
Appendix: Control Regularization for Reduced Variance Reinforcement
Learning

A. Proof of Lemma 1
Lemma 1. The policy uk(s) in Equation (6) is the solution
to the following regularized optimization problem,

uk(s) = arg min
u

∥∥∥u(s)− uθk
∥∥∥2

+ λ||u(s)− uprior(s)||2, ∀s ∈ S,
(16)

which can be equivalently expressed as the constrained
optimization problem:

uk(s) = arg min
u

∥∥∥u(s)− uθk
∥∥∥2

s.t. ||u(s)− uprior(s)||2 ≤ µ̃(λ) ∀s ∈ S,
(17)

where µ̃ constrains the policy search. Assuming conver-
gence of the RL algorithm, uk(s) converges to the solution,

uk(s) = arg min
u

∥∥∥u(s)− arg max
uθ

Eτ∼u
[
r(s, a)

]∥∥∥2

+ λ||u(s)− uprior(s)||2, ∀s ∈ S as k →∞
(18)

Proof.

Equivalence between (6) and (16) : Let πθk(a|s) be a
Gaussian distributed policy with mean uθk(s): πθk(a|s) ∼
N (uθk(s),Σ). Thus, Σ describes exploration noise. From
the mixed policy definition (6), we can obtain the following
Gaussian distribution describing the mixed policy:

πk(a|s) = N (
1

1 + λ
uθk +

1

1 + λ
uprior,Σ)

=
1

cN
N
(
uθk(s), (1 + λ)Σ

)
· N
(
uprior(s),

1 + λ

λ
Σ
)
,

(19)

where the second equality follows based on the properties
of products of Gaussians. Let us define ‖u1 − u2‖Σ =
(u1 − u2)TΣ−1(u1 − u2), and let |Σ| be the determinant of
|Σ|. Then, distribution (19) can be rewritten as the product,

P(X(s)) = −c1 exp(− 1

2(1 + λ)
‖X(s)− uθk(s)‖Σ) ×

− c1λ
k
2 exp(− λ

2(1 + λ)
‖X(s)− uprior(s)‖Σ)

c1 =
1

cN
√

(2π)k(1 + λ)k|Σ|
(20)

whereX(s) is a random variable with P(X(s)) representing
the probability of taking action X from state s under policy
(6). Further simplifying this PDF, we obtain:

P(X(s)) = c2 exp
(
− ‖X(s)− uθk(s)‖Σ

− λ‖X(s)− uprior(s)‖Σ
)

c2 =
λ
k
2

cN (2π)k(1 + λ)k|Σ|

(21)

Since the probability P(X(s)) is maximized when the argu-
ment of the exponential in Equation (21) is minimized, then
the maximum probability policy can be expressed as the
solution to the following regularized optimization problem,

uk(s) = arg min
u

(s) ‖u(s)− uθk(s)‖Σ +

λ‖u(s)− uprior(s)‖Σ, ∀s ∈ S.
(22)

Therefore the mixed policy uk(s) from Equation (6) is the
solution to Problem (16) .

Convergence of (16) to (18): Note that uθk and πθk are
parameterized by the same θk and represent the iterative so-
lution to the optimization problem arg maxθ Eτ∼uk

[
r(τ)

]
at the latest policy iteration. Thus, assuming convergence of
the RL algorithm, we can rewrite problem (22) as follows,

uk = arg min
u

∥∥∥u(s)− arg max
uθk

Eτ∼uk
[
r(s, a)

]∥∥∥2

+ λ||u(s)− uprior(s)||2, ∀s ∈ S.
(23)

Equivalence between (16) and (17) : Finally, we want to
show that the solutions for regularized problem (16) and the
constrained optimization problem (17) are equivalent.

First, note that Problem (16) is the dual to Problem (17),
where λ is the dual variable. Clearly problem (16) is convex
in u. Furthermore, Slater’s condition holds, since there is
always a feasible point (e.g. trivially u(s) = uprior(s)).
Therefore strong duality holds. This means that ∃λ ≥ 0
such that the solution to Problem (17) must also be optimal
for Problem (16).
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To show the other direction, fix λ > 0 and define R(u) =
‖u(s)− uθk(s)‖2 and C(u) = ||u(s)− uprior(s)||2 for all
s ∈ S. Let us denote u∗ as the optimal solution for Problem
(16) with C(u∗) = τ > µ̃ (note we can choose µ̃). However
supposed u∗ is not optimal for Problem (17). Then there
exists ũ such that R(u∗) < R(ũ) and C(ũ) ≤ µ̃. Denote
the difference in the two rewards byR(ũ)−R(u∗) = Rdiff .
Thus the following relations hold,

R(ũ) + λC(ũ) < R(u∗) + λC(u∗) +Rdiff + λ
[
µ̃− τ

]
.

(24)

This leads to the conditional statement,

Rdiff + λ
[
µ̃− τ

]
≥ 0

⇒ R(ũ) + λC(ũ) < R(u∗) + λC(u∗).
(25)

For fixed λ, there always exists µ̃ > 0 such that the con-
dition Rdiff + λ

[
µ̃ − τ

]
≥ 0 holds. However, this leads

to a contradiction, since we assumed that u∗ is optimal for
Problem (16). We can conclude then that ∃µ̃ such that the
solution to Problem (16) must be optimal for Problem (17).
Therefore, Problems (16) and (17) have equivalent solutions.

B. Proof of Theorem 1
Theorem 1. Consider the mixed policy (5) where πθk is
an RL controller learned through policy gradients, and
denote the (potentially local) optimal policy to be πopt. The
variance (4) of the mixed policy arising from the policy
gradient is reduced by a factor ( 1

1+λ )2 when compared to
the RL policy with no control prior.

However, the mixed policy may introduce bias proportional
to the sub-optimality of the control prior. More formally, if
we let Dsub = DTV (πopt, πprior), then the policy bias (i.e.
DTV (πk, πopt)) is bounded as follows:

DTV (πk, πopt) ≥ Dsub −
1

1 + λ
DTV (πθk , πprior)

DTV (πk, πopt) ≤
λ

1 + λ
Dsub as k →∞

(26)

where DTV (·, ·) represents the total variation distance be-
tween two probability measures (i.e. policies). Thus, ifDsub

and λ are large, this will introduce policy bias.

Proof. Let us define the stochastic action (i.e. random vari-
able) Aactk+1 ∼ πθk+1

(a|s). Then recall from Equation (4)
that assuming a fixed, Gaussian distributed policy, πθk(a|s),

varθ[Aactk+1|s] ≈ α2 dπθk
dθ

varθ[∇θJ(θk)]
dπθk
dθ

T

. (27)

Based on the mixed policy definition (5), we obtain the
following relation between the variance of πk and πθk (the

mixed policy and RL policy, respectively),

varθ[πk+1] = varθ
[ 1

1 + λ
Aactk+1 +

λ

1 + λ
uprior|s

]
=

1

(1 + λ)2
varθ[Aactk+1|s]

=
α2

(1 + λ)2

dπθk
dθ

varθ[∇θJ(θk)]
dπθk
dθ

T

.

(28)

Compared to the variance (4), we achieve a variance re-
duction when utilizing the same learning rate α. Taking
the same policy gradient from (4), var[∇θJ(θk)], then the
variance is reduced by a factor of ( 1

1+λ )2 by introducing
policy mixing.

Lower variance comes at a price – potential introduc-
tion of bias into policy. Let us define the policy
bias as DTV (πk, πopt), and let us denote Dsub =
DTV (πopt, πprior). Since total variational distance, DTV

is a metric, we can use the triangle inequality to obtain:

DTV (πk, πopt) ≥ DTV (πprior, πopt)−DTV (πprior, πk).
(29)

We can further break down the term DTV (πprior, πk):

DTV (πprior, πk)

= sup
(s,a)∈SxA

∣∣∣πprior − 1

1 + λ
πθk −

λ

1 + λ
πprior

∣∣∣
=

1

1 + λ
sup

(s,a)∈SxA
|πθk − πprior|

=
1

1 + λ
DTV (πθk , πprior).

(30)

This holds for all k ∈ N. From (29) and (30), we can obtain
the lower bound in (26),

DTV (πk, πopt) ≥ Dsub −
1

1 + λ
DTV (πθk , πprior)

To obtain the upper bound, let the policy gradient algorithm
with no control prior achieve asymptotic convergence to the
(locally) optimal policy πopt (as proven for certain classes
of function approximators in (Sutton et al., 1999)). Denote
this policy as π(p)

θk
, such that π(p)

θk
→ πopt as k → ∞. In

this case, we can derive the total variation distance between
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the mixed policy (5) and the optimal policy as follows,

DTV (πopt, π
(p)
k )

= sup
(s,a)∈SxA

|πopt −
1

1 + λ
π

(p)
θk
− λ

1 + λ
πprior|

=
λ

1 + λ
sup

(s,a)∈SxA
|πopt − πprior| as k →∞

=
λ

1 + λ
DTV (πopt, πprior) as k →∞

=
λ

1 + λ
Dsub as k →∞.

(31)

Note that this represents an upper bound on the bias, since it
assumes that π(p)

θk
is uninfluenced by πprior during learning.

It shows that π(p)
θk

is a feasible policy, but not necessar-
ily optimal when accounting for regularization with πprior.
Therefore, we can obtain the upper bound:

DTV (πopt, πk) ≤ DTV (πopt, π
(p)
k )

=
λ

1 + λ
Dsub as k →∞.

(32)

C. Proof of Lemma 2
Lemma 2. For any state s, satisfaction of the condition,

2sTP
(
d(s, a) +

1

1 + λ
B2ue

)
<

sT (CT1 C1 +
1

γ2
k

PB1B
T
1 P )s,

implies that V̇ (s) < 0.

Proof. Recall that we are analyzing the Lyapunov function
V (s) = sTPs, where P is taken from the Algebraic Ric-
cati Equation (50). Let us take the time derivative of the
Lyapunov function as follows:

V̇ (s) =
dV

ds
ṡ = 2sTP

(
As+B2a+ d(s, a)

)
= sT (−CT1 C1 −

1

γ2
k

PB1B
T
1 P )s+ 2sTPd(s, a)+

2

1 + λ
sTPB2(uθk − uprior)

= sT (−CT1 C1 −
1

γ2
k

PB1B
T
1 P )s+ 2sTP

(
d(s, a)+

1

1 + λ
B2ue

)
.

(33)

The second equality comes from the Algebraic Riccati Equa-
tion (50), which the dynamics satisfy by design of theH∞
controller. From here, it follows directly that if,

2sTP
(
d(s, a) +

1

1 + λ
B2ue

)
<

sT (CT1 C1 +
1

γ2
k

PB1B
T
1 P )s,

then V̇ (s) < 0.

D. Proof of Theorem 2
Theorem 2. Assume a stabilizing H∞ control prior within
the set C for our dynamical system (14). Then asymptotic
stability and forward invariance of the set Sst ⊆ C

Sst : {s ∈ Rn : ‖s‖2 ≤
1

σm(γk)

(
2‖P‖2CD

+
2

1 + λ
‖PB2‖2Cπ

)
, s ∈ C}.

(34)

is guaranteed under the mixed policy (5) for all s ∈ C.
The set Sst contracts as we (a) increase robustness of the
control prior (increase σm(γk)), (b) decrease our dynamic
uncertainty/nonlinearity CD, or (c) increase weighting λ
on the control prior.

Proof.

Step (1): Find a set in which Lemma 2 is satisfied.

Consider the condition in Lemma 2. Since the right hand
side is positive (quadratic), we can consider a bound on the
stability condition as follows,

|2sTPd(s, a) +
2

1 + λ
sTPB2ue| <

sT (CT1 C1 +
1

γ2
k

PB1B
T
1 P )s.

(35)

Clearly any set of s that satisfy condition (35) also satisfy
the condition in Lemma 2. To find such a set, we bound the
terms in Condition (35) as follows,

|2sTPd(s, a) +
2

1 + λ
sTPB2ue|

≤ 2|sTPd(s, a)|+ 2

1 + λ
|sTPB2ue|

≤ 2‖s‖2‖P‖2CD +
2

1 + λ
‖s‖2‖PB2‖2Cπ,

(36)

where the first inequality follows from the triangle inequal-
ity; the second inequality uses our bounds on the distur-
bance, CD and control input difference Cπ, as well as
the Cauchy-Schwarz inequality. Now consider the right
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hand side of Condition (35). Recall that σm(γk) =
σmin(CT1 C1 + 1

γ2
k
PB1B

T
1 P ), the minimum singular value.

Then the following holds,

σm(γk)‖s‖22 ≤ sT (CT1 C1 +
1

γ2
k

PB1B
T
1 P )s (37)

Using the bounds in (36) and (37), we can say that Condition
(35) is guaranteed to be satisfied if the following holds,

2‖s‖2‖P‖2CD +
2

1 + λ
‖s‖2‖PB2‖2Cπ < σm(γk)‖s‖22

(38)

The set for which this condition (38) is satisfied can be
described by,

C \ Sst : {s ∈ Rn : ‖s‖2 >
1

σm(γk)

(
2‖P‖2CD

+
2

1 + λ
‖PB2‖2Cπ

)
, s ∈ C}.

(39)

Recall that C is the set in which the stabilizing H∞ con-
troller exists. From Lemma 2, V̇ (s) < 0 for all s ∈ C \ Sst
described by the set (39).

Step (2): Establish stability and forward invariance of Sst.

The Lyapunov function V (s) = sTPs decreases towards
the origin, and we have established that the time derivative
of the Lyapunov function is negative for s in set (39). There-
fore, any state s described by the set (39) (intersected with
C) must move towards the origin (i.e. towards Sst). This
follows directly from the properties of Lyapunov functions.
Therefore, the set Sst described in (34) must be asymptoti-
cally stable and forward invariant for all s ∈ C.

E. Description of Experiments
E.1. Experimental Car-Following

In the original car-following experiments, a chain of 8 cars
followed each other on an 8-mile segment of a single-lane
public road. We obtain position (via GPS), velocity, and
acceleration data from each of the cars. We cut this data
into 4 sets of chains of 5 cars, in order to maximize the data
available to learn from. We then cut this into 10 second
“episodes” (100 data points each). We shuffle these training
episodes randomly before each run and feed them to the
algorithm, which learns the controller for the 4th car in the
chain.

The reward function we use in learning is described below:

r = −v̇min(0, a)− 100|G1(s)| − 50G2(s),

G1(s) =


1

sfront−scurr if sfront − scurr ≤ 10
1

scurr−sback if scurr − sback ≤ 10

0 otherwise

G2(s) =


1 if sfront − scurr ≤ 2

1 if scurr − sback ≤ 2

0 otherwise

(40)

where scurr, sfront, and sback denote the position of the
controlled car, the car in front of it, and the car behind
it. Also, a denotes the control action (i.e. accelera-
tion/deceleration), and v̇ denotes the velocity of the con-
trolled car. Therefore, the first term represents the fuel
efficiency of the controlled car, and the other terms encour-
age the car to maintain headway from the other cars and
avoid collision.

The control prior we utilize is a simple bang-bang controller
that (inefficiently) tries to keep us between the car and front
and back. It is described by,

a =


2.5 if Kp∆s+Kd∆v > 0

−5 if Kp∆s+Kd∆v < 0

0 otherwise

∆s = sfront − 2scurr − sback
∆v = vfront − 2vcurr − vback

(41)

where vcurr, vfront, and vback denote the velocity of the
controlled car, the car in front of it, and the car behind it.
We set the constants Kp = 0.4 and Kd = 0.5. Essentially,
the control prior tries to maximize the distance from the car
in front and behind, taking into account velocities as well as
positions.

E.2. TORCS Racecar Simulator

In its full generality TORCS provides a rich environment
with input from up to 89 sensors, and optionally the 3D
graphic from a chosen camera angle in the race. The con-
trollers have to decide the values of up to 5 parameters
during game play, which correspond to the acceleration,
brake, clutch, gear and steering of the car. Apart from the
immediate challenge of driving the car on the track, con-
trollers also have to make race-level strategy decisions, like
making pit-stops for fuel. A lower level of complexity is
provided in the Practice Mode setting of TORCS. In this
mode all race-level strategies are removed. Currently, so
far as we know, state-of-the-art DRL models are capable of
racing only in Practice Mode, and this is also the environ-
ment that we use. In this mode we consider the input from
29 sensors, and decide values for the acceleration, steering
and brake actions.
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The control prior we utilize is a linear controller of the form:

Kp(ε− oi) +Ki

i∑
j=i−N

(ε− oj) +Kd(oi−1 − oi) (42)

Where oi is the most recent observation provided by the
simulator for a chosen sensor, and N is a predetermined
constant. We have one controller for each of the actions,
acceleation, steering and braking.

The pseudo-reward used during training is given by:

rt = V cos(θ)− V sin(θ)− V |trackPos| (43)

Here V is the velocity of the car, θ is the angle the car makes
with the track axis, and trackPos provides the position on
the track relative to the track’s center. This reward captures
the aim of maximizing the longitudinal velocity, minimizing
the transverse velocity, and penalizing the agent if it deviates
significantly from the center of the track.

E.3. CartPole Stabilization

The CartPole simulator is implemented in the OpenAI gym
environment (’CartPole-v1’). The dynamics are the same as
in the default, as described below,

θt+1 = xt + ẋτ,

θ̇t+1 = θ̇t +
(Mg sin θ − F cos θ −mlθ̇2 sin θ cos θ

4
3Ml −ml cos2 θ

)
τ,

xt+1 = xt + ẋτ,

ẋt+1 = ẋt +
(F +mlθ̇2 sin θ −mlθ̈ cos θ

M

)
τ,

(44)

where the only modification we make is that the force on the
cart can take on a continuous value, F ∈ [−10, 10], rather
than 2 discrete values, making the action space much larger.
Since the control prior can already stabilize the CartPole,
we also modify the reward to characterize how well the
control stabilizes the pendulum. The reward function is
stated below, and incentivizes the CartPole to keep the pole
upright while minimizing movement in the x-direction:

r = −100|θ| − 2x2. (45)

F. Control Theoretic Stability Guarantees
This section in the Appendix goes over the same material
in Section 5, but goes into more detail on theH∞ problem
definition. Consider the linear dynamical system described
by:

ṡ = As+B1w +B2a

z = C1s+D11w +D12a

y = C2s+D21w +D22a

(46)

where w ∈ Rm1 is the disturbance vector, u ∈ Rm1 is the
control input vector, z ∈ Rp1 is the error vector (controlled
output), y ∈ Rp2 is the observation vector, and s ∈ Rn is
the state vector. The system transfer function is denoted,

P s(s) =

(
P s11 P s12

P s21 P s22

)
=

(
D11 D12

D21 D22

)
+

[
C1

C2

]
(sI −A)

−1 [B1 B2

]
,

(47)

where A,Bi, Ci, Dij are defined by the system model (46).
Let us make the following assumptions,

• The pairs (A,B2) and (C2, A) are stabilizable and
observable, respectively.

• The algebraic Riccati equation ATP +PA+CT1 C1 +
P (B2B

T
2 − 1

γ2
k
B1B

T
1 )P = 0 has positive-semidefinite

solution P ,

• The algebraic Riccati equation APY + PYA
T +

BT1 B1 = PY (C2C
T
2 − 1

γ2
k
C1C

T
1 )PY has positive-

semidefinite solution PY ,

• The matrix γI − PY P is positive definite.

Under these assumptions, we are guaranteed existence of a
stabilizing linearH∞ controller, uH

∞
= −Ks (Doyle et al.,

1989). The closed-loop transfer function from disturbance,
w, to controlled output, z, is:

Twz = P s11 + P s12K(I − P s22K)−1P s21. (48)

Let σ(·) denotes the maximum singular value of the argu-
ment, and recall that ‖Twz‖∞ := supw σ(Twz(jw)). Then
the H∞ controller solves the problem,

min
K

sup
w
σ(Twz(jw)) = γk, (49)

to give us controller uH
∞

= −Ks. This generates the max-
imally robust controller so that the worst-case disturbance
is attenuated by factor γk in the system before entering the
controlled output. We can synthesize the H∞ controller
using techniques described in (Doyle et al., 1989).

The H∞ controller is defined as uH∞ = −BT2 Px, where
P is a positive symmetric matrix satisfying the Algebraic
Riccati equation,

ATP + PA+ CT1 C1 +
1

γ2
k

PB1B
T
1 P − PB2B

T
2 P = 0,

(50)
where (A,B1, B2, C1) are defined in (46). The result is that
the control law uH∞ stabilizes the system with disturbance
attenuation ‖Twz‖∞ ≤ γk.
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Since we are not dealing with a linear system, we need to
consider a modification to the dynamics (46) that linearizes
the dynamics about some equilibrium point and gathers
together all non-linearities and disturbances,

ṡ = fc(s, a) = As+B2a+ d(s, a), (51)

where d(s, a) captures dynamic uncertainty/nonlinearity as
well as disturbances. To keep this small, we could use feed-
back linearization based on our nominal nonlinear model
(1), but this is outside the scope of this work.

Consider the Lyapunov function V (s) = sTPs, where P
is taken from Equation (50). We can analyze stability of
the uncertain system (14) under the mixed policy (5) using
Lyapunov analysis. We can utilize Lemma 2 in this analysis
(see Appendix C) in order to compute a set Sst such that
V̇ (s) < 0 in a region outside that set. Satisfaction of this
condition guarantees forward invariance of that set (Khalil,
2000), as well as its asymptotic stability (from the region
for which V̇ (s) < 0).

By bounding terms as described in Section 5, we can con-
servatively compute the set Sst for which V̇ (s) < 0, which
is shown in Theorem 2. See Appendix D for the derivation
of the set (i.e. proof of Theorem 2).

G. PPO + TRPO Results
We also ran all experiments using Proximal Policy Optimiza-
tion (PPO) or Trust Region Policy Optimization (TRPO)
in place of DDPG. The results are shown in Figures 5 and
6. The trends mirror those seen in the main paper using
DDPG. Low values of λ exhibit significant deterioration
of performance, because of the larger policy search space.
High values of λ also exhibit lower performance because
they heavily constrain learning. Intermediate λ allow for
the best learning, with good performance and low variance.
Furthermore, adaptive strategies for setting λ allows us to
better tune the reward-variance tradeoff.

Note that we do not show results for the TORCS Race-
car. This is because we were not able to get the baseline
PPO or TRPO agent to complete a lap throughout learning.
The code for the PPO, TRPO, and DDPG agent for each
environment can be found at https://github.com/
rcheng805/CORE-RL.

https://github.com/rcheng805/CORE-RL
https://github.com/rcheng805/CORE-RL
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Figure 5. Learning results for CartPole and Car-Following Problems using PPO. (a) Reward improvement over control prior with different
set values for λ or an adaptive λ. The right plot is a zoomed-in version of the left plot without variance bars for clarity. Values above
the dashed black line signify improvements over the control prior. (b) Performance and variance in the reward as a function of the
regularization λ, across different runs of the algorithm using random initializations/seeds. Dashed lines show the performance (i.e. reward)
and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs. Again, performance is baselined
to the control prior, so any performance value above 0 denotes improvement over the control prior.

Figure 6. Learning results for CartPole and Car-Following Problems using TRPO. (a) Reward improvement over control prior with
different set values for λ or an adaptive λ. The right plot is a zoomed-in version of the left plot without variance bars for clarity. Values
above the dashed black line signify improvements over the control prior. (b) Performance and variance in the reward as a function of
the regularization λ, across different runs of the algorithm using random initializations/seeds. Dashed lines show the performance (i.e.
reward) and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs. Again, performance is
baselined to the control prior, so any performance value above 0 denotes improvement over the control prior.


