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Abstract

The problem of network reconstruction from con-
tinuous data has been extensively studied and
most state of the art methods rely on variants
of Gaussian Graphical Models (GGM). GGM
are unfortunately badly suited to sparse count
data spanning several orders of magnitude. Most
inference methods for count data (SparCC, RE-
BACCA, SPIEC-EASI, gCoda, etc) first trans-
form counts to pseudo-Gaussian observations be-
fore using GGM. We rely instead on a Poisson-
LogNormal (PLN) model where counts follow
Poisson distributions with parameters sampled
from a latent multivariate Gaussian variable, and
infer the network in the latent space using a varia-
tional inference procedure. This model allows us
to (i) control for confounding covariates and dif-
ferences in sampling efforts and (ii) integrate data
sets from different origins. It is also competitive
in terms of speed and accuracy with state of the
art methods.

1. Introduction

Networks are the de facto mathematical object used to model
and represent pairwise interactions between entities of in-
terest. Examples include air traffic between airports, social
interactions between participants of a conference, trophic
relationships between species, gene regulations, ecological
interactions between microbial species, etc. However, most
networks are not observed directly but must be reconstructed
first from indirect node-level observations using some kind
of statistical procedure. In this perspective, graphical mod-
els are popular among statisticians to explore relationships
between nodes in graphs since undirected graphical models
(Lauritzen, 1996), also called Markov random fields (Harris,
2016), are a convenient class of models with sound the-
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oretical groundings for capturing conditional dependence
relationships between nodes: ¢ and j are linked in G (noted
i ~ j) if and only if features ¢ and j are conditionally de-
pendent given all the others. Powerful inference procedures
exist for Gaussian Graphical Models (GGM) for contin-
uous data and Ising or voter models for binary data and
the research field is still active. An informative and non-
exhaustive set of seminal papers in this field may include
Yuan & Lin (2007); Banerjee et al. (2008); Ravikumar et al.
(2010); Meinshausen & Biihlmann (2006). GGM have been
successfully used to understand complex genetic regulations
(Moignard et al., 2015; Fiers et al., 2018), to identify di-
rect contacts between protein subunits (Drew et al., 2017)
or to identify functional pathways associated to a disease
(Yu et al., 2015). Unfortunately, we lack similar powerful
procedures for count data, which are the focus of this work.

Count data arise naturally in fields such as ecology (species
count at a given site), transcriptomics (number of transcripts
in a tissue) and quite broadly, all subfields of biology based
on molecular markers and high-througput sequencing. They
also arise in political sciences (voting outcomes), tourism
management (number of visitors to sightseeing spots), etc.
By analogy to the Gaussian graphical setting, many efforts
have been devoted throughout the years to develop multi-
variate Poisson distribution in order to model dependencies
between count variables (see Inouye et al., 2017, for a re-
view). Unfortunately, there is no satisfying Poisson coun-
terpart to the multivariate Gaussian. Besag (1974) proved
that so-called Poisson Graphical Models (PGM) are limited
to negative dependencies to ensure proper joint distribu-
tion. Yang et al. (2012) proposed several variants of PGM
but all of them fail to have both marginal and conditional
Poisson distributions. Similarly, Allen & Liu (2012)’s local
PGM and Gallopin et al. (2013)’s log-normal models both
satisfy the local Markov property but have no proper joint
distribution. Both methods estimate the neighborhood of
a node by performing a generalized linear regression a la
Meinshausen & Biihlmann (2006). Last but not least, the
observed count data often display a variance larger than
expected under the Poisson assumption, so that a model that
induces over-dispersion is highly desirable.

A different and more recent line of work — used for microbial
ecology in SPIEC-EASI (Kurtz et al., 2015), gCoda (Fang
et al., 2017) or BAnoCC (Schwager et al., 2017) — addresses
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the problem differently, by 7) replacing counts with (regular-
ized) frequencies, and i) taking their log-ratios before 4i7)
moving back to the GGM framework. A positive side effect
of this transformation is to remedy the issue referred to as
the compositionality problem: counts can only be compared
to each other within a sample but not across samples as they
depend on a sample-specific size-factor, which may induce
spurious negative correlations. The transformation is simple
but prevents integration of heterogeneous data sources and
thus discovery of interactions between nodes from different
sources (e.g. bacteria and fungi), although important ones
have been experimentally documented (Lima-Mendez et al.,
2015). Finally, although their statistical framework can ac-
comodate it, previous methods do not offer a way to correct
for confounding factors and may thus confuse systematic
effects (e.g. reliance on common nutrients) for interactions
(Vacher et al., 2016).

In this paper, we use the framework of hierachical Poisson
log-normal (PLN) model with a latent Gaussian layer and
an observed Poisson layer. We use the GGM formulation to
model direct interactions in the Gaussian layer and the GLM
formulation to control for confounding factors in the Poisson
layer, in line with Chib & Greenberg (1995); Park & Lord
(2007); Ma et al. (2008). By using source-specific offsets
(Agresti, 1996), we both correct for compositionality and
integrate data from different sources. The model is similar
to Biswas et al. (2016) with a major difference: we do not
neglect the uncertainty of the latent Gaussian vector during
the inference step but use instead a variational procedure
that consistently accounts for it.

We introduce the model in Section 2, the variational infer-
ence procedure in Section 3, simulation results in Section 4
and a reanalysis of two datasets in Section 5

2. A Graphical Model for Count Data
2.1. Multivariate Poisson Log-Normal (PLN) Model

In the multivariate PLN model (Aitchison & Ho, 1989)
an i.i.d. sample is drawn as follows: for each observed
p-dimensional count vector Y; (1 < ¢ < n), a Gaussian
latent (i.e. hidden) p-dimensional vector Z; is drawn and
the coordinates of Y; are sampled independently from a
Poisson distribution, conditionally on Z;:

Zi ~ N(0y, ), Yij | Zij ~ Plexp{p; + Zi;}). (1)
The parameters involved are gt = (u;)1<j<p and 3 =
(0jk)1<jk<p- In the following, all count vectors Y; are
gathered into the n X p matrix Y £ (Yij)1<i<n,i<j<p- The
same way. The PLN distribution displays ge;efal_inzeresting

properties such as over-dispersion with respect to the Pois-
son distribution. Indeed: E(Y;;) = e#i+9ii/2 and V(Y;;) =

E(Y;;) + (e?37 — 1)E(Y;;)* > E(Yi;). Furthermore, the
covariance between coordinates can take an arbitrary sign as
Cov(Y3;,Yir) = (e77* —1)E(Y;;)E(Yix), which means that
Cov(Yjj, Yir) has the same sign as Cov(Z;;, Zi,) = 0jk.
Introducing covariates. Interestingly, covariates can be
easily introduced in the PLN model, by replacing the con-
stant vector p with a regression term. Furthermore, in appli-
cations dealing with counts, an offset term is often required
to account for some effects such as the sampling effort.
Denote x; = (zi¢)1<¢<q the vector of covariates for ob-
servation ¢ and B = () 1<¢<d,1<j<p the corresponding
matrix of regression coefficients. Also denote by o0;; the
offset term for count Y;;. Both can be accounted for by
modifying (1) into

Yij | Zij ~ P (exp{oij +x] B + Zij}) - 2)

We define the offset matrix O = (0;;)1<i<n,1<;<p and the
design matrix X = (z,¢)1<i<n,1<r¢<q i the same way as
Y and Z.

2.2. The PLN-network Graphical Model

As mentioned in Section 1, no generic multivariate model
is available for counts and existing models often impose
undesired constraints on the dependency structure. To cir-
cumvent this issue, we use the PLN model to push the struc-
ture inference problem to the latent space and to infer the
dependency structure relating the coordinates of the latent
vector Z;. We use the framework of graphical models (Lau-
ritzen, 1996) to model this dependency structure. Intuitively,
the graph encodes the conditional dependence structure be-
tween random variables. Formally, Z; and Z; are connected
in the graph if and only Z; and Z; are independent condi-
tionally on all other variables, that is: Z; / Z; | Z\y; j3-
Since the Z;’s are jointly Gaussian, so is (Z;, Z;|Z_; j1).
In particular, the partial correlation between Z; and Z; given
the (Zk)rzij 18 pij = —uj/\/QuiClj; where @ £ 571
is the precision matrix. Therefore Z; and Z; are condition-
ally independent if and only if 2;; = 0 and the structure
inference problem reduces to inferring the support of €2,
which is assumed to be sparse. In this perspective, it is
critical to account for covariates that may have an effect on
the observed counts to avoid spurious edges in the inferred
graphical model (see e.g. Chandrasekaran et al., 2012, and
discussions). As a consequence, we adopt the following
parametrization for the distribution of Z; given in (1):

Z; ~N(0,,Q71), Q sparse 3)
which separates the structure parameter €2 from the other
effect parameters O and B appearing in the emission distri-
bution (2).
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3. Sparse Variational Inference

We now describe the adopted inference strategy, which aims
to provide an estimate of the parameter 8 = (B, €2).

3.1. Incomplete Data Model

In the incomplete data model (3), the evaluation of
the log-likelihood of the observed data logpe(Y) =
log [ pe(Y,Z)dZ is intractable, as well as its maximization
with respect to 6. In this setting, the most popular strategy
to perform maximum likelihood is to use the EM algorithm
of (Dempster et al., 1977), which requires the evaluation of
the conditional expectation of the complete log-likelihood
Eg [log pe(Y,Z)|Y]. Unfortunately, this amounts to com-
puting (some moments of) the conditional distribution of
each latent vector Z; conditionally on the corresponding
count vector Y;, which has no close form in the PLN model.
(Karlis, 2005) suggests to achieve this task via numerical
or Monte-Carlo integration, but this approach is computa-
tionally too demanding when dealing with even a moderate
number of variables.

Variational approximation. To circumvent this issue, we
resort to a variational approximation (Wainwright & Jordan,
2008), which consists in finding a proxy for the conditional
distribution pg (Z;|Y;). This approach relies on a divergence
measure between the true conditional distribution and the
approximate distribution, chosen within a class Q of simple
distributions, here the set of Gaussian distributions. Namely,
each conditional distribution pg(Z;]Y;) is approximated
with a multivariate Gaussian distribution ¢; with mean vec-
tor m; and diagonal covariance matrix S; = diag(s?). The
variational parameters are gathered into ¢ = (M, S), where

M= [m]..mJ]T,S = [(s?)T...(s2)T]T.

Choosing the Kullback-Leibler divergence to measure the
quality of the approximation leads to the “variational” EM
(VEM) algorithm, which aims to maximize the lower bound
of the log-likelihood of the observed data, defined by

J(Y;4,0) 2 logpe(Y) — KL [qy(Z)|Ipe(Z]Y))]
= E, [logpe(Y,Z)] — E, [log gy (Z)]

where [, is the expectation w.r.t. the distribution gy

4)

Sparse structure inference. To infer the structure — that
is the underlying ’'network’ — we need to determine the
support of €. To this end we add an ¢; sparsity-inducing
penalty to the lower bound of the likelihood, mimicking the
Gaussian case like in the Graphical-Lasso. The correspond-
ing objective function is thus

Jstmcl(Y§'¢’70) £ J(Y7 1#’ 0) - A HQ”(l,off
<logpe(Y) =M |Qe, 05,  O)

where [[2[[¢, ot = >4, [k ] is the off-diagonal ¢;-norm
of £ and A > 0 is a tuning parameter controling the amount
of sparsity. Note that, by construction, Jyu is a lower
bound of the penalized log-likelihood.

3.2. Inference Algorithm

Objective function. The objective function Jyy,¢ inherits
its properties from J since they only differ by the || Q||¢, off
term. Thanks to Gaussian properties, J can be expressed in
compact matrix notation. Let Sy = Y7 | S; be the accu-
mulated variance matrix; 3 = n~? (MT™™ + S, ) be the
estimated covariance matrix and A £ (A;;)1<i<n1<j<p
the n x p matrix of expected counts, with entries:

Aij £ By (Yij) = exp(oy; + x] Bj + mij + 57,/2).

Then, the approximated log-likelihood writes:

J(Y;4,0) =1] <Y®(0 +XB + M)—A+% log s) 1,

+ P logdet 2 — 2 tr (29) + ™ K(Y), (6
2 2 2
where K(Y) =}, ;log(Y;;!) and © is the Hadamard
(term-to-term) produc't.

We now state the biconcavity of J and, consequently, of
Jsruer- This is the building block of the proposed alternating
optimization algorithm. Proofs are given in Section S1.

Proposition 1 (Biconcavity of J). J is biconcave in
(B,M,S) and Q. Furthermore, if X has full rank, J is

strictly biconcave.

Corollary 1 (Biconcavity of Jyyyct). Jsirucr IS biconcave in
(B, M, S) and Q. Furthermore, if X has full rank, Jye; is
strictly biconcave.

The corollary follows from the concavity of —A||€2]|1 ot and
from the fact that the sum of a strictly concave function with
a concave function remains strictly concave.

Unfortunately, J (and consequently Jgc¢) i not jointly con-
vex in (B, M, S, €2) in general and counter-examples can
be found. In particular, this means that although gradient
descent will converge to a stationary point of J (resp. Jstruct)s
this stationary point is not guaranteed to be the global op-
timum of J (resp. Jswer) and may depend on the starting
point of the iterative algorithm. Note that the same caveat ap-
plies to alternating optimization schemes such as the (V)EM
algorithm.

Alternate optimization. To estimate both the variational
and the model parameters we need to maximize Jyyyer With
the additional box constraint that S = 0, i.e., that vari-
ance parameters in the variational distribution are posi-
tive. Thanks to the biconcavity of Jg, We iterate two
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updates until convergence. Iteration h consists of update
(h1) where (B M), S() are obtained by maximizing
J(Y; (M, S), (B, 2(=1)), such that S is positive-definite,
and update (he) where Q™ is obtained by maximizing
Jstruct(Y; (M(h)7 S(h))a (B(h)a Q))

Problem (k1) can be solved by a gradient ascent with
box-constraints for the variational variances S that must
remain positive. We use the gradients which are given
by VgJ = XT(Y — A), VmJ = Y — A — MQ,
Vgd = % (89 — A —1,, diag(Q)T).

When A > 0, Problem (h2) is equivalent to minimizing

—nlogdet Q + ntr (ﬁ)ﬂ) + 2X |||, oft Over the set of

positive definite matrices. We recognize a sparse multi-
variate Gaussian maximum likelihood problem (Yuan &
Lin, 2007; Banerjee et al., 2008), efficiently solved by the
graphical-Lasso algorithm (Friedman et al., 2008).

The algorithm is initialized using the estimator of the
graphical-Lasso obtained by shrinking the covariance ma-
trix computed on the Pearson residuals of a linear model
predicting log(1 4+ Y) from X and O.

Model Selection. Model selection is a notoriously hard in
network inference. Several procedures have been proposed
to select an optimal value of A in GGM and we rely on
both (i) the Stability Approach to Regularization Selection
(StARS) introduced in Liu et al. (2010) and (ii) variants of
BIC taylored for the high-dimensional setting, such as EBIC
(Chen & Chen, 2008).

Briefly, StARS relies on resampling a large number B of
subsamples of size m and inferring a network Q(*) on
each subsample b for each value of A in a grid A. The
frequency of inclusion of edge e = ¢ ~ j is computed

as p) = #{b: QEI;’)‘) # 0}/B and its variance as v} =
pX(1 — p)). The stability stab()\) of the network is then
simply stab(\) = 1 — 20> where " is the average of the
v2. Note that stab()\) decreases from 1 for A = oo (empty
network) to a nonnegative value for small A. StARS selects
the smallest A (densest network) for which stab(\) > 1—2.
We use B = 50 subsamples of size m = |10/n] and
28 = 0.05 as default, as suggested in Liu et al. based on
theoretical results.

By contrast, EBIC is a non-resampling based alternative
with no computational overhead, that penalizes both the
number of unknown parameters and the complexity of the
model space (Chen & Chen, 2008). In our framework,
EBIC, (B,$2),) = —2loglik(Y;B, ) + log(n)(|&x +
pd) + vlog (”(”l;ll)ﬂ), where £, is the edge set of a can-

m

didate graph and (n) is the binomial coefficient. The first
penalty term is the usual BIC penalization: our model has
pd unknown regression parameters in B plus |€, | inferred

terms in €2. The second penalty term, tuned by v € [0, 1],
is used to adjust the tendency of the usual BIC — recov-
ered for v = 0 — to choose overly dense graphs in the
high-dimensional setting. Here, we replace loglik in EBIC
by its variational surrogate J(Y;2) and use v = 0.5 as
recommended by Foygel & Drton for GGM.

Implementation. We implemented our algorithm in a
R/C++ package PLNmodels, available on github https:
//github.com/jchiquet/PLNmodels. using Gra-
dient ascent with box constraints, as implemented in the
nlopt library (Johnson, 2011), for the first step and the im-
plementation of the graphical-Lasso found in the glassofast
R package (Sustik & Calderhead, 2012) for the second step.

4. Simulation Study
4.1. Simulation Protocol

Network generation. We generate ground truth graphs
according to an Erdds-Rényi model (no particular structure),
a preferential attachment model (scale-free property) or an
affiliation model (community structure). These models are
used to generate a binary adjacency matrix G and in turn a
positive-definite precision matrix €2 with the sparsity pattern
of G. Q is defined in two steps as follows: = G X v,
Q = Q + diag(| min(eig())| + u), with u,v > 0. The
two scalars u, v control both the difficulty of the network
inference problem — they are related to the strength of the
partial correlations, and in turn of the interactions in the
network — and the conditioning of €. Higher v leads to
stronger correlations and higher u to better conditioning.
We always set v = 0.3, « = 0.1 in our simulations. This is
similar to the protocol used in the R package huge.

Compositional data generation. To ensure fair compar-
isons, we did not simulate count data from a PLN distri-
bution. Instead, we introduce a compositional model fre-
quently used in community ecology and genomics. The
simulation process is sketched in Section S2 and consists in
3 steps:

1) Draw the ’real’ (unreachable) abundances a; of the
p species in sample ¢ from a lognormal: a; ~
LN (XB, Q1) where X accounts for some covari-
ates and (2 is the latent network between species gen-
erated as explained above.

11) Transform abundances a; to proportions m; with a
. . s .
logistic-transform, i.e. m;; = e /37 e®7.

124) For random value of N; — the sampling effort in sam-
ple ¢, typically the sequencing depth — draw observed
counts Y; via a multinomial distribution M(N;, ;).
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Figure 1. Left: Effect of the variability of the sampling effort, a.k.a the compositional problem, on the quality of the reconstruction of
50-node random networks measured with AUC (top) or AUPR (bottom) on 100 simulations. Right: Performance of the model selection
procedures (BIC or StARS) in PLNnetwork for reconstructing 50-node randoms networks, averaged over 100 simulations.

Experimental setup. We fix the number of variables to
p = 50 in all our experiments. This represents both the
largest network size that can be reasonably recovered con-
sidering typical sample sizes (n ~ 50 — 100) and the (ap-
proximate) number of nodes in the datasets of Section 5.
The sampling efforts N; are drawn from a negative binomial
distribution with mean 1000 and variance 1000 + 10002 /v:
N; ~4 NB( = 1000, v). The covariates are chosen so
that X is the design matrix of a one-way ANOVA with 3
balanced groups and the regression coefficients are sam-
pled in a uniform distribution: Bjj, ~"% U/(—b, b). These
parameters were chosen to mimic (marginal) count distri-
butions — in terms of location and dispersion — commonly
observed in microbial ecology applications. To control the
difficulty of the problem, we vary (¢) the sample size n, (%)
the overdispersion parameter v, larger v corresponding to
more similar sampling efforts, (ii7) the effect of covariates
b, larger b corresponding to larger Signal to Noise Ratio
(SNR) in the underlying linear model and therefore smaller
fraction of variance explained by 2.

Competitors. All methods are referred to using
teletype family font. For instance, we refer to our
method as PLNnetwork. Among the many competitors,
we pick one representative from each family:

i) Sparse GGM methods (Friedman et al., 2008; Mein-
shausen & Biihlmann, 2006) applied to log-transformed
counts, or graphical-Lasso, as implemented in
the R-package glasso (Friedman et al., 2008).

ii) Sparse log-linear graphical models (Yang et al., 2012;
Allen & Liu, 2012), or sparse LLM, as implemented
in the R-package RNAseqNet (Imbert et al., 2017).
iii) Methods dedicated to compositional count data, such
as SPiEC-Easi (Kurtz et al., 2015) for the precision
matrix and sparCC (Friedman & Alm, 2012) for the
covariance one. Both methods correct for composition-
ality by using pseudo-counts plus log-transformation.
The former then applies graphical-Lasso and non-
paranormal transformation (Liu et al., 2009) while
the latter uses resampling and thresholded correlations.
Both are implemented in the R-package spieceasi.

Performance assessment. Each competitor produces a
sequence of networks, varying from an empty to a full
graph and ordered by a tuning parameter A that controls
the number of edges in the graph. Since the problem of
choosing A is particularly troublesome in network inference,
it was left aside by comparing the methods in terms of the
precision-recall (PR) or Receiver operating characteristic
(ROC) curves. We recall that ROC curves are obtained by
plotting the true positive rate (or recall) as a function of the
false positive rate (or fall-out), while PR curve represents
the positive predictive value (or precision) as a function of
the recall. Although ROC curves are more present in the
literature, PR curves are more informative in unbalanced
cases with a small proportion of positives as they give less
weight to regions with large false positive rates, which are
of limited interest in practice (Davis & Goadrich, 2006).
The curves for one simulation were summarized using the



Sparse Network from Count Data

area under the ROC curve (AUC) and area under the PR
curve (AUPR): the larger the AUC/AUPR, the better the
reconstruction.

4.2. Results

Our first batch of experiments illustrate the effect of sam-
pling effort and external covariates on network quality.

Non-compositional methods fail. We study the hetero-
geneity of sampling efforts by varying v in {100, 10, 2}
(resp. small, medium and large heterogeneity) and
comparing graphical-Lasso, sparse LLM and
PLNnetwork. The latter is the only one that accounts
for compositionality by introducing a sample-specific off-
set, computed as the sum of counts in each sample. Re-
sults averaged over 100 replicates are displayed in Fig-
ure ??. They show that, as expected, PLNnetwork is
not sensitive to differences in sampling effort, contrary to
graphical-Lasso and sparse LLM. Both methods
completely fail in terms of AUC, and even more so in
terms of AUPR, when sampling efforts vary wildly. For
large sample sizes (n = 120) and medium variability,
although the AUC is close to 1, the low AUPR proves
that the first, and supposedly most reliable, edges inferred
by graphical-Lasso and sparse LLM are in fact
mostly false positives.

Accounting for covariates effect does matter. We now
focus on the effect of an external covariate in the data, and
how it affects the performance of the methods. Regarding
the sampling effort, we fix ¥ = 2 in this experiment, and
we only compare the compositional methods together since
the other approaches fail in this setting. The strength of the
covariate effect is controlled by the parameter b in our com-
positional model. The larger b, the larger the effect of the
covariate and the harder the problem of network reconstruc-
tion when not accounting for the covariate. We vary b in
{1, 2,3}, (resp. small, medium and large effects). On top of
that, we vary the sample size and consider the three network
topologies (scale-free, random and community networks),
always with p = 50 nodes. We evaluate the performance
of SPiEC-Easi, sparCC and PLNnetwork in terms of
AUC and AUPR on 100 simulation of each kind and report
the average values in Section S3.

Model Selection issue. 'We now focus on PLNnetwork
to address the question of choosing A and compare StARS
and EBIC, as presented in Section 3. Figure ?? reports
the results of our experiments in terms of precision/recall
averaged over 100 simulation. It shows that StARS system-
atically outperforms BIC in terms of recall and precision.
However, this increase in performance comes at the cost of
a huge computational burden.

5. Hlustrations

We illustrate our methodology with two examples from
different fields. The French election example shows that
our method can handle large datasets. We illustrate how
to interpret the results and propose some validation checks.
We then consider a metagenomic example (Oak mildew),
on which we show how to decompose the effects of the
different covariates on the inferred interactions and propose
some biological interpretations.

5.1. French Presidential Elections, 2017
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Figure 2. Network between candidates of last French presidential
elections. Left column: Networks inferred under different mod-
els. Edges represent partial correlations p;;: their thickness is
proportional to |p;;| and they are colored red if p;; > 0 and blue
if p;; < 0. A node’s size and label size are proportional to its
degree. Right column: Positions of the polling stations M in the
Gaussian latent space. Since the latent space has dimension 11, we
performed a PCA of M and show only the principal plane. Red
lines represent contour lines of the density estimated with a 2D
Gaussian kernel. Roughly elliptic curves reveal that there is no
obvious remaining structure in the latent space.

We first consider the first round of the French presidential
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election of 2017. The dataset consists in the votes cast for
each of the 11 candidates in the more than 63 000 polling
stations. Our goal here is to find competing candidates, who
appeal to different voters, and compatible candidates, who
appeal to the same voters, after accounting for the fact that
elections are a zero-sum game.

Data were downloaded from the French open data platform
data.gouv. fr and filtered to remove stations with no
votes. To reduce inference times, we consider a random
subset of 13,704 stations that accounted for 20% of the reg-
istered population. The voting population in those booths
varied wildly, ranging from 10 to 105,891 (6th district of
French citizens living abroad) registered voters, with a me-
dian at 736 and 99.5% of the stations with less than 1,700
voters. We consider the log-registered population of voters
as an offset to account for different station sizes. This means
in particular that votes are not affected by the compositional-
ity effect as much as in other settings, as they do not sum up
to the offset. Voting patterns are well-known to depend on
geography and we therefore consider department (a French
administrative division) as a proxy for geography.

‘We consider three models in total: without offset, with offset
but no covariate, with offset and covariate and use the same
grid of \ — decreasing geometrically from 1 to 1e=3 in 31
steps — for all. The optimal value A\* was selected using
StARS with 100 subsamples of size 1170 (=~ 10+/n).

The offset matters. Figure 2 shows that the inclusion of
an offset drastically reduces the density of the reconstructed
network and alters the sign and strength of partial correla-
tions. Failing to accoung for varying station sizes leads to
a spurious positive partial correlations between most candi-
dates: the shift of all stations towards the positive orthant
in the latent space are mistaken for positive correlations
between all coordinates. The offset counteracts this by
translating back all stations towards the origin along the
direction R1.

Correcting for geography is important. Figure 2 shows
that correcting for geography also changes the graph but to
a lesser extent. When including only the offset, the inferred
latent positions (M) do not display the expected elliptic
distribution of a multivariate Gaussian (Fig. 2, right panel).
Taking the department of origin into account helps recover
ellipticity and confirms that geography is indeed a strong
structuring factor in the latent space.

Political interactions. If we consider the network recon-
structed with the offset and geographic covariate as the
most reliable, results show that candidate with similar po-
litical leaning appeal to the same voters (M. Le Pen and N.
Dupont-Aignan (both far right), B. Hamon (left) and J.-L.
Mélenchon (far left), E. Macron (center) and J.-F. Fillon

(right)) whereas candidate with different leanings appeal to
different voters (M. Le Pen versus B. Hamon and E. Macron,
J.-F. Fillon versus J.-L. Mélenchon). More precisely, a neg-
ative partial correlation between candidates A and B means
that, all other things being equal, a high vote for one in a
station is correlated to a low vote for the other.

This may explain the absence of negative correlation be-
tween far left and far right: although their electorates are
different, they vote in the same stations. Similarly, the fact
that the positive partial correlation between E. Macron and
B. Hamon disappears when controlling for geography means
that they have high voter shares in the same departments
but not necessarily in the same polling stations. This is
confirmed by the high correlation (0.76) of their respective
regression coefficients across departments.

5.2. Oak Mildew

The metagenomic dataset introduced in (Jakuschkin et al.,
2016) consists of microbial communities sampled on the
surface of oak leaves (the samples). The leaves were col-
lected on trees with different resistance levels to the fungal
pathogenic species E. alphitoides, responsible for the oak
powdery mildew. The available information about the op-
erating taxononomic units (OTU — a proxy for species) are
given in Section S4. Unfortunately, not all OTU can been
identified at the species level and some OTU are not related
to any known species. In the following, we consider two
groups of samples labeled by Jakuschkin et al.: n, = 39
resistant samples (where E. alphitoides was essentially ab-
sent) and ny = 39 susceptible samples (where a signifi-
cant activity of E. alphitoides was detected). In addition
to the sampling tree, several covariates were measured for
each leaf: orientation, distance to trunk, distance to ground,
distance to base. The total number of OTU considered is
p = 114 in this data set (66 bacterial ones and 48 fungal
ones, including E. alphitoides).

Our aim here is to unravel the association between the dif-
ferent microbial and fungal species by reconstructing the
ecological network. Obviously, we are especially inter-
ested in the interactions between E. alphitoides and the
other species. We emphasize that unlike SPiEC-Easi or
sparCc, that are limited to interactions between bacteria or
between fungi due their normalisation step, we can actually
investigate interactions between bacterial and fungi E. alphi-
toides although each type has its own sequencing depth. A
similar target was already at the core of Jakuschkin et al.’s
work. However, our approach differs from theirs from a
methodological view-point as we jointly estimate the ef-
fect of the covariates B and the dependency structure €2
while they only corrected the observed counts for the effect
of the covariates using a regression model before feeding
the residuals from that regression to a network inference
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Figure 3. Oak mildew network analysis: networks inferred by PLNnetwork and selected by StARS for a stability of 0.995. Each
network correspond to networks inferred using samples respectively from the resistant tree, the susceptible tree and both trees. Blue
vertices represent Fungi; orange vertices represent bacteria. Edges represent partial correlations p;;: edge thickness is proportional to |p;;|
and are colored red if p;; > 0 and blue if p;; < 0. A node’s size and label size are proportional to its degree. Only nodes having at least
one edge among the three networks are included in the plots. Inset: Boxplot of regression coefficient of abundances against orientation.

method. This two-steps procedure fails to account for the
fact that B is estimated and to propagate uncertainty from
the first step to the second one. Moreover, Jakuschkin et al.
focused their study on the set of susceptible samples, while
we propose here to infer three networks: one for susceptible
samples, one for resistant samples and one for all samples.
By these means, we hope to obtain a more thorough map of
interactions between the pathogen and its ecosystem.

The three PLN models including respectively the suscepti-
ble, the resistant and all samples were defined as follows:
for the susceptible and the resistant models, we applied
PLNnetwork by including simple effects of the orienta-
tion and of the distance to the trunk (the other distances
were highly correlated with the former). For the model with
all the samples, we added the tree status (resistant or sus-
ceptible) as a covariate, in addition to its interactions with
the two other covariates (orientation and distance to trunk).
These two approaches — separating or merging the samples —
address different yet complementary goals: by separating
the samples, we assume that the two underlying networks
(and thus covariances) are different and need a specific anal-
ysis; the counterpart that merges all samples aims to render a
synergistic network that encompasses important interactions
from both situations after correction of the mean effects due
to the tree status (resistant or susceptible).

Before getting into the interpretation of the results in terms
of species interactions, we remind that the PLN models
also enables to measure the effect of the covariates on each
species. The right panel of Figure 3 displays the distribution
of the regression parameters of the two orientation indicators
(NE = north-east and SW = south-west), in each tree, across
each species type. We do not discuss extensively these
results but one may observe a strong interaction between SW
orientation and tree type on both fungi and bacteria: bacteria

are notably depleted in leaves facing SW in susceptible trees.

We now focus on the results of our analysis in terms
of networks in Figure 3. All networks inferred with
PLNnetwork where selected with StARS on a 50-size grid
of penalties, using a high stability level of 1 — 25 = 0.995
to drastically limit the number of false positive edges. The
resistant and susceptible networks show very different pat-
terns, while the consensus network seems to catch features
from both of them. In the susceptible network, E. alphi-
toides is identified as (¢) antagonist to fungi 1278, from the
Mycosphaerella punctiformis species, which colonizes liv-
ing oak leaves asymptomatically and may prevent infection
by E. alphitoides and (i¢) mutualist to fungi 29, from the
Xenosonderhenia syzygii species, usually found in leaf spots,
common on weakened and senescent leaves. The other mu-
tualists of E. alphitoides unfortunately belong to unknown
species and no similar observations can be made. Inter-
estingly, in the susceptible network, the pathogen has less
interactions than fungi 19, but is connected to it, whereas
both have few connections in the resistant network. As
E. alphitoides is known to be responsible for the mildew
disease, the comparison of these networks suggest that its
pathogenic effect is partially mediated by 19. In addition to
the direct effect of the pathogen on a small set of species, its
(negative) effect on fungi f19, which seems to play a central
role in the phyllosphere, leverages its impact on the whole
system. Finally, the consensus network encompassing both
sources of samples resembles the susceptible network, with
some notable discrepancies: a cluster composed by bacterial
species b21, b25, b26, b153 and to a lesser extent b33 is
found in the consensus network, which was only incipient
in the resistant network. This is probably due to the gain in
statistical power induced by a larger sample-size.
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