
Random Walks on Hypergraphs with Edge-Dependent Vertex Weights:
Supplementary Material

Uthsav Chitra 1 Benjamin J Raphael 1

A. Incorrect Stationary Distribution in Earlier Work
Li et al. (2018) claim in Equation 4 that the stationary distribution π of a random walk on a hypergraph H = (V,E, γ, ω)
with edge-dependent vertex weights is

πv =
d(v)∑
u∈V d(u)

, (1)

where d(v) =
∑
e∈E(v) ω(e) is the sum of edge weights of incident hyperedges. Curiously, the stationary distribution given

by this formula does not depend on the vertex weights. A counterexample to this formula is shown in hypergraph H in
Figure 1 of the main text, with edge-dependent vertex weights as described in the caption (i.e. γe1(b) = 1, γe2(b) = 2).
Computing the stationary distribution π of a random walk on H yields that πb = 7/20, while Equation (1) incorrectly yields
πb = 2/7.

B. Proof of Theorem 3.1
First we need the following definition and lemma.

Definition B.1. Let M be a Markov chain with state space X and transition probabilities px,y , for x, y ∈ S. We say M is
reversible if there exists a probability distribution π over S such that

πxpx,y = πypy,x. (2)

Lemma B.1. Let M be an irreducible Markov chain with finite state space S and transition probabilities px,y for x, y,∈ S.
M is reversible if and only if there exists a weighted, undirected graph G with vertex set S such that a random walk on G
and M are equivalent.

Proof of Lemma. First, suppose M is reversible. Since M is irreducible, let π be the stationary distribution of M . Note that,
because M is irreducible, πx 6= 0 for all states x.

Let G be a graph with vertices S, and edge weights wx,y = πxpx,y. By reversibility, G is well-defined. In a random walk
on G, the probability of going from x to y in one time-step is

wx,y∑
z∈S wx,z

=
πxpx,y∑
z∈S πxpx,z

=
px,y∑
z∈S px,z

= px,y,

since
∑
z∈S px,z = 1.

Thus, ifM is reversible, the stated claim holds. The other direction follows from the fact that a random walk on an undirected
graph is always reversible (Aldous & Fill, 2002).

Theorem 3.1. Let H = (V,E, ω, γ) be a hypergraph with edge-independent vertex weights. Then, there exist weights wu,v
on the clique graph GH such that a random walk on H is equivalent to a random walk on GH .
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Proof of Theorem 3.1. Let γ(v) = γe(v) for vertices v and incident hyperedges e. We first show that a random walk on H
is reversible. By Kolmogorov’s criterion, reversibility is equivalent to

pv1,v2pv2,v3 · · · pvn,v1 = pv1,vnpvn,vn−1 · · · pv2,v1 . (3)

for any set of vertices v1, . . . , vn.

Since the transition probabilities for any two vertices u, v are

pu,v =
∑

e∈E(u,v)

ω(e)

d(u)

γ(u)

δ(e)
=
γ(u)

δ(u)

∑
e∈E(u,v)

ω(e)

δ(e)
, (4)

we have

pv1,v2pv2,v3 · · · pvn,v1 =

γ(v1)

δ(v1)

∑
e∈E(v1,v2)

ω(e)

δ(e)

 · · ·
γ(vn)

δ(vn)

∑
e∈E(vn,v1)

ω(e)

δ(e)


=

n∏
i=1

γ(vi)

δ(vi)

∑
e∈E(vi,vi+1)

ω(e)

δ(e)

 ,where we define vn+1 = v1

=

γ(v1)

δ(v1)

∑
e∈E(vn,v1)

,
ω(e)

δ(e)

 · · ·
γ(v2)

δ(v2)

∑
e∈E(v2,v1)

ω(e)

δ(e)


= pv1,vnpvn,vn−1

· · · pv2,v1 .

(5)

So by Kolmogorov’s criterion, a random walk on H is reversible.

Furthermore, because H is connected, random walks on H are irreducible. Thus, by Lemma B.1, there exists a graph G
with vertex set V and edge weights wu,v such that random walks on G and H are equivalent. The equivalence of the random
walks implies that pu,v > 0 if and only if wu,v > 0, so it follows that G is the clique graph of H .

C. Non-Lazy Random Walks on Hypergraphs
First we generalize the random walk framework of Cooper et al. (2013) to random walks on hypergraphs with edge-dependent
vertex weights. Informally, in a non-lazy random walk, a random walker at vertex v will do the following:

1. pick an edge e containing v, with probability ω(e)
d(v) ,

2. pick a vertex w 6= v from e, with probability γe(w)
δ(e)−γe(v) , and

3. move to vertex w.

Formally, we have the following.

Definition C.1. A non-lazy random walk on a hypergraph with edge-dependent vertex weights H = (V,E, ω, γ) is a
Markov chain on V with transition probabilities

pv,w =
∑

e∈E(v)

(
ω(e)

d(v)

)(
γe(w)

δ(e)− γe(v)

)
. (6)

for all states v 6= w.

It is also useful to define a modified version of the clique graph without self-loops.

Definition C.2. Let H = (V,E, ω, γ) be a hypergraph with edge-dependent vertex weights. The clique graph of H without
self-loops, GHnl, is a weighted, undirected graph with vertex set V , and edges E′ defined by

E′ = {(v, w) ∈ V × V : v, w ∈ e for some e ∈ E, and v 6= w}. (7)
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In contrast to the lazy random walk, a non-lazy random walk on a hypergraph with edge-independent vertex weights is
not guaranteed to satisfy reversibility. However, if H has trivial vertex weights, then reversibility holds, and we get the
following result.
Theorem C.1. Let H = (V,E, ω, γ) be a hypergraph with trivial vertex weights, i.e. γe(v) = 1 for all vertices v and
incident hyperedges e. Then, there exist weights wu,v on the clique graph without self-loops GHnl such that a non-lazy
random walk on H is equivalent to a random walk on GHnl.

Proof. Again, we first show that a non-lazy random walk on H is reversible. Define the probability mass function
πv = c · d(v) for normalizing constant c > 0. Let pu,v be the probability of going from u to v in a non-lazy random walk on
H , where u 6= v. Then,

πuPu,v = c · d(u) ·

 ∑
e∈E(u,v)

w(e)

d(u)
· 1

|e| − 1


=

∑
e∈E(u,v)

(
ω(e) · c

|e| − 1

)
.

By symmetry, πupu,v = πvpv,u, so a non-lazy random is reversible. Thus, by Lemma B.1, there exists a graph G with
vertex set V and edge weights wu,v such that a random walk on G and a non-lazy random walk on H are equivalent. The
equivalence of the random walks implies that pu,v > 0 if and only if wu,v > 0, so it follows that G is the clique graph of H
without self-loops.

D. Relationships between Random Walks on Hypergraphs and Markov Chains on Vertex Set
In the main text, we show that there are hypergraphs with edge-dependent vertex weights whose random walks are not
equivalent to a random walk on a graph. A natural follow-up question is to ask whether all Markov chains on a vertex set
V can be represented as a random walk on some hypergraph with the same vertex set and edge-dependent vertex weights.
Below, we show that the answer is no. Since random walks on hypergraphs with edge-dependent vertex weights are lazy, in
the sense that pv,v > 0 for all vertices v, we restrict our attention to lazy Markov chains with pv,v = 0.
Claim D.1. There exists a lazy Markov chain M with state space V such that M is not equivalent to a random walk on a
hypergraph with vertex set V and edge-dependent vertex weights.

Proof. Suppose for the sake of contradiction that any lazy Markov chain with V is equivalent to a random walk on some
hypergraph with vertex set V . Let M be a lazy Markov chain with states V and transition probabilities pM , with the
following property. For some states x, y ∈ V , let

pMx,x = 0.9

pMx,y = 0.01

pMy,x = 0.1

pMy,y = 0.001.

(8)

By assumption, let H = (V,E, ω, γ) be a hypergraph with vertex set V and edge-dependent vertex weights, such that a
random walk on H is equivalent to M . Let pH be the transition probabilities of a random walk on H . We have

d(x) · pMx,x = d(x) · pHx,x

=
∑

e∈E(x)

ω(e) ·
(
γe(x)

δ(x)

)

≥
∑

e∈E(x,y)

ω(e) ·
(
γe(x)

δ(x)

)
= d(y) · pHy,x
= d(y) · pMy,x

(9)
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Plugging in Equations (8) to the above yields d(x) · 0.9 ≥ d(y) · 0.1, or 9d(x) ≥ d(y).

By similar reasoning, we also have d(y) ·pMy,y ≥ d(x) ·pMx,y , and plugging in Equations (8) gives us d(y) ·0.001 ≥ d(x) ·0.01,
or d(y) ≥ 10d(x).

Combining both of these inequalities, we obtain

9d(x) ≥ d(y) ≥ 10d(x). (10)

Since the vertex degree d(x) ≥ 0, we obtain a contradiction.

Next, for any k > 1, define a k-hypergraph to be a hypergraph with edge-dependent vertex weights whose hyperedges have
cardinality at most k. We show that, for any k, there exists a k-hypergraph with vertex set V whose random walk is not
equivalent to the random walk of any (k − 1)-hypergraph with vertex set V . We first prove the result for k = 3.

Lemma D.1. There exists a 3-hypergraph with vertex set V , whose random walk is not equivalent to a random walk on any
2-hypergraph with vertex set V .

Proof. Let H3 = (V,E3, ω, γ) be a 3-hypergraph with four vertices, V = {v1, v2, v3, v4}, and two hyperedges e1 =
{v1, v2, v3} and e2 = {v1, v3, v4}. Let the hyperedge weights be ω(e1) = ω(e2) = 1 and the vertex weights be γe1(v1) = 2,
and γei(vj) = 1 for all other vj , ei such that vj ∈ ei.

Figure 1. Pictured above is H3.

For the sake of contradiction, suppose a random walk on H3 is equivalent to a random walk on H2 = (V,E2, ω, γ),
where H2 is a 2-hypergraph with vertex set V . Let pHi be the transition probabilities of Hi for i = 2, 3; by assumption,
pH2 = pH3 .

H2 must have the following edges: e′12 = {v1, v2}, e′14 = {v1, v4}, e′23 = {v2, v3}, e′34 = {v3, v4}, and e′13 = {v1, v3}.
WLOG let γeij (vi) + γeij (vj) = 1 for each i, j. Moreover, while we do not depict these edges in the figure below, H2 also
has edges e′i = {vi} for i = 1, 2, 3, 4, though it may be the case that ω(e′i) = 0.

For shorthand, we write ωij for ω(e′ij), ωi for ω(e′i), and γijk for γe′ij (vk) where k ∈ {i, j}.

By definition, we have
1

2
= pH3

v2,v1 = pH2
v2,v1 =

(
ω12

ω12 + ω23 + ω2

)
γ121 (11)

Thus,
(

ω12

ω12+ω23+ω2

)
= (2 · γ121)−1.
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Figure 2. Pictured above is H2. For illustrative purposes, we do not draw out singleton edges.

By similar analysis of pH3
v2,v3 , and using that γ232 + γ233 = 1, we also have

(
ω23

ω12+ω23+ω2

)
=
(
4
(
1 − γ232

))−1
. Thus,

adding together the bounds on pH2
v2,v1 and pH3

v2,v1

1

2γ121
+

1

4(1− γ232)
=

(
ω12

ω12 + ω23 + ω2

)
+

(
ω23

ω12 + ω23 + ω2

)
≤ 1. (12)

Note that, to get the bound in Equation (12), we summed pH2
v2,vi for i 6= 2. If we follow the same steps but replace v2 with

v1, v3, we get the following bounds, respectively:

1

8 · γ121
+

7

24(1− γ131)
+

1

6(1− γ141)
≤ 1 (13)

1

8γ232
+

5

12γ131
+

1

6γ344
≤ 1. (14)

Now, solving for γ121 in Equation (12) yields

γ121 ≥
2(1− γ232)

3− 4γ232
. (15)

Next, using that γijk ∈ [0, 1], we bound Equation (13):

1 ≥ 1

8γ121
+

7

24(1− γ131)
+

1

6(1− γ141)

≥ 1

8γ121
+

7

24
+

1

6

=
1

8γ121
+

11

24
.

(16)

Solving for γ121 yields γ121 ≤ 10
13 . Combining with Equation (15):

10

13
≥ γ121 ≥

2(1− γ232)

3− 4γ232
=⇒ γ232 ≤

2

7
. (17)
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Bounding Equation (14) in a similar way to Equation (16) gives us:

1 ≥ 1

8γ232
+

5

12γ131
+

1

6γ344

≥ 1

8γ232
+

5

12
+

1

6

=
1

8γ232
+

7

12
.

(18)

Solving for γ232 gives us

γ232 ≥
3

10
. (19)

Finally, putting together Equations (17) and (19):

3

10
≤ γ232 ≤

2

7
, (20)

which yields a contradiction, as 3
10 >

2
7 .

We prove the result for general k by extending the above proof.

Theorem D.1. Let k > 1. Then, there exists a k-hypergraph with vertex set V whose random walk is not equivalent to a
random walk on any (k − 1)-hypergraph with vertex set V .

Proof. For simplicity, assume k is even (our argument can be adapted to odd k). Write k = 2(n + 1). For the sake of
contradiction, suppose all k-hypergraphs have random walks equivalent to the random walk of some (k − 1)-hypergraph.

Let Hk = (V,Ek, ω, γ) be a k-hypergraph with vertices V = {v1, . . . , vn, w1, . . . , wn, x, y}, and hyperedges e1 =
{v1, . . . , vn, b, c} and e2 = {w1, . . . , wn, b, c}. The edge weights are ω(e1) = ω(e2) = 1, and the edge-dependent vertex
weights are ωe1(b) = 2, and ωei(v) = 1 for all other v, ei with v ∈ ei.

Figure 3. Pictured above is Hk.

By assumption, let Hk−1 = (V,Ek−1, ω, γ) be a (k − 1)-hypergraph whose random walk is equivalent to a random walk
on Hk. Let pHk , pHk−1 be the transition probabilities of Hk, Hk−1, respectively.

Then, in Hk−1, we have

d(vi) · pHk−1
vi,vj =

∑
e∈E(vi,vj)

ω(e) ·
(
γe(vj)

δ(e)

)
≤

∑
e∈E(vj)

ω(e) ·
(
γe(vj)

δ(e)

)
= d(vj) · pHk−1

vj ,vj (21)
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for all i, j ∈ {1, . . . , n}. Since pHk−1
vi,vj = p

Hk−1
vj ,vj , the above equation implies d(vi) ≤ d(vj). So by symmetry, d(vi) = d(vj)

for all i, j.

This means that Equation (21) is actually a strict equality, so

∑
e∈E(vi,vj)

ω(e) ·
(
γe(vj)

δ(e)

)
=

∑
e∈E(vj)

ω(e) ·
(
γe(vj)

δ(e)

)
. (22)

Since every term in the above sums are positive and equal, it must be the case that every hyperedge in Hk−1 containing vj
also contains vi, for all i, j. Because they all are in the same hyperedges in both Hk−1 and Hk, we can view {v1, . . . , vn}
as a single “supernode” v. By symmetry, we can also view {w1, . . . , wn} as a single supernode w.

Thus, we have reduced our problem to the counterexample in Lemma D.1, and the result follows.

Putting all of our results together gives us the following (informal) hierarchy of Markov chains

{random walks on hypergraphs with edge-independent vertex weights} = {random walks on graphs}
( {random walks on 2-hypergraphs}
( {random walks on 3-hypergraphs}
( . . .

( {all lazy Markov chains}.

E. Proof of Theorem 4.1
We first prove the following lemma.

Lemma E.1. Let H = (V,E) be a hypergraph with edge-dependent vertex weights γe(v) and hyperedge weights ω(e).
Without loss of generality, assume

∑
v∈e γe(v) = 1. There exist ρe > 0 satisfying

ρe =
∑
v∈e

∑
f∈E(v)

d(v)−1 · ρf · ω(f) · γf (v) (23)

and ∑
e∈E

ρe · ω(e) = 1. (24)

Proof of Lemma. Our proof outline is as follows. First, we prove the lemma in the case where the hyperedge weights are all
equal to each other. Then, we extend that result to the case where the hyperedge weights are rational. Finally, we use the
density of Q in R to extend our result from rational hyperedge weights to real ones.

First, suppose all of the hyperedge weights are equal to each other. WLOG let ω(e) = 1 for all e ∈ E. Switching the order
of summation in Equation 23, we have∑

v∈e

∑
f∈E(v)

d(v)−1 · ρf · ω(f) · γf (v) =
∑
v∈e

∑
f∈E(v)

d(v)−1 · ρf · γf (v)

=
∑
f∈E

∑
v∈e∩f

d(v)−1 · ρf · γf (v)

=
∑
f∈E

ρf ·

 ∑
v∈e∩f

d(v)−1γf (v)

 .

(25)

Now let A be a square matrix of size |E| × |E|, with entries Ae,f =
∑
v∈e∩f d(v)−1γf (v). Note that the column sums of
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A are equal to 1:

∑
e∈E

Ae,f =
∑
e∈E

∑
v∈e∩f

d(v)−1γf (v)

=
∑
v∈f

∑
e∈E(v)

d(v)−1γf (v)

=
∑
v∈f

d(v)−1γf (v) · d(v)

=
∑
v∈f

γf (v)

= 1.

(26)

Thus, by the Perron-Frobenius theorem, A has a positive eigenvector ρ with eigenvalue 1.

So by construction, ρ satisfies Equation 23. Moreover, t · ρ also satisfies Equation 23 for any t > 0. Thus, t · ρ with
t =

(∑
e∈E ρe · ω(e)

)−1
satisfies both Equation 23 and Equation 24, and so the lemma is proved in the case where the

hyperedge weights are all equal.

Next, assume H is a hypergraph with rational hyperedge weights, i.e. ω(e) ∈ Q for all e ∈ E. Multiplying through by
denominators, we can assume ω(e) ∈ N. Create hypergraph H ′ with vertices V in the following way. For each hyperedge e,
replace e with hyperedges e1, ..., eω(e), where each hyperedge ei:

• contains the same vertices as e,

• has weight ω′(ei) = 1,

• has the same vertex weights as e, so that γ′ei(v) = γe(v) for all v ∈ e.

Let E′ be the hyperedges of H ′, and let M(v) be the hyperedges incident to vertex v in H ′. Since H ′ has equal hyperedge
weights, we can find constants ρ′ei that satisfy Equations 23 and 24 for H ′. Note that ρ′ei = ρ′ej by symmetry.

Now, for each hyperedge e of H , let ρe = ρ′e1 . I claim that ρe satisfies Equations 23 and 24 for H . Equation 24 is satisfied
since

ω(e) · ρe = ω(e) · ρ′e1 = ρ′e1 + · · ·+ ρ′eω(e)
=

ω(e)∑
i=1

ρ′eiω
′(ei), (27)

which implies

∑
e∈E

ρe · ω(e) =
∑
e∈E

ω(e)∑
i=1

ρ′eiω
′(ei) =

∑
e∈E′

ρ′eiω(ei) = 1. (28)

To show Equation 23 holds for H , note that

d(v)−1 · ρf · ω(f) · γf (v) =

ω(f)∑
i=1

(
d(v)−1 · ρ′fi · ω

′(fi) · γ′fi(v)
)
. (29)
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Summing over both sides yields

∑
v∈e

∑
f∈E(v)

d(v)−1 · ρf · ω(f) · γf (v) =
∑
v∈e

∑
f∈E(v)

ω(f)∑
i=1

(
d(v)−1 · ρ′fi · ω

′(fi) · γ′fi(v)
)

=
∑
v∈e

∑
f∈M(v)

d(v)−1 · ρ′f · ω′(f) · γ′f (v)

=
∑
v∈e1

∑
f∈M(v)

d(v)−1 · ρ′f · ω′(f) · γ′f (v)

= ρ′e1 , since Equation 23 holds for H ′

= ρe.

(30)

Thus, Equations 23 and 24 hold for H when H has rational hyperedge weights.

Finally, we consider the general case, where we assume nothing about the hyperedge weights besides that they are positive
real numbers. By similar reasoning to our proof of the equal hyperedge weight case, we are done if we can find positive ρe
satisfying Equation 23.

We have ∑
v∈e

∑
f∈E(v)

d(v)−1 · ρf · ω(f) · γf (v) =
∑
v∈e

∑
f∈E(v)

d(v)−1 · ω(f) · ρf · γf (v)

=
∑
f∈E

∑
v∈e∩f

d(v)−1 · ρf · ω(f) · γf (v)

=
∑
f∈E

ρf ·

 ∑
v∈e∩f

d(v)−1 · ω(f) · γf (v)

 .

(31)

Let A be a matrix of size |E| × |E| with entries

Ae,f =
∑
v∈e∩f

d(v)−1 · ω(f) · γf (y). (32)

Showing that there exist positive ρe that satisfy Equation 23 is equivalent to showing that A has a positive eigenvector with
eigenvalue 1. By the Perron-Frobenius theorem, this equivalent to A having spectral radius 1.

For each hyperedge e ∈ E, let qe1, q
e
2, . . . be a sequence of rational numbers that converges to ω(e), i.e. limn→∞ qen = ω(e).

Let Hn be H except we replace all hyperedge weights ω(e) with qen. By the previous part of the proof, there exist positive
constants ρn(e) that satisfy Equation 23 for Hn; equivalently, if we let An be the matrix from Equation 32 for hypergraph
Hn, then An has spectral radius 1.

Since An has a continuous dependence on the hyperedge weights, and spectral radius is a continuous function, it follows that
the spectral radius of A is the limit of the spectral radius of An. Thus, the spectral radius of A is 1, and we are done.

Theorem 4.1 is now a relatively straightforward corollary of Lemma E.1.

Theorem 4.1. Let H = (V,E, ω, γ) be a hypergraph with edge-independent vertex weights. There exist positive constants
ρe such that the stationary distribution π of a random walk on H is

πv =
∑

e∈E(v)

ω(e) ·
(
ρeγe(v)

)
. (33)

Moreover, ρe can be computed in time O
(
|E|3 + |E|2 · |V |

)
.
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Proof of Theorem 4.1. Without loss of generality, assume δ(e) =
∑
v∈e γe(v) = 1 for all hyperedges e, i.e. by scaling ρe

appropriately.

Let ρe > 0 be from Lemma E.1, and define

πv =
∑

e∈E(v)

ω(e)
(
ρeγe(v)

)
. (34)

I claim that πv is the stationary distribution for a random walk on H .

First, note that ∑
v∈V

πv =
∑
v∈V

∑
e∈E(v)

ω(e)
(
ρeγe(v)

)
=
∑
e∈E

∑
v∈e

ω(e)
(
ρeγe(v)

)
=
∑
e∈E

ρeω(e)
∑
v∈e

γe(v)

=
∑
e∈E

ρeω(e)

= 1, by Equation 24

(35)

so π is indeed a probability distribution on V . Now, for any vertex w ∈ V , we have

∑
v∈V

πvpv,w =
∑
v∈V

πv

 ∑
e∈E(v)

ω(e)

d(v)
γe(w)


=
∑
v∈V

∑
e∈E(v,w)

πv · γe(w) · ω(e) · d(v)−1

=
∑

e∈E(w)

∑
v∈e

πv · γe(w) · ω(e) · d(v)−1

=
∑

e∈E(w)

ω(e) · γe(w)

(∑
v∈e

πv
d(v)

)
.

(36)

If we simplify the inner sum, we get∑
v∈e

πv
d(v)

=
∑
v∈e

d(v)−1
∑

f∈E(v)

ρf · ω(f) · γf (v) =
∑
v∈e

∑
f∈E(v)

d(v)−1 · ρf · ω(f) · γf (v) = ρe. (37)

Plugging this back in, we get

∑
e∈E(w)

ω(e) · γe(w)

(∑
v∈e

πv
d(v)

)
=

∑
e∈E(w)

ω(e) · γe(w) · ρe = πw. (38)

Thus,
∑
v∈V πvpv,w = πw, so π is a stationary distribution for H .

Finally, note that computing A (Equation 32) takes time O(|E|2 · |V |) when d(v) is precomputed, and solving Aρ = ρ takes
time O(|E|3), so the total runtime to compute ρe is O(|E|3 + |E|2 · |V |).

F. Proof of Theorem 4.2
For completeness, we include the definition of the Cheeger constant of a Markov chain (Montenegro & Tetali, 2006).
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Definition F.1. Let M be an ergodic Markov chain with finite state space V , transition probabilities pu,v, and stationary
distribution π. The Cheeger constant of M is

Φ = min
S⊂V,0<π(S)≤1/2

∑
x∈S,y 6∈S πxpx,y

π(S)
, (39)

where π(S) =
∑
v∈S πv .

First, we prove the following lemma for the mixing time of any lazy Markov chain.

Lemma F.1. Let M be a finite, irreducible Markov chain with states S and transition probabilities px,y , satisfying px,x ≥ δ
for all x ∈ S. Let π be the stationary distribution of M , and let πmin be the smallest element of π. Then,

tmix(ε) ≤
⌈

8δ

Φ2
log

(
1

2ε
√
πmin

)⌉
(40)

Proof of Lemma. We use the notation of Jerison (2013). Let P ∗ be the time-reversal transition matrix of P . Note that P ∗P
and P+P∗

2 are both reversible Markov chains. Let α be the square-root of the second-largest eigenvalue of P ∗P , and let b
be the second-largest eigenvalue of P+P∗

2 . By the Cheeger inequality, we have 1− b ≥ Φ2

2 . Combining this with Lemma
1.21 of Montenegro & Tetali (2006) yields

EP+P∗
2

(f, f)

Varπ(f)
≥ Φ2

2
, (41)

where f : S → R is any function, EP+P∗
2

(f, f) is the Dirichlet form of the Markov chain P+P∗

2 , and Varπ(f) is the
variance of f (see Montenegro & Tetali (2006) for more details).

From Jerison (2013),
EP∗P (f, f) ≥ 2δEP+P∗

2
(f, f). (42)

Combining Equations 41 and 42 yields
EP∗P (f, f)

Varπ(f)
≥ Φ2

4δ
. (43)

Now, from Lemma 1.2 of Montenegro & Tetali (2006), 1 − α2 ≥ EP∗P (f,f)
Varπ(f) ; plugging this into the above equation and

rearranging yields α ≤
(

1− Φ2

4δ

)1/2

≤ 1− Φ2

8δ . Plugging this into Equation 1.6 of Jerison (2013) yields

tmix(ε) ≤
⌈

1

1− α
log

(
1

2ε
√
πmin

)⌉
≤
⌈

8δ

Φ2
log

(
1

2ε
√
πmin

)⌉
.

Theorem 4.2. Let H = (V,E, ω, γ) be a hypergraph with edge-dependent vertex weights. Without loss of generality,
assume ρe = 1 (i.e. by multiplying the vertex weights in hyperedge e by ρe). Then,

tHmix(ε) ≤
⌈

8β1

Φ2
log

(
1

2ε
√
dminβ2

)⌉
, (44)

where

• Φ is the Cheeger constant of a random walk on H (Montenegro & Tetali, 2006; Jerison, 2013)

• dmin is the minimum degree of a vertex in H , i.e. dmin = minv d(v),

• β1 = min
e∈E,v∈e

(
γe(v)

δ(e)

)
, and

• β2 = min
e∈E,v∈e

(
γe(v)

)
.
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Proof of Theorem 4.2. We have

pv,v =
∑

e∈E(v)

ω(e)

d(v)

γe(v)

δ(e)
≥ β1

∑
e∈E(v)

ω(e)

d(v)
= β1 (45)

for all vertices v. Similarly,

πv =
∑

e∈E(v)

ω(e)γe(v) ≥ β2d(v). (46)

Applying Lemma F.1 to a random walk on H yields the desired bound:

tmix(ε) ≤
⌈

8δ

Φ2
log

(
1

2ε
√
πmin

)⌉
≤
⌈

8β1

Φ2
log

(
1

2ε
√
dminβ2

)⌉

G. Proof of Theorem 5.2
Theorem 5.2. Let H = (V,E, ω, γ) be a hypergraph with edge-dependent vertex weights, with vertex weights normalized
so that ρe = 1 for all hyperedges e. Let GH be the clique graph of H , with edge weights

wu,v =
∑

e∈E(u,v)

ω(e)γe(u)γe(v)

δ(e)
. (47)

Let LH , LG be the Laplacians of H and GH , respectively, and let λH1 , λ
G
1 be the second-smallest eigenvalues of LH , LG,

respectively. Then
1

c(H)
λH1 ≤ λG1 ≤ c(H)λH1 , (48)

where c(H) = max
v∈V

(
maxe∈E γe(v)

mine∈E γe(v)

)
.

Proof of Theorem 5.2. As shorthand, we write G = GH . Let pHu,v and πHv be the transition probabilities, stationary
distribution of a random walk on H . Define pGu,v and πGv similarly for G. Furthermore, let dH(v) and dG(v) be the degree
in H and G respectively.

We will use Theorem 8 of Chung (2005) to prove our theorem, which requires us to have lower and upper bounds on πGv
πHv

and πGv pv,u
πGv pv,u

.

First, for an arbitrary vertex v, we have

πGv ∝
∑
u∈V

wu,v =
∑
u∈V

∑
e∈E(u,v)

ω(e)γe(u)γe(v)

δ(e)

=
∑

e∈E(v)

∑
u∈e

ω(e)γe(u)γe(v)

δ(e)

=
∑

e∈E(v)

ω(e)γe(v)

(∑
u∈e γe(u)

δ(e)

)
=

∑
e∈E(v)

ω(e)γe(v)

= πHv ,

(49)
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so random walks on GH and H have the same stationary distributions. Next, for any two vertices u, v, we have

πG(v)pGu,v
πH(v)pHu,v

=
pGu,v
pHu,v

=

wu,v
dG(u)∑

e∈E(u,v)

ω(e)

dH(u)

γe(v)

δ(e)

=

∑
e∈E(u,v)

ω(e)γe(u)γe(v)

δ(e)∑
e∈E(u,v)

ω(e)γe(v)dG(u)

δ(e)dH(u)

. (50)

The RHS is upper-bounded by the maximum ratio of each term in the sum, which is

max
u,v

dH(u)γe(u)

dG(u)
= max

u,v

 ∑
f∈E(u)

ω(f)

 γe(u)

 ∑
f∈E(u)

ω(f)γf (u)


≤ max

u,v

(
maxe γe(u)

minf γf (u)

)

= max
u

(
maxe γe(u)

mine γf (u)

)
.

(51)

Similarly, it is lower bounded by minu
mine γe(u)
maxe γe(u) . Applying Theorem 8 of Chung (2005) gives the desired bound.

H. Rank Aggregation Experiments with Synthetic Data
Data: We use a variant of the TrueSkill model to generate our data. We assume each player has an intrinsic “skill” level (for
simplicity, assume skill does not change over time), and a player’s performance in match is proportional to their skill plus
some added Gaussian noise. Such a model can represent many different kinds of games, including shooting games (e.g.
Halo, scores represent kill/death ratios in a timed free-for-all match) and racing games (e.g. Mario Kart, scores are inversely
proportional to the time a player takes to finish a course).

The players are {1, . . . , n}. Player i has intrinsic skill i, so the true ranking of players, τ∗, is
player 1 < player 2 < · · · player n. We create k partial rankings, τ1, . . . , τk, where each partial ranking τi corresponds to a
noisy subsampling of τ∗. More specifically, to create each partial ranking, we do the following.

1. Choose a subset of players A ⊂ {1, ..., n}, where player i is included in A with probability p.

2. Choose a scale factor c uniformly at random from [1/3, 3].

3. For each player i ∈ A, independently draw a score for player i from a N(0.2 · i, σ) distribution, and scale that score by
c.

4. Set τj to be a ranking of the players in A according to their score.

The tuneable parameters are: n, the number of players to be ranked; σ, the amount of noise in our partial rankings; k, the
number of partial rankings; and p, which controls the size of each partial ranking. We set the mean score for player i to be
0.2 · i, so that the the scale of the simulated scores is similar to the scores from the Halo dataset.

Methods: As with the real data, we create a Markov chain-based rank aggregation algorithm where the Markov chain is
a random walk on a hypergraph H = (V,E, ω, γ). The vertices are V = {1, ..., n}, and the hyperedges E correspond to
the partial rankings τ1, . . . , τk. We set vertex weights γej (v) = exp[(score of v in partial ranking τj)], and edge weights
ω(ej) = (standard deviation of scores in τj) + 1.

Our baselines are MC3 and a rank aggregation algorithm using the clique graph GH , both of which are described in the
main text.
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Results: We fix universe size n = 100, and set k to be the smallest number of hyperedges until all n vertices are included
at least once. We set σ = 1 and p = 0.03, 0.05, 0.07.

To assess performance, we measure the weighted Kendall τ correlation coefficient (Yilmaz et al., 2008) between the
estimated ranking and the true ranking τ∗. Our weighted hypergraph algorithm outperforms both MC3 and the clique graph
algorithm in all cases (figure below), with the most significant gains when p is small, i.e. when there is less information
in each partial ranking. Moreover, the performance of the clique graph algorithm is much worse than both MC3 and the
weighted hypergraph, which suggests that the clique graph is not a good approximation of H .
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Figure 4. Results of rank aggregation experiment using synthetic data.
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