be written as R(x) =

1/θ‖x‖1 +R2(x), where R2(x) =
∑d
i=1(log(|xi|+ θ)−

|xi|/θ). It was shown thatR2 is a differentiable smooth non-
convex function with a smoothness parameter µ = 1

θ2 (Wen
et al., 2018). In order to formulate the problem as (1),
we can defined fi(x) = (a>i x − bi)

2/2 + λR2(x) and
ψ(x) = λ‖x‖1/θ. Thus, we have fi is µ = λ/θ2-weakly
convex and L = maxi ‖ai‖2 + λ/θ2-smooth. When the
regularization parameter λ is very small, then the condition
number is very large. Similar discussions have been applied
to other regularizers.
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2. Related Work
Since the proposal of variance reduction techniques were
proposed by Johnson & Zhang (2013); Roux et al. (2012);
Zhang et al. (2013), they have received tremendous atten-
tion. In this paper we are mostly interested in non-convex
problems. Hence, below we review some related works for
non-convex optimization in the form of (1).

A SVRG-type method for solving non-convex smooth opti-
mization - a special case of (1) with ψ = 0 were first pro-
posed by two research groups independently (Reddi et al.,
2016a; Allen-Zhu & Hazan, 2016). The gradient complexity
of non-convex SVRG is given by O(n2/3L/ε2) for finding
an ε-stationary solution such that E[‖∇φ(x)‖] ≤ ε. It was
later generalized to solving the general case (1) with ψ being
a non-smooth convex function by (Reddi et al., 2016b;c),
which also includes a SAGA-type method. There are two
basic variants of SVRG proposed in (Reddi et al., 2016a;b;c)
one with a large mini-batch size (n2/3) and one with a small
step size Θ(1/n2/3L). In the first variant, the step size can
be set to a large value Θ(1/L). In the second variant, the
mini-batch size can be set to 1. However, neither variant
is practical, especially with a small step size Θ(1/n2/3L),
which usually leads to slow convergence in practice. In
contrast, the proposed method uses a large step size Θ(1/L)
and allows for using a mini-batch size of 1.

Recently, there are several improvements on the gradient
complexity for SVRG-type methods in terms of dependence
on n. In particular, two new SVRG-type algorithms were
proposed in (Fang et al., 2018; Zhou et al., 2018), namely
SPIDER and stochastic nested variance reduction for solv-
ing the problem (1) with ψ = 0. The gradient complexity
of both algorithms is given by O(

√
nL/ε2) for finding an

ε-stationary solution when ε ≤ O(1/
√
n).

Few works have taken the µ-weak convexity of individ-
ual functions fi into account for the development of vari-
ance reduction methods (Allen-Zhu, 2017a; Lan & Yang,
2018). Under the weakly convex assumption, Allen-Zhu
(2017a) proposed a novel acceleration of SVRG-style
method, namely Natasha1, which established a state-of-
the-art gradient complexity when condition number is small,
i.e.
√
n ≥ L/µ. In the same paper, Allen-Zhu (2017a) also

discussed another method, namely RepeatSVRG 2, which
could converge faster than Natasha1 under a large condition
number. The proposed method is more practical than Re-
peatSVRG in that it does not require setting ε aprior as in
RepeatSVRG. In a more recent work, Lan & Yang (2018)

2After the preliminary version of this manuscript was finished,
it was brought to our attention that the updated arXiv manuscript
(Allen-Zhu, 2018, V5) reported a new result for RepeatSVRG for
our considered problem different from its proceedings version,
which is in the same order as the result achieved in this work. It is
less practical than our method.

proposed an SAGA-type method, which has the same gra-
dient complexity of this work except for a worse memory
cost. It is the first-work for deriving an µ-dependent com-
plexity of a variance-reduction method for solving smooth
non-convex optimization problems. Our work is comple-
mentary by developing a SVRG-type method with the same
complexity and for solving a broader family of problems
with a non-smooth convex function ψ.

It is notable that accelerating the convergence for strongly
convex and smooth optimization problems with a large con-
dition number has received a lot of attention in the commu-
nity (Lin et al., 2015; Frostig et al., 2015; Lan & Zhou, 2018;
Allen-Zhu, 2017b). Recently, Paquette et al. (2018) also
considered extending the Catalyst technique for speeding
up convex optimization algorithms to solving non-convex
problem (1). However, their gradient complexity for using
SVRG is only O(nL/ε2), which is worse than our result.
Finally, we present a comparison between this work and
previous works for solving (1) in Table 1.

3. Katalyst
In this section we present the proposed Katalyst algorithm
and its analysis. We first present some notations. For sim-
plicity of presentation, we let f =

∑n
i=1 fi(x)/n, and let

proxλψ(x) = arg minz ψ(z)+ 1
2λ‖z−x‖

2 denote the prox-
imal mapping of a function ψ. For problem (1), a point
x ∈ dom(ψ) is a first-order stationary point if 0 ∈ ∂φ(x),
where ∂φ denotes the partial gradient of φ. However, it is
hard for an iterative algorithm to find an exact stationary
point with a finite number of iterations. Therefore, some
notion of ε-stationary is usually considered.

In the literature, several notions of ε-stationarity were con-
sidered by accommodating the non-smooth term ψ in dif-
ferent way. The first measure is simply using the sub-
differentiable of the objective function φ. Under this mea-
sure, a point x is said to be ε-stationary if dist(0, ∂φ(x)) ≤
ε, where dist denotes the Euclidean distance from a point to
a set and ∂φ(x) = ∇f(x) + ∂ψ(x). The second measure
is using the proximal gradient defined as:

Gη(x) =
1

η
(x− proxηψ(x−∇f(x))). (3)

Under this measure, a point x is said to be ε-stationary if
‖Gη(x)‖2 ≤ ε. This convergence measure has been used
in (Reddi et al., 2016c; Allen-Zhu, 2017a). The third sta-
tionarity measure that is more general is defined by using a
notion of nearly stationary. In particular, a point x is called
(ε, δ)-nearly stationary if there exists a point x̂ such that

‖x− x̂‖ ≤ δ, dist(0, ∂φ(x̂)) ≤ ε. (4)

This convergence measure has been used in (Davis & Grim-
mer, 2017; Davis & Drusvyatskiy, 2018a; Lan & Yang,
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Algorithm 1 Katalyst for Non-Convex Optimization
1: Initialize: non-decreasing positive weights {ws}, x0 ∈

dom(ψ), γ = (2µ)−1

2: for s = 1, . . . , S + 1 do
3: Let fs(·) = φ(·) + 1

2γ ‖ · −xs−1‖2
4: xs = Katyusha(fs,xs−1,Ks, µ, L+ µ)
5: end for
6: Return: xτ+1, τ is randomly chosen from {0, . . . , S}

according to probabilities pτ = wτ+1∑S
k=0 wk+1

, τ =

0, . . . , S.

2018; Chen et al., 2018). The third convergence measure
is more general that covers the first two measures as spe-
cial cases. This can be easily seen for the first convergence
measure with x̂ = x and δ = 0. For the second con-
vergence measure, we can show that when ‖Gη(x)‖ ≤ ε
holds with η = 1/L, we have ‖x − z‖ ≤ ε/L and
dist(0, ∂φ(z)) ≤ ‖Gη(x)‖ + L‖x − z‖ ≤ 2ε, where
z = proxηψ(x−∇f(x)).

In this paper, we use the third stationarity measure that
is same as that used in (Davis & Grimmer, 2017; Davis
& Drusvyatskiy, 2018a; Lan & Yang, 2018; Chen et al.,
2018), which is more suitable for our algorithm than other
measures. To this end, we introduce the Moreau envelope
of φ

φλ(x) = min
z
φ(z) +

1

2λ
‖z− x‖2.

Further, the optimal solution to the above problem is
proxλφ(x). It is known that if φ(x) is µ-weakly convex and
λ < µ−1, then its Moreau envelope φλ(x) is C1-smooth
with the gradient given by∇φλ(x) = λ−1(x− proxλφ(x))
(see e.g. (Davis & Drusvyatskiy, 2018b)). A small norm
of ∇φλ(x) has an interpretation that x is close to x̂ =
proxλφ(x) that is ε-stationary. In particular for any x ∈ Rd,
let x̂ = proxλφ(x), then we have

φ(x̂) ≤ φ(x),

‖x− x̂‖ = λ‖∇φλ(x)‖,
dist(0, ∂φ(x̂)) ≤ ‖∇φλ(x)‖.

(5)

This means that a point x satisfying ‖∇φλ(x)‖ ≤ ε is close
to a point in distance of O(ε) that is ε-stationary. Below, we
will prove the convergence in terms of ‖∇φλ(x)‖ for some
λ > 0 and ‖x − proxλφ(x)‖ as well, which is consistent
with that in (Lan & Yang, 2018).

3.1. Algorithm

The Katalyst algorithm is presented in Algorithm 1, which
falls into the same framework presented in (Chen et al.,
2018). The idea is to construct a strongly convex func-
tion fs at each stage and then call a stochastic algorithm

Algorithm 2 Katyusha(f, x0,K, σ, L̂)

1: Initialize: τ2 = 1
2 , τ1 = min{

√
nσ
3L̂
, 1

2}, η =

1
3τ1L̂

, θ = 1 + ησ, m = d log(2τ1+2/θ−1)
log θ e+ 1

2: y0 = ζ0 = x̃0 ← x0

3: for k = 0, . . . ,K − 1 do
4: uk = ∇f̂(x̃k)
5: for t = 0, . . . ,m− 1 do
6: j = km+ t
7: xj+1 = τ1ζj + τ2x̃

k + (1− τ1 − τ2)yj
8: ∇̃j+1 = uk +∇f̂i(xj+1)−∇f̂i(x̃k)

9: ζj+1 = arg minζ
1
2η‖ζ−ζj‖

2 +〈∇̃j+1, ζ〉+ ψ̂(ζ)

10: Option I: yj+1 = arg miny
3L̂
2 ‖y − xj+1‖2 +

〈∇̃j+1, y〉+ ψ̂(ζ)
11: Option II: yj+1 = xj+1 + τ1(ζj+1 − ζj)
12: end for
13: compute x̃k+1 =

∑m−1
t=0 θtysm+t+1∑m−1

j=0 θt

14: end for
15: Output x̃K

(Katyusha here) for approximately solving the constructed
function. One may consider directly applying their Theorem
1 to prove the convergence. However, their analysis only
concerns the convergence of ‖∇φγ(xτ )‖ without explicit
considering the convergence of ‖x− proxγφ(x)‖, which is
important for proving the convergence of ‖∇φ(x)‖ when
ψ = 0. By using the second inequality in (5), one can bound
2µ‖x − proxγφ(x)‖ by ‖∇φγ(xτ )‖. Nevertheless, in the
case of µ� 1, such analysis will yield much worse gradient
complexity than that is achieved below. Hence, we need
a more refined analysis of the proposed algorithm with a
careful setting of Katyusha for solving each subproblem.

A modified Katyusha is employed at each stage for solving
the regularized subproblem fs(x), which is assumed to be σ-
strongly convex and have L̂-Lipschitz continuous gradients
for the smooth components. The modified Katyusha is pre-
sented in Algorithm 2. Given the way that fs is constructed,
we can write it as

fs(x) =
1

n

n∑
i=1

(fi(x) +
µ

2
‖x− xs−1‖2︸ ︷︷ ︸
f̂i(x)

)

+
γ−1 − µ

2
‖x− xs−1‖2 + ψ(x)︸ ︷︷ ︸

ψ̂(x)

.

It is easy to see that f̂i(x) is convex and L̂ = (L + µ)-
smooth, and ψ̂(x) is σ = (γ−1−µ)-strongly convex, which
satisfy the conditions made in (Allen-Zhu, 2017b). In each
call of the modified Katyusha, f̂i is considered as the smooth
component, and ψ̂ is considered as the non-smooth regular-
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izer. The key difference between our modified Katyusha
and the original Katyusha algorithm for solving smooth and
strongly convex problems in (Allen-Zhu, 2017b) lies at the
setting of τ1, m and K. For example in (Allen-Zhu, 2017b),

the value of τ1 is set to τ1 = min(

√
mσ/3L̂, 1/2). How-

ever, in our modified Katyusha the value of τ1 is independent
of m. The value of m is also different from that suggested
in (Allen-Zhu, 2017b), which is suggested to 2n. The value
of K (the number of epochs) in the original Katyusha is
chosen such that the objective gap is less than ε. In our
modified Katyusha, it is set to make sure that the objective
function fs(x) is decreased by a sufficient amount. Actually,
we do not solve minx fs(x) to an ε-accuracy level in terms
of the objective value. Below, we present the gradient com-
plexity of Katalyst (i.e., the order of number of evaluations
of ∇φi(x)) based on the following basic assumptions.

Assumption 1. For problem (1), we assume that (i) fi(·)
is L-smooth and µ-weakly convex, (ii) ψ is a non-smooth
convex function, and (iii) there exists ∆φ > 0 such that
φ(x0)−minx φ(x) ≤ ∆φ.

Theorem 1. Suppose Assumption 1 holds. Let ws =
sα, α > 0, γ = 1

2µ , L̂ = L + µ, σ = µ, and in each call

of Katyusha let τ1 = min{
√

nσ
3L̂
, 1

2}, step size η = 1
3τ1L̂

,

τ2 = 1/2, θ = 1 + ησ, and

Ks =

⌈
log(Ds)

m log(θ)

⌉
, m =

⌈
log(2τ1 + 2/θ − 1)

log θ

⌉
+ 1,

where Ds = max{24L̂/µ, 2L̂3/µ3, 8L2s/µ2}. Then we
have that

max{E[‖∇φγ(xτ+1)‖2],E[L2‖xτ+1 − zτ+1‖2]}

≤ 34µ∆φ(α+ 1)

S + 1
+

48µ∆φ(α+ 1)

(S + 1)αIα<1
,

where zτ+1 = proxγφ(xτ ), τ is randomly cho-
sen from {0, . . . , S} according to probabilities pτ =

wτ+1∑S
k=0 wk+1

, τ = 0, . . . , S. Furthermore, the total gradient
complexity for finding xτ+1 such that

max(E[‖∇φγ(xτ+1)‖2], L2E[‖xτ+1 − zτ+1‖2]) ≤ ε2

is

N(ε) =


O

(
(µn+

√
nµL) log

(
L

µε

)
1

ε2

)
, n ≥ 3L

4µ
,

O

(√
nLµ log

(
L

µε

)
1

ε2

)
, n ≤ 3L

4µ
.

Indeed, when ψ = 0 we can derive a slightly stronger result
stated in the following theorem.

Theorem 2. Suppose Assumption 1 holds and ψ = 0.
With the same parameter values as in Theorem 1 except

that K =
⌈

log(D)
m log(θ)

⌉
, where D = max(48L̂/µ, 2L̂3/µ3).

The total gradient complexity for finding xτ+1 such that
E[‖∇φ(xτ+1)‖2] ≤ ε2 is

N(ε) =


O

(
(µn+

√
nµL) log

(
L

µ

)
1

ε2

)
, n ≥ 3L

4µ
,

O

(√
nLµ log

(
L

µ

)
1

ε2

)
, n ≤ 3L

4µ
.

Remark: Our results in the above two theorems match that
in (Lan & Yang, 2018). Indeed, our result in Theorem 1
is slightly more general than that in (Lan & Yang, 2018),
which only considers the constrained smooth optimization
with ψ being the indicator function of a convex set.

3.2. Analysis

We first state the convergence property of modified Katyusha
(Algorithm 2) for solving following problem:

min
x∈Rd

f(x) := f̂(x) + ψ̂(x) =
1

n

n∑
i=1

f̂i(x) + ψ̂(x), (6)

where each f̂i is L̂-smooth and convex, ψ̂(x) is σ-strongly
convex.

Theorem 3. (One call of Katyusha) Suppose that τ1 =

min{
√

nσ
3L̂
, 1

2}, τ2 = 1/2, η = 1
3τ1L̂

,and m =

d log(2τ1+2/θ−1)
log θ e + 1. Defining θ := 1 + ησ, Dt :=

f(yt)− f(x), D̃k := f(x̃k)− f(x) for any x, Algorithm 2
outputs a solution x̃K of problem (6) such that

E[D̃K ] ≤ 4τ1θ
−mK(

1− τ1
τ1

D̃0 +
1

2η
‖ζ0 − x‖2). (7)

The proof of above theorem is deferred to Appendix A.

Proof. [of Theorem 1] Given Thoerem 3, our analysis is
divided into several parts. First, we verify the value of K is
a valid one. Then, we apply the above theorem to show the
convergence for solving each constructed function fs. Then,
we prove the convergence of ‖∇φγ(xτ+1)‖, followed by
the convergence analysis of L‖xτ+1 − zτ+1‖. Then, we
briefly prove Theorem 2. Finally, we derive the gradient
complexity.

Validation of K: Overall, we need

θ−mK ≤ min

{
µ

24L̂
,
µ3

2L̂3
,
µ2

8L2s

}
.

Define Ds = max{24L̂/µ, 2L̂3/µ3, 8L2s/µ2} ≥ 16. We
can set K = d log(Dmax)

m log θ e. Then,
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K ≥
⌈

4

m log θ

⌉
≥ 1,

where the last inequality follows that 2/θ ≥ 2τ1 + 2/θ −
1 ≥ 1 always hold according to the setting of τ1 =

min{
√

nµ

3L̂
, 1

2} and η = 1
3τ1L̂

.

Convergence of ‖∇φγ(·)‖. Let zs = arg minx fs(x)
and x∗ denote the global minimum of minx φ(x). It is
notable that ‖xs−1 − zs‖/γ = ∇φγ(xs−1). Below, we
will use K to denote Ks. Es denotes the expectation over
randomness in the s-th stage conditioned on all previous
stages. Applying Theorem 3 to the s-th call of Katyusha,
we have

Es[fs(xs)− fs(zs)] ≤4θ−mK(fs(xs−1)− fs(zs))

+
2τ1θ

−mK

η
‖xs−1 − zs‖2. (8)

It is easy to see that

fs(xs−1)− fs(zs))

=φ(xs−1)− φ(zs)−
1

2γ
‖xs−1 − zs‖2

≤φ(xs−1)− φ(x∗)−
1

2γ
‖xs−1 − zs‖2.

Thus, we have

Es[fs(xs)− fs(zs)]

≤4θ−mK(φ(xs−1)− φ(x∗)) +
2τ1θ

−mK

η
‖xs−1 − zs‖2

≤ 4θ−mK(φ(xs−1)− φ(x∗)) + 2θ−mKL̂‖xs−1 − zs‖2︸ ︷︷ ︸
Es

.

Based on the above result and by utilizing the strong convex-
ity of fs and simple algebra, we have the following result
whose proof is in Appendix B.

Lemma 1. Let ∆s = φ(xs−1) − φ(xs) and θ−mK ≤
µ/(24L̂). Then we have that

1

8γ
‖xs−1 − zs‖2 ≤ Es[∆s] + 12θ−mK(φ(xs−1)− φ(x∗)).

It implies that

‖∇φγ(xs−1)‖2

≤Es[8∆s/γ] + 96θ−mK(φ(xs−1)− φ(x∗))/γ.

Multiplying both sides by ws, we have that

wsEs[‖∇φγ(xs−1)‖2]

≤Es

[
8ws∆s/γ + 96θ−mKws(φ(xs−1)− φ(x∗))/γ

]
.

By summing over s = 1, . . . , S + 1, we have

E[

S+1∑
s=1

ws‖∇φγ(xs−1)‖2]

≤E

[
8

γ

S+1∑
s=1

ws∆s +
96

γ

S+1∑
s=1

wsθ
−mK(φ(xs−1)− φ(x∗))

]
.

Taking the expectation w.r.t. τ ∈ {0, . . . , S}, we have that

E[‖∇φγ(xτ )‖2]] ≤ E

[
8
∑S+1
s=1 ws∆s

γ
∑S+1
s=1 ws

+
96
∑S+1
s=1 wsθ

−mK(φ(xs−1)− φ(x∗))

γ
∑S+1
s=1 ws

]
.

Next, we bound the numerators of the two terms in the
above bound. For the first term in the above bound, we use
Lemma 3 in the Appendix C and have E

[∑S+1
s=1 ws∆s

]
≤

∆φwS+1. We can bound the second term as following:

E

[ S+1∑
s=1

wsθ
−mK(φ(xs−1)− φ(x∗))

]

≤
S+1∑
s=1

wsθ
−mKE[φ(xs−1)− φ(x∗)] ≤ ∆φ

S+1∑
s=1

wsθ
−mK ,

where we use the fact E[φ(xs)] ≤ E[φ(xs−1)] as shown in
the proof of Lemma 3 in the Appendix C. As a result,

E[‖∇φγ(xτ )‖2]]

≤
[

8∆φwS+1

γ
∑S+1
s=1 ws

+
96∆φ

∑S+1
s=1 wsθ

−mK

γ
∑S+1
s=1 ws

]
≤
[

8∆φwS+1

γ
∑S+1
s=1 ws

+
12∆φ

∑S+1
s=1 wss

−1

γ
∑S+1
s=1 ws

]
,

where we use the fact θ−mK ≤ 1/(8s). Then by simple
algebra (cf. (Chen et al., 2018)), we have

E[‖∇φγ(xτ )‖2] ≤ 16µ∆φ(α+ 1)

S + 1
+

24µ∆φ(α+ 1)

(S + 1)αIα<1
.

Due to the objective decreasing property, we have

E[φ(xs) +
1

2γ
‖xs − xs−1‖2 − φ(xs−1)] ≤ 0,

which implies by a similar analysis

1

2γ
E[‖xτ+1 − xτ‖2] ≤ ∆φ(α+ 1)

S + 1
.

Since φγ(x) has (γ−1 − µ)-Lipschitz continuous gradient
(cf. Lemma 2.1 in (Drusvyatskiy & Paquette, 2018)), then
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we have

E[‖∇φγ(xτ+1)‖2]

≤2E[‖∇φγ(xτ )‖2] + 2(γ−1 − µ)2E[‖xτ+1 − xτ‖2]

≤2E[‖∇φγ(xτ )‖2] +
2µ∆φ(α+ 1)

S + 1

≤34µ∆φ(α+ 1)

S + 1
+

48µ∆φ(α+ 1)

(S + 1)αIα<1
.

Convergence of L‖xτ+1 − zτ+1‖. By the strong convex-
ity of fs, we have E[‖xs − zs‖2] ≤ 2

σEs. To proceed, we
have

L2‖xs − zs‖2 ≤
4L2θ−mK

σ
(2(φ(xs−1)− φ(x∗))

+ L̂‖xs−1 − zs‖2)

≤2θ−mK
[

4L2

σ
(φ(xs−1)− φ(x∗)) +

L̂3

µ3
‖∇φγ(xs−1)‖2

]
≤8L2θ−mK

σ
(φ(xs−1)− φ(x∗)) + ‖∇φγ(xs−1)‖2,

where we use the fact ‖xs−1−zs‖/γ = ‖∇φγ(xs−1)‖ and
θ−mK ≤ µ3/(2L̂3). Then following the same analysis as
above,

E[L2‖xτ+1 − zτ+1‖2]

≤
8L2∆φ

∑S+1
s=1 wsθ

−mK

σ
∑S+1
s=1 ws

+ E[‖∇φγ(xτ )|2].

Since θ−mK ≤ µ2/(8L2s), then

E[L2‖xτ+1 − zτ+1‖2] ≤µ∆φ(16 + 25α−Iα<1)(α+ 1)

S + 1

When ψ(·) = 0 and considering α as a constant, we have

E[‖∇φ(xτ+1)‖2]

≤E[‖∇φ(xτ+1)−∇φ(zτ+1) +∇φ(zτ+1)‖2]

≤2E[L2‖xτ+1 − zτ+1‖2 + ‖∇φγ(xτ )‖2] ≤ O
(
µ∆φ

S + 1

)
.

Indeed, for ψ(·) = 0, we can do slightly better by bounding
fs(xs−1) − fs(zs) ≤ L̂

2 ‖xs−1 − zs‖2. Then Es becomes
4θ−mKL̂‖xs−1 − zs‖2 and θ−mK(φ(xs−1) − φ(zs)) in
the proceeding analysis is gone, which removes the require-
ment θ−mK ≤ µ2/(16L2s). As a result, we can set K =
dlog(D)/(m log θ)e, where D = max(48L/µ, 2L̂3/µ3).

Gradient Complexity: Finally, we analyze the gradient
complexity. Let us consider the gradient complexity at the
s-th stage, which is

(n+m)K ≤ 2 log(Ds)

log(2τ1 + 2τ1ηµ+ 1− ηµ)
n

+
2 log(Ds)

log(1 + ηµ)
.

Let τ1 = c
ηµ , where 0 ≤ c = µ

3L̂
≤ 1

3 . We have that

(n+m)K = nK +mK

≤ 2 log(Ds)

log(2τ1 + 2τ1ηµ+ 1− ηµ)
n+

2 log(Ds)

log(1 + ηµ)

≤ 2 log(Ds)

log(2τ1 + 2c+ 1− c
τ1

)
n+

2 log(Ds)

log(1 + c
τ1

)
.

We analyze two cases.

Case 1: If n ≥ 3L̂
4µ , then τ1 = 1

2 , we have that

(n+m)K ≤ O
(

log(Ds)n+
logDs

log(1 + 2c)

)
.

Since 0 ≤ c ≤ 1/3 so log(1 + 2c) ≥ c, then

(n+m)K ≤ O
(

(n+
L̂

µ
) logDs

)
.

Then the total gradient complexity for finding
E‖∇φγ(xτ )‖2 ≤ ε2 is O((µn+ L) log(L/(µε)).

Case 2: If n ≤ 3L̂
4µ , then τ1 =

√
nµ

3L̂
∈ (0, 1

2 ]. We have that
following inequalities hold

τ1
c

=

√
3nL̂

µ
≤ 3L̂

2µ
, log(

τ1 + c

c
) ≤ log

3L̂

µ
,

log(1 + c/τ1) ≥ c/(2τ1)

and due to (1) if 2τ1 + 2c− c
τ1
≤ 1/2, then log(2τ1 + 2c+

1 − c
τ1

) ≥ τ1 + c − c/(2τ1); (2) if 2τ1 + 2c − c
τ1
≥ 1/2,

then log(2τ1 + 2c+ 1− c
τ1

) ≥ log(1.5), we have

1

log(2τ1 + 2c+ 1− c
τ1

)

≤max

{
1

log(1.5)
,

1√
nµ

3L̂
+ µ

3L̂
−
√

µ

12nL̂

}
≤ O

(√
L̂

nµ

)
.

Thus we have (n + m)K ≤ O

(√
nL̂
µ log L̂

µ

)
, and the

total gradient complexity for finding E‖∇φγ(xτ )‖2 ≤ ε2 is
O(
√
µnL log(L/(µε)).

4. Experiments
In this section, we conduct some experiments for solv-
ing regularized classification problem in the form of (2)
with `(x;ai, bi) = 1

2 (max(0, 1−bia>i x))2 being a squared
hinge loss that is more suitable for classification.
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Figure 1. Comparison of different algorithms for two tasks on different datasets

Penalties and Parameters. We choose two different non-
convex and non-smooth penalty functions as the regulariz-
ers, namely log-sum penalty (LSP) R(x) =

∑d
i=1 log(β +

|xi|), (β > 0) and transformed `1 (TL1) penalty R(x) =∑d
i=1

(β+1)|xi|
β+|xi| , (β > 0) where β > 0 is a parameter. Both

LSP and TL1 can be written as a difference of convex func-
tions: R(x) = r1(x) − r2(x), where r1(x) is a scaled `1
norm and r2(x) is smooth and convex (cf. details provided
in Appendix D). Then the problem becomes

min
x∈Rd

φ(x) :=
1

n

n∑
i=1

(`(x;ai, bi)− r2(x))︸ ︷︷ ︸
fi(x)

+ r1(x)︸ ︷︷ ︸
Ψ(x)

,

For LSP, it is easy to show that the weakly convexity pa-
rameter and smoothness parameter of fi(x) are given by
µ = λ

β2 and L = λ
β2 +max1≤i≤d ‖ai‖2. For TL1, it is easy

to show that the weakly convexity parameter and smooth-
ness parameter of fi(x) are given by µ = 2(β+1)λ

β2 and L =
2(β+1)λ

β2 +max1≤i≤d ‖ai‖2. We fix β = 1 but set two differ-
ent values of λ ∈ { 1

n ,
0.1
n }. The experiments are performed

on two data sets from libsvm website (Chang & Lin, 2011),
namely rcv1 (n = 20, 242 and d = 47, 236) and real-sim
(n = 72, 309 and d = 20, 958).

Baselines and Settings. We compare the proposed Katalyst
with proxSVRG, its mini-batch variant (named proxSVRG-
mb in experiments) (Reddi et al., 2016c) and 4WD-Catalyst
(Paquette et al., 2018). Other algorithms like RapGrad,
SPIDER, SNVRG are not applicable to the considered prob-
lem. Since smoothness parameter L and weak convexity
parameter µ are given as discussed above, we implement
Algorithm 1 in (Paquette et al., 2018) for 4WD-Catalyst.
All parameters in three baselines including step size and the
number of iterations for the inner loop are set to their theo-
retical values suggested in the original papers. We also com-

pared Katalyst with RapGrad (Lan & Yang, 2018) for solv-
ing least square regression problem with smoothed SCAD
penalty (Lan & Yang, 2018). The detailed description of
experiments and the results are included in the Appendix.

Results. We report the results in Figure 1, where the x-axis
is (number of gradients)/n and the y-axis is log-scale of the
objective value. For 4WD-Catalyst, we only plot the result
at the end of each stage since it selects the better solution of
two sub-problems. It is worth noting that we do not include
the complexity of computing fκ(x̄s;xs−1) in solving sub-
problem for 4WD-Catalyst, i.e. (Paquette et al., 2018, eqn.
(7) of Algorithm 1), which would introduce more CPU time
in practice.

We can observe that when using a smaller λ that gives a
smaller value of µ-convexity parameter, Katalyst has rela-
tively larger speed-up compared with the two variants of
proxSVRG, which supports the presented complexity of
Katalyst that is adaptive to the weakly convex property. Kat-
alyst is also more efficient than 4WD-Catalyst, which needs
to solve two sub-problems at each stage to satisfy a certain
criterion that requires many iterations in practice.

5. Conclusion
In this paper, we have developed a SVRG-type accelerated
stochastic algorithm for solving a family of non-convex opti-
mization problems whose objective consists of a finite-sum
of smooth functions and a non-smooth convex function. We
proved that the gradient complexity can be improved when
the condition number is very large compared to the number
of smooth components, which achieves the best complexity
among all SVRG-type methods and also matches that of an
existing SAGA-type stochastic algorithm.
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