Random Walks on Hypergraphs with Edge-Dependent Vertex Weights:
Supplementary Material

Uthsav Chitra! Benjamin J Raphael '

A. Incorrect Stationary Distribution in Earlier Work

Li et al. (2018) claim in Equation 4 that the stationary distribution 7 of a random walk on a hypergraph H = (V, E, v, w)
with edge-dependent vertex weights is
d
Ty = A, (D
2uev d(u)

where d(v) = }_ ¢ p(,) w(e) is the sum of edge weights of incident hyperedges. Curiously, the stationary distribution given
by this formula does not depend on the vertex weights. A counterexample to this formula is shown in hypergraph H in
Figure 1 of the main text, with edge-dependent vertex weights as described in the caption (i.e. e, (b) = 1, 7., (b) = 2).
Computing the stationary distribution 7 of a random walk on H yields that 7, = 7/20, while Equation (1) incorrectly yields
Ty = 2 / 7.

B. Proof of Theorem 3.1

First we need the following definition and lemma.

Definition B.1. Let M be a Markov chain with state space X and transition probabilities p ,, for x,y € S. We say M is
reversible if there exists a probability distribution w over S such that

TgPx,y = TyPy,z- (2)

Lemma B.1. Let M be an irreducible Markov chain with finite state space S and transition probabilities p, ., for z,y,€ S.
M is reversible if and only if there exists a weighted, undirected graph G with vertex set S such that a random walk on G
and M are equivalent.

Proof of Lemma. First, suppose M is reversible. Since M is irreducible, let 7 be the stationary distribution of M. Note that,
because M is irreducible, 7, # 0 for all states .

Let G be a graph with vertices S, and edge weights w; , = T;p, . By reversibility, G is well-defined. In a random walk
on G, the probability of going from x to y in one time-step is
W,y TzPx,y . P,y

= = = pa,
ZZGS wm,z ZZGS me:c,z ZZGS pr”Z o

since ), g Pe,. = 1.

Thus, if M is reversible, the stated claim holds. The other direction follows from the fact that a random walk on an undirected
graph is always reversible (Aldous & Fill, 2002). O

Theorem 3.1. Let H = (V, E,w,~) be a hypergraph with edge-independent vertex weights. Then, there exist weights w,, ,,
on the clique graph G such that a random walk on H is equivalent to a random walk on GH.
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Proof of Theorem 3.1. Let y(v) = v.(v) for vertices v and incident hyperedges e. We first show that a random walk on H
is reversible. By Kolmogorov’s criterion, reversibility is equivalent to

Pui,vaPva,vs *° * Pop,vr = Poi,vnPop,vp—1 " " Pug,vy- (3)
for any set of vertices vy, ..., vy,.

Since the transition probabilities for any two vertices u, v are

- wie) () (u) w(e)
= D Ee) = 6w 2 5o @

e€cE(u,v) e€E(u,v)
we have
T £ we)) [0 w(e)
V1,V217V2,V3 Un,V1 —
5(01) e€E(vy,v2) 5(6) 5(’Un) e€E(vn,v1) 5(6)
1 [ () w(e)
= , where we define v,,11 = v

LU 5(w) 2 ) i 5)

% e€EE(v;,vit1)

y(v1) w(e) 7(v2) w(e)

DO 2 S
e€E(vn,v1) e€E(va,v1)
= Pvi,vnPun,vn1 " Pog,us -

So by Kolmogorov’s criterion, a random walk on H is reversible.

Furthermore, because H is connected, random walks on H are irreducible. Thus, by Lemma B.1, there exists a graph G
with vertex set V' and edge weights w,, ,, such that random walks on G and H are equivalent. The equivalence of the random
walks implies that p,, ,, > 0 if and only if w,, , > 0, so it follows that G is the clique graph of H. [

C. Non-Lazy Random Walks on Hypergraphs

First we generalize the random walk framework of Cooper et al. (2013) to random walks on hypergraphs with edge-dependent
vertex weights. Informally, in a non-lazy random walk, a random walker at vertex v will do the following:

1. pick an edge e containing v, with probability Z((Ei ,

Ye(w)

2. pick a vertex w # v from e, with probability 5©) e (o) and

3. move to vertex w.

Formally, we have the following.

Definition C.1. A non-lazy random walk on a hypergraph with edge-dependent vertex weights H = (V, E,w,~) is a
Markov chain on V with transition probabilities

e = 3 (50) G i) ©

e€E(v)

for all states v # w.

It is also useful to define a modified version of the clique graph without self-loops.
Definition C.2. Let H = (V, E,w,y) be a hypergraph with edge-dependent vertex weights. The clique graph of H without
self-loops, G, is a weighted, undirected graph with vertex set V, and edges E' defined by

nl’

E' ={(v,w) €V xV :v,w € e forsomee € E, and v # w}. (7)
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In contrast to the lazy random walk, a non-lazy random walk on a hypergraph with edge-independent vertex weights is
not guaranteed to satisfy reversibility. However, if H has trivial vertex weights, then reversibility holds, and we get the
following result.

Theorem C.1. Let H = (V, E,w, ) be a hypergraph with trivial vertex weights, i.e. v.(v) = 1 for all vertices v and
incident hyperedges e. Then, there exist weights w, , on the clique graph without self-loops GnHl such that a non-lazy
random walk on H is equivalent to a random walk on GnHl.

Proof. Again, we first show that a non-lazy random walk on H is reversible. Define the probability mass function

7y = ¢ - d(v) for normalizing constant ¢ > 0. Let p,, ,, be the probability of going from u to v in a non-lazy random walk on
H, where u # v. Then,

w(e) 1
mPuy=eodw) | Y, ey
e€E(u,v)

- ()

e€E(u,v

By symmetry, T,Dy,» = TyPu,u, SO @ non-lazy random is reversible. Thus, by Lemma B.1, there exists a graph G with
vertex set V' and edge weights w,, ,, such that a random walk on G and a non-lazy random walk on H are equivalent. The
equivalence of the random walks implies that p,, ,, > 0 if and only if w,, ,, > 0, so it follows that G is the clique graph of H
without self-loops. O

D. Relationships between Random Walks on Hypergraphs and Markov Chains on Vertex Set

In the main text, we show that there are hypergraphs with edge-dependent vertex weights whose random walks are not
equivalent to a random walk on a graph. A natural follow-up question is to ask whether all Markov chains on a vertex set
V' can be represented as a random walk on some hypergraph with the same vertex set and edge-dependent vertex weights.
Below, we show that the answer is no. Since random walks on hypergraphs with edge-dependent vertex weights are lazy, in
the sense that p, ,, > 0 for all vertices v, we restrict our attention to lazy Markov chains with p, , = 0.

Claim D.1. There exists a lazy Markov chain M with state space V such that M is not equivalent to a random walk on a
hypergraph with vertex set V' and edge-dependent vertex weights.

Proof. Suppose for the sake of contradiction that any lazy Markov chain with V' is equivalent to a random walk on some
hypergraph with vertex set V. Let M be a lazy Markov chain with states V and transition probabilities p*, with the
following property. For some states z,y € V, let

pi, =09
py, =0.01
M _ (®)
Dy, =0.1
py", = 0.001.

By assumption, let H = (V, E,w, ) be a hypergraph with vertex set V' and edge-dependent vertex weights, such that a
random walk on H is equivalent to M. Let p’’ be the transition probabilities of a random walk on H. We have

- 5 o 3)

ecE(x

e€E(z,y)
=d(y) - pys
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Plugging in Equations (8) to the above yields d(z) - 0.9 > d(y) - 0.1, or 9d(x) > d(y).

By similar reasoning, we also have d(y)-p,)’, > d(x)-p},, and plugging in Equations (8) gives us d(y)-0.001 > d(z)-0.01,
or d(y) > 10d(x).

Combining both of these inequalities, we obtain
9d(z) > d(y) > 10d(z). (10)

Since the vertex degree d(z) > 0, we obtain a contradiction. O

Next, for any k£ > 1, define a k-hypergraph to be a hypergraph with edge-dependent vertex weights whose hyperedges have
cardinality at most k. We show that, for any k, there exists a k-hypergraph with vertex set IV whose random walk is not
equivalent to the random walk of any (k — 1)-hypergraph with vertex set V. We first prove the result for k = 3.

Lemma D.1. There exists a 3-hypergraph with vertex set V, whose random walk is not equivalent to a random walk on any
2-hypergraph with vertex set V.

Proof. Let Hy = (V, E3,w,) be a 3-hypergraph with four vertices, V = {v1, va,v3,v4}, and two hyperedges e; =
{v1,v2,v3} and e3 = {v1, v3, vy }. Let the hyperedge weights be w(e;) = w(ea) = 1 and the vertex weights be 7., (v1) = 2,
and 7y, (v;) = 1 for all other v;, e; such that v; € e;.

51
@

721(1)1) =2
7&2(1)1) =1

V4
@

Yea(v4) =1

Ve (v3) =1
Yea(v3) =1

U3

€ €,

Figure 1. Pictured above is Hs.

For the sake of contradiction, suppose a random walk on Hj is equivalent to a random walk on Hy = (V, E2,w,7),

where Ho is a 2-hypergraph with vertex set V. Let p’i be the transition probabilities of H; for i = 2, 3; by assumption,
Hy _ Hs
pE=pr.

Hj must have the following edges: €5 = {v1,v2}, )4 = {v1,v4}, €hs = {v2,v3}, €hy = {v3,v4}, and €5 = {v1,v3}.
WLOG let 7, (vi) + Ye,, (vj) = 1 for each i, j. Moreover, while we do not depict these edges in the figure below, H> also
has edges e, = {v;} for i = 1,2, 3, 4, though it may be the case that w(e}) = 0.

For shorthand, we write w;; for w(e;;), w; for w(e;), and 7;;y. for Vel (vg) where k € {i,7}.

By definition, we have

_ . Hs _  Hy _ W12 121
= Dpgvy = Pogvy = (W) y an

[N

Thus, (%) = (2 m21) 7"
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Figure 2. Pictured above is Ha. For illustrative purposes, we do not draw out singleton edges.

By similar analysis of p}fs, . and using that y235 + 7233 = 1, we also have <%) = (4(1 - 7232))_1. Thus,

wiz2tw23ztws2

adding together the bounds on pf’2, and pffs
1 1
¥ (o ) () < (12)
27121 4(1 — 7232) w12 + wa3 + wa w2 + wa3 + we

Ho
V2,04

Note that, to get the bound in Equation (12), we summed p
v1, V3, we get the following bounds, respectively:

for i # 2. If we follow the same steps but replace v, with

1 7 1

+ + <1 (13)
8-v21 24(1 —131)  6(1 —y141)
1 1
L R S (14)
8y232 127131 67344
Now, solving for v121 in Equation (12) yields
2(1 - 7232)
> 2027 15
AT o 15)
Next, using that y;;, € [0, 1], we bound Equation (13):
N 7 . 1
T 8vi21 24(1 —yi31)  6(1 —141)
7 1
< 7.1 16
_8’7121+24+6 ( )
_1,u
8y121 24’

Solving for 7121 yields 7121 < 13. Combining with Equation (15):

a7
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Bounding Equation (14) in a similar way to Equation (16) gives us:

1> 1 i 5 4 1
T 8y232 127131 67344
> ! + > + ! (18)
T 8y232 12 6
1T
8y232 127
Solving for 7435 gives us
3
> —. 1
"2 Z 75 (19)
Finally, putting together Equations (17) and (19):
3 2
— < Y939 < = 20
0 S22 S5 (20)
which yields a contradiction, as - > 2. O

We prove the result for general k by extending the above proof.

Theorem D.1. Let k > 1. Then, there exists a k-hypergraph with vertex set V whose random walk is not equivalent to a
random walk on any (k — 1)-hypergraph with vertex set V.

Proof. For simplicity, assume k is even (our argument can be adapted to odd k). Write k = 2(n + 1). For the sake of
contradiction, suppose all k-hypergraphs have random walks equivalent to the random walk of some (k — 1)-hypergraph.

Let H, = (V,Ej,w,v) be a k-hypergraph with vertices V' = {vy,...,v,,w1,...,wp,x,y}, and hyperedges e; =
{v1,...,Un,b,c} and e5 = {wy,...,wn,b,c}. The edge weights are w(e;) = w(ez) = 1, and the edge-dependent vertex
weights are we, (b) = 2, and w,, (v) = 1 for all other v, e; with v € e;.

b
L

Yes (b) =2
Yea (B) =1

Vea (C) =1
’YEz (C) = 1

(’.'] 62

Figure 3. Pictured above is Hy.

By assumption, let Hx_; = (V, Ex_1,w, ) be a (k — 1)-hypergraph whose random walk is equivalent to a random walk
on H,. Let pfx pHr—1 be the transition probabilities of H},, Hj,_, respectively.
Then, in H;_,, we have

dw) pll = Y )w(e»(V;EZ;))s > wle) (268) = dtwy)all @

e€E(v;,v;
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foralli,j € {1,...,n}. Since pg’j@l = pg’f;jl, the above equation implies d(v;) < d(v;). So by symmetry, d(v;) = d(v;)
for all ¢, j.

This means that Equation (21) is actually a strict equality, so

o ()= 3 =0 (58)

e€E(v;i,v;) e€E(v;

Since every term in the above sums are positive and equal, it must be the case that every hyperedge in Hj,_; containing v;

also contains v;, for all i, j. Because they all are in the same hyperedges in both Hy_; and Hj, we can view {v1,...,v,}
as a single “supernode” v. By symmetry, we can also view {w, ..., w,} as a single supernode w.
Thus, we have reduced our problem to the counterexample in Lemma D.1, and the result follows. O

Putting all of our results together gives us the following (informal) hierarchy of Markov chains

{random walks on hypergraphs with edge-independent vertex weights} = {random walks on graphs}
C {random walks on 2-hypergraphs}
C {random walks on 3-hypergraphs}
...

=

C {all lazy Markov chains}.

E. Proof of Theorem 4.1

We first prove the following lemma.

Lemma E.1. Let H = (V| E) be a hypergraph with edge-dependent vertex weights ~.(v) and hyperedge weights w(e).
Without loss of generality, assume ) . ve(v) = 1. There exist p. > 0 satisfying

pe=3_ > dw) - pr-w(f) () (23)

vEe fEE(v)

and

> pe-wle) =1. (24)

eckE

Proof of Lemma. Our proof outline is as follows. First, we prove the lemma in the case where the hyperedge weights are all
equal to each other. Then, we extend that result to the case where the hyperedge weights are rational. Finally, we use the
density of Q in R to extend our result from rational hyperedge weights to real ones.

First, suppose all of the hyperedge weights are equal to each other. WLOG let w(e) = 1 for all e € E. Switching the order
of summation in Equation 23, we have

oD dw) T ppw() ) =D Y d) Ty (v)

vEe feE(v) vee feE(v)
=3 > dw) T pr ()
feEveenf (25)
=Y o[ DD dw) ()
ferE veenf

Now let A be a square matrix of size |E| x |E|, with entries Ae p =37 ¢ d(v) ™ ¢ (v). Note that the column sums of
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A are equal to 1:

S A=Y dv) s (v)

eckE ecEveenf

oY d) ()

vefe€E(v)

S d(v) () - d(v) (26)

vef

= ()

veEf
=1.

Thus, by the Perron-Frobenius theorem, A has a positive eigenvector p with eigenvalue 1.

So by construction, p satisfies Equation 23. Moreover, ¢ - p also satisfies Equation 23 for any ¢ > 0. Thus, ¢ - p with

t = (Zee 5 Pe w(e)) ! satisfies both Equation 23 and Equation 24, and so the lemma is proved in the case where the
hyperedge weights are all equal.

Next, assume H is a hypergraph with rational hyperedge weights, i.e. w(e) € Q for all e € E. Multiplying through by
denominators, we can assume w(e) € N. Create hypergraph H' with vertices V' in the following way. For each hyperedge e,
replace e with hyperedges ey, ..., e,(c), where each hyperedge e;:

¢ contains the same vertices as e,
* has weight w’(e;) = 1,
* has the same vertex weights as e, so that v, (v) = 7.(v) forall v € e.

Let E’ be the hyperedges of H’, and let M (v) be the hyperedges incident to vertex v in H'. Since H' has equal hyperedge
weights, we can find constants pr, that satisfy Equations 23 and 24 for H'. Note that p,, = p by symmetry.

Now, for each hyperedge e of H, let p. = p/, . I claim that p. satisfies Equations 23 and 24 for H. Equation 24 is satisfied
since

()
wie) - pe=wle) pl, = poy +-+ Pl = D po(€), 27)
=1

which implies

w(e)

S pewle) =33 pulle) = 3 plwle) = L. (28)

ecE eckE i=1 ecE’

To show Equation 23 holds for H, note that

w(f)
d)™" - ppw(f) - vr) =Y (dw) ™ ol W (fi) A (). (29)

i=1



Random Walks on Hypergraphs

Summing over both sides yields

w(f)
D D dw) ey =D 2 D (o) s () ()
vEe feR(v) vee feE(v) i=1
:Z Z dv_ .pf-w'(f)~'y}(v)
v€Ee feM(v) (30)

=3 > dw) W () ()

vEer feM(v)
= pl, , since Equation 23 holds for H'
= pe-

Thus, Equations 23 and 24 hold for H when H has rational hyperedge weights.

Finally, we consider the general case, where we assume nothing about the hyperedge weights besides that they are positive
real numbers. By similar reasoning to our proof of the equal hyperedge weight case, we are done if we can find positive p,
satisfying Equation 23.

‘We have

Yo dw)teppwl(f =3 ) w(f) - pr - (v)

vee feE(v) vee feE(v)
=Y ) dw) Tt ppew(f) s (v)
feEEveenf 3D
=> | D0 d)Thw(f) s (w)
feE vEeNf

Let A be a matrix of size |E| x | E| with entries

Aep= Y dv (f) s (). (32)

veeNf

Showing that there exist positive p. that satisfy Equation 23 is equivalent to showing that A has a positive eigenvector with
eigenvalue 1. By the Perron-Frobenius theorem, this equivalent to A having spectral radius 1.

For each hyperedge e € E, let ¢f, ¢S, . . . be a sequence of rational numbers that converges to w(e), i.e. lim, o ¢% = w(e).
Let H,, be H except we replace all hyperedge weights w(e) with ¢5. By the previous part of the proof, there exist positive
constants p"(e) that satisfy Equation 23 for H,,; equivalently, if we let A,, be the matrix from Equation 32 for hypergraph
H,,, then A,, has spectral radius 1.

Since A,, has a continuous dependence on the hyperedge weights, and spectral radius is a continuous function, it follows that
the spectral radius of A is the limit of the spectral radius of A,,. Thus, the spectral radius of A is 1, and we are done. [

Theorem 4.1 is now a relatively straightforward corollary of Lemma E.1.

Theorem 4.1. Let H = (V, E,w,~) be a hypergraph with edge-independent vertex weights. There exist positive constants
pe such that the stationary distribution 7 of a random walk on H is

Ty = Z w(e) - (pe’ye(v)). (33)

e€E(v)

Moreover, p, can be computed in time O(|E[> + |E|* - |V]).
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Proof of Theorem 4.1. Without loss of generality, assume d(e) = .. 7Ve(v) = 1 for all hyperedges e, i.e. by scaling p.
appropriately.

Let p. > 0 be from Lemma E.1, and define

Ty = Z w(e)(pe’)/e(”))' (34)

ecE(v)

I claim that 7, is the stationary distribution for a random walk on H.
First, note that

dom=Y_ > we)(perev))

veV veEV e€E(v)

=3 > we)(perelv

ecFE vee

= pew(e) D 7e(v) (35)

ecE vEe

= Z pew(e)

ecE
=1, by Equation 24

so 7 is indeed a probability distribution on V. Now, for any vertex w € V, we have

Z TyPv,w = Z Ty Z Z((S;’Ve(w>

veV veV ecE(v)

S e rew) wle) - d(v)

veV e€ E(v,w)

Z Zﬂ'v ’Ye () d(v)_l

(36)

e€E(w) veEe
Ty
= Z w(e) "Ye(w) < d(v)) .
ecE(w) vEe

If we simplify the inner sum, we get

=D dw)™ > ppew(f) ) =" Y dw) T pr e w(f) v (v) = pe. 37)

vee vEe fEE(v) vee feE(v)

Plugging this back in, we get

T,
> wle) '%“")( d<Z>> = 3wl relw) oo = @9
ecE(w) vee e€E(w)
Thus, Zv ey ToPvw = T, SO T i a stationary distribution for H.
Finally, note that computing A (Equation 32) takes time O(|E|? - |V'|) when d(v) is precomputed, and solving Ap = p takes
time O(]E|?), so the total runtime to compute p, is O(|E|® + |E|? - [V]). O
F. Proof of Theorem 4.2

For completeness, we include the definition of the Cheeger constant of a Markov chain (Montenegro & Tetali, 2006).
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Definition F.1. Let M be an ergodic Markov chain with finite state space V, transition probabilities p,, ., and stationary
distribution w. The Cheeger constant of M is

TriE T
d = min Zzes,ygs b ’y, 39
SCV,0<n(S)<1/2 7(S)

where T(S) =3

ves T

First, we prove the following lemma for the mixing time of any lazy Markov chain.

Lemma F.1. Let M be a finite, irreducible Markov chain with states S and transition probabilities p, ,, satisfying py o > 0
forall x € S. Let 7 be the stationary distribution of M, and let T, be the smallest element of m. Then,

80 1
tmiz(€) < LI)Q log (W>—‘ (40)

Proof of Lemma. We use the notation of Jerison (2013). Let P* be the time-reversal transition matrix of P. Note that P* P
and £ +2p are both reversible Markov chains. Let « be the square-root of the second-largest eigenvalue of P* P, and let b

be the second-largest eigenvalue of P+TP*. By the Cheeger inequality, we have 1 — b > %2. Combining this with Lemma

1.21 of Montenegro & Tetali (2006) yields

gP‘*'TP*(fv f) P2
R it (41)

Var,(f) z

where f : S — R is any function, £p.p+ (f, f) is the Dirichlet form of the Markov chain P"'TP*, and Var,(f) is the
2
variance of f (see Montenegro & Tetali (2006) for more details).

From Jerison (2013),
gP*P(f7f) 2255%1’*(.]“1.}() 42)
Combining Equations 41 and 42 yields
2
Varﬂ(f) 46

Now, from Lemma 1.2 of Montenegro & Tetali (2006), 1 — a? > %((f{) plugging this into the above equation and

1/2
rearranging yields o < (1 — —) <1- %;. Plugging this into Equation 1.6 of Jerison (2013) yields

e B e | :

Theorem 4.2. Let H = (V, E,w,~) be a hypergraph with edge-dependent vertex weights. Without loss of generality,
assume p. = 1 (i.e. by multiplying the vertex weights in hyperedge e by p.). Then,

H 861 1
where

e & is the Cheeger constant of a random walk on H (Montenegro & Tetali, 2006, Jerison, 2013)

* dyin is the minimum degree of a vertex in H, i.e. dy, = min, d(v),

. - . 'Ve(v)
ﬁl o eGHEl,lll;lee ( 5(6) )’ and

= wmin (v()

ecE,vee
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Proof of Theorem 4.2. We have

~

Pow= Y d(ve ( Z)d;” By (45)
ecE(v

ecE(v)

for all vertices v. Similarly,

Ty = Z w(e)Ve(v) = Bad(v). (46)

ecE(v)

Applying Lemma F.1 to a random walk on H yields the desired bound:

85 1 80 !
Finia(€) < [qﬂ“’g (Wﬂ = hﬂk’g <Wﬂ )

G. Proof of Theorem 5.2

Theorem 5.2. Let H = (V, E,w,~) be a hypergraph with edge-dependent vertex weights, with vertex weights normalized
so that p, = 1 for all hyperedges e. Let G be the clique graph of H, with edge weights

wiy = Y D) (47)

e€E(u,v)

Let LY | LG be the Laplacians of H and G, respectively, and let N, NG be the second-smallest eigenvalues of L™ | LC,
respectively. Then

1
@Af’ <AY < c(H)A, (48)
(maxeeE Ve (V) )

where ¢(H) = max -
Minee g Ve (V)

veV

Proof of Theorem 5.2. As shorthand, we write G = GH. Let pﬁ , and 7 be the transition probabilities, stationary
distribution of a random walk on H. Define p$, and ' similarly for G. Furthermore, let d” (v) and d(v) be the degree
in H and G respectively.

G
Ty Po,u

n .
and &P,

First, for an arbitrary vertex v, we have

L DTS DD S VEZ 2:0)
()5

(% u€V e€E(u, ’U)
=y o)
6)
e€E(v) uce

I
I
—
@
N—
2
3
—
<
S~—
7N
=
&

Zuee%(“)) (49)
e€E(v)

> wle)re)
ecE(v)
H

v

=T
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so random walks on G*7 and H have the same stationary distributions. Next, for any two vertices u, v, we have

FG(U)pSiU _ pg,’u . de (U) _ e€E(u,v) (6) (50)
mH (v)pgv pi{v w(e) ’Ye(ru) Z M .
H H
e€E(u,v) d (u) 5(6) e€ E(u,v) (6 d (u)
The RHS is upper-bounded by the maximum ratio of each term in the sum, which is
) ( > wlf) | velu)
d u
oy L (We(w) JEB(u)
u,v de(u) w,v
> @)
feE(u) (51)

Similarly, it is lower bounded by min,, 222 - Applying Theorem 8 of Chung (2005) gives the desired bound. O

maxe Ye (u)

H. Rank Aggregation Experiments with Synthetic Data

Data: We use a variant of the TrueSkill model to generate our data. We assume each player has an intrinsic “skill” level (for
simplicity, assume skill does not change over time), and a player’s performance in match is proportional to their skill plus
some added Gaussian noise. Such a model can represent many different kinds of games, including shooting games (e.g.
Halo, scores represent kill/death ratios in a timed free-for-all match) and racing games (e.g. Mario Kart, scores are inversely
proportional to the time a player takes to finish a course).

The players are {1,...,n}. Player 4 has intrinsic skill 4, so the true ranking of players, 7%, is
player 1 < player 2 < - - - player n. We create k partial rankings, 71, . . ., 7, Where each partial ranking 7; corresponds to a
noisy subsampling of 7*. More specifically, to create each partial ranking, we do the following.

1. Choose a subset of players A C {1, ...,n}, where player ¢ is included in A with probability p.
2. Choose a scale factor ¢ uniformly at random from [1/3, 3].

3. For each player ¢ € A, independently draw a score for player ¢ from a N (0.2 - 4, o) distribution, and scale that score by
c.

4. Set 7; to be a ranking of the players in A according to their score.

The tuneable parameters are: n, the number of players to be ranked; o, the amount of noise in our partial rankings; &, the
number of partial rankings; and p, which controls the size of each partial ranking. We set the mean score for player ¢ to be
0.2 - 4, so that the the scale of the simulated scores is similar to the scores from the Halo dataset.

Methods: As with the real data, we create a Markov chain-based rank aggregation algorithm where the Markov chain is
arandom walk on a hypergraph H = (V, E,w, ). The vertices are V = {1, ..., n}, and the hyperedges E correspond to
the partial rankings 71, ..., 7x. We set vertex weights ., (v) = exp](score of v in partial ranking 7;)], and edge weights
w(e;) = (standard deviation of scores in 7;) + 1.

Our baselines are MC3 and a rank aggregation algorithm using the clique graph G, both of which are described in the
main text.



Random Walks on Hypergraphs

Results: We fix universe size n = 100, and set k to be the smallest number of hyperedges until all n vertices are included
at least once. We set ¢ = 1 and p = 0.03,0.05,0.07.

To assess performance, we measure the weighted Kendall 7 correlation coefficient (Yilmaz et al., 2008) between the
estimated ranking and the true ranking 7*. Our weighted hypergraph algorithm outperforms both MC3 and the clique graph
algorithm in all cases (figure below), with the most significant gains when p is small, i.e. when there is less information
in each partial ranking. Moreover, the performance of the clique graph algorithm is much worse than both MC3 and the
weighted hypergraph, which suggests that the clique graph is not a good approximation of H.

Hypergraph vs Dwork Performance in Rank Aggregation
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Figure 4. Results of rank aggregation experiment using synthetic data.
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