Online Alternating Minimization

Supplementary Material

A. Proofs

Proof of Theorem 3.2 relies on Theorem 3.1, which in turn relies on Theorem A.1 and Lemma A.1, both of which are stated
below. Proofs of the lemma and theorems follow in the subsequent subsections.

The next result is a standard result from convex optimization (Theorem 2.1.14 in (Nesterov, 2014)) and is used in the proof
of Theorem A.1 below.

Next, we introduce the population gradient AM operator, G;(01,04, ...,0k), wherei = 1,2, ..., K, defined as
gi(gl, 02, ceey OK) = 91 + nVlf(Ol, 02, ceey 9}(),

where 7 is the step size.

Lemma A.l. Forany d = 1,2,..., K, the gradient operator G4(07,05,...,05_1,04,0,,,,...,0%_,,0%) under As-
sumption 3 (strong concavity) and Assumption 3 (smoothness) with constant step size choice 0 < n < is contractive,

. Hdat+Ad
le.

166 831280, 0) = Bl < (1= 2244 o, — 03], (an
td + Mg
forall 84 € By(rg, 03).
The next theorem also holds for any d from 1 to K. Letr1,...,7g-1,7g+1,.--,7k > 0and 81 € Bo(r1,07),...,04_1 €

Bg(?‘d_1, 02_1), 0d+1 S BQ(’I“d_H, 02+1), e ,BK S BQ(Tk, 0}})

Theorem A.1. For some radius 4 > 0 and a triplet (74, \g, j1q) such that 0 < 4 < Ag < g, suppose that the function
L(07,65,...,0,_1,04,0;, ,...,0%_,,0%) is \g-strongly concave (Assumption 3) and jiq-smooth (Assumption 3), and
that the GS (vy4) condition of Assumption 3 holds. Then the population gradient AM operator G4(01, 05, . .., 0 k) with step

nsuchthat 0 <n <min;—1 2 g ﬁ is contractive over a ball Bs(rg, 07), i.e.
K
1Ga(01,02,...,0k) — O5ll2 < (1—&n)[|0a — Oll2+ 1y > _ [10; — 672 (12)
Za
where 7y := maX;—12,. K Vi, and £ = min;—1 2 . g E“S\

A.1. Proof of Theorem A.1

1Ga(61,02,...,0K) — 0|2 = |0a+1VaLl(01,02...,0K)— 072

by the triangle inequality we further get

<104 +nVaL(67,...,04 1,04,05,,,...,0%) — 042
+7||VaL(01,...,04,...,0K)

—VaL(67,...,0,_1,04,0; 1,...,0%)|2

by the contractivity of 7" from Equation 11 from Lemma A.1 and GS condition

2npaNa s
S = N 9, — 07|,
< (Md+/\d) 04 — 03l2 + 1va ;:1 | HP

i#d
A.2. Proof of Theorem 3.1

Let 67! = Hd(ézﬂ), where 52“ = 0 + 'V L0 05t 804,60l,0%) (VL' is the gradient
computed with respect to a single data sample) is the update vector prior to the projection onto a ball By (%, 02). Let

Online Alternating Minimization

AL = gt gt and AL = 8,7 — 07 Thus

~t+
AT E - aYE < 1AL 13 - 1Ak
~t+1 N
184 — 04l — 1165 — 63]
~t41

- <0fi+1 9.6, +93—20;>.

~ ~t+4+1 ~
Let WZ = VL0, 05, .., 05 00,68, ,...,0'%). Then we have that 0d+ -6 = ntWZ. We combine it with
Equation 13 and obtain:

1AGZ — llAgl
< tha th‘f‘Q 0 —)>

IA

= "AWY) W+ 2 (W) (6] - 6))
(n")?|W a3 + 20" <Wd7Aa>

Let Wi =V L0, 05", ... 0,,05,6),...,0%). Recall that E[WZ] = W,. By the properties of martingales,
i.e. iterated expectations and tower property:

E[|AE) < E[JALIZ)+ (0 EIWal3) + 20 B WY, AD)] (13)

Let W} = V4L(07, 63, ...,0%). By self-consistency, i.e. 8; = argmaxg,cq, L(07,...,05_,,04,0;,,,...,0%) and
convexity of {2, we have that

(Wi, AL = (V4L(67,65,...,0%),AL) <0.
Combining this with Equation 13 we have

E[|ASE) < E[JALIZ]+ (0 EIWal3] + 2 B(WYS — Wi, AL)].

Define G, == 0, + n'W', and G} := 07, + n'W. Thus

"7t <Wﬁz - W:;v Af1>
(G- G — (0 02,0, 03)
= (G4—94.05—03) — 64— 633
by the fact that G5* = 6}, + n' W, = 6}, (since W}, = 0):
= (Gi—63,04—63) — 1165033
by the contractivity of G from Theorem A.1:

d—1
{(1nt§)||9t 9d+n7<z 177" — 6712 + Z 67 — 9*II2>}|0392H2H9392|I§

=1 i=d+1

< {(l—nf)llA ||2+n7<ZIIAt“II + Z IIAtHz)} 1Ag]l2 — [lAg]3

i=d+1

IN

Online Alternating Minimization

Combining this result with Equation 14 gives

E[|ASE) < E[IALI3)+ (0B W]3] + 2E

{(1—775)”A ||2+777<ZA”1|2+ > IIAt|2>}

i=d+1

[agllz — [lAg]3]

E[Agl3] + (n)?0d + 2E

{(1n€)IIA ||2+n7<ZIIAt“II + Z IIAtHz)}

i=d+1

(lAblle — |ALlI3], where

0-2 = SUP 9,¢cBs(r1,07) E[”vdl’l(ela 027 sy QK)”%]
0K €EB2(ri,0%)

After re-arranging the terms we obtain

E[| A 3] < (0207 + (1 = 20" Q)E[|AG]3] + 20'+E

<Z 1A 2 + Z IIAtllz) lag ||2]

1=d+1

apply 2ab < a® + b?

d—1 K
< (')oq + (1= 20 QE[|ALI3] +u'vE | Y (IATFE + | AL5) | +n'yE l > (IAadls +1lagls)]
i=1 i=d+1
d—1 K
= (") oq+E[JALE] - [1 =206+ n'y(K = 1)] + 04 | D AT 3| +09E | Y Aﬁll%]
i=1 i=d+1
We obtained
d—1
E[|AG 3] < (n)20q + [1 = 20°€ + 0’y (K = DIE[|AGIE] + n'vE | Y |AF5] + 1K Z IAtzl
i=1 i=d+1
we next re-group the terms as follows
d—1
E[|AGE] — 0 E lz IIA?lIE] < [1—20"€ + n'y(K — 1)E[|Agl] +n'vE Z IAGNZ| + (n')*03
i=1 i=d+1
and then sum over d from 1 to K
K d-1
Z||At+1||2] n'E lz IA?lI%]
d=11=1
K K K K
< =2+ 'K - 1DIE | [|ALI3] +n'E [Z STANE] + (0> ol
d=1 d=1i=d+1 d=1

Leto = /S5 | 02, Also, note that

K K d-1
Z||At+1||2] — 'y (K [ZAt+1||2 ZZIIAEHIE]
d=1i=1

K
< lz IIAZ“%] —n'vE
d=1

Online Alternating Minimization

and
K K K
[1— 20" 4+ n'y(K - 1)]E lz A4 | +n'vE Z Z Al | + (n")?0
d=1 d=1i=d
K
< [L-20"¢+n'y(K - D]E [Z 1AGH3 | + 'y (K Z 1AGI3] + (n')*0
d=1
Combining these two facts with our previous results yields:
[1- (K —1)n'y]E Z||At+1||2]
<[=20+ 'y (K lz A3 | +n'y(K ZIIAde (n')?o
K
=[1— 206 + 2y (K Z”Ad”2 (n')*o
Thus:
. — 20"+ 2n'y(K
E At-‘rl 2 A
S IAGIE| < T Zn 43
)2
+ (n") o2
1= (K =1)ny
. 2 1-2ntet2nty(K—1
Since v < 3(K§1) - s "1)777 T) < 1.
A.3. Proof of Theorem 3.2
To obtain the final theorem we need to expand the recursion from Theorem 3.1. We obtained
K
£[S |A;+1u§]
d=1
K
1—29'[€ — y(K — (n')*
< —— w1 Ig Z 1AGl3| + T
1= (K —=1)n'y (K = 1)n'y
n'[2€ — 3y (K (n)? 2
=(1- A —
(1-(K-1) nt’y Z Il | + T 37

Recall that we defined ¢* in Theorem 3.1 as

e Lo 2y(K 1) "2 3y(K —1)]
= 1—(K—-1nty 1—(K-1)ny

and denote
(n)*

P (K = Dnty’

Online Alternating Minimization

Thus we have

K
E znAm] (- P
d=1

K
< (1-4¢" {(1—qt_1)E doIAarts
del
= (1-¢"(1-¢ HE ZHN 5|+
< (1-gH1-4¢"" {(1 —q'*)E [Z

d=1

= 1-¢"Y1-¢""H1-¢?

+1 -1 =g HB" 0%+ (*q)

We end-up with the following

ZIIA I3

+Bt2

+ﬁt_102} +Bto_2
1 _ qt)ﬂt_lO'Q +ﬁt0,2

lag 13

+ﬂt202} + (1 o qt)5t710_2 +6t02

Z 1Ay 2|2‘|

615 10_2+5t0_2

K ¢ t—1 ¢
E[zm;“s] < E ZHA ng]Hl—q e S [-+ e
d=1 =0 =0 Jj=i+1
Setqt:t%and
t qt

26 — 3y(K —

1) +q¢"(K — 1)y
3

2

26 = 3v(K —

Denote A = 2£ — 3y(K — 1) and B = 3(K — 1)y. Thus

DIt +2)+ 3(K — 1)y

3
3
= At+2)+ B
and
6t — (Tlt)Q _ %
— 2Bt A(t+2)[A(t+2)+ B]’

IN

+o? %
A(t + 2)[A(t+2) + B]
t42

ZIIA I3

s.

Online Alternating Minimization

Since A > 0 and B > 0 thus

[K
E ZIIATII%]
d=1
t+2 3 t+1 9 142 3
< E A 2 ? 1-2) +0°
< Z” d”2h_£< z>+gZAzAz+BJ1:[1< ;) A+ 2)[A(t
K t+2 3 t+1 9 t+2 3 9

< E A 1-2 2 -2 2___4
< B> A ”1[[(z)*"z H+()+ e

We can next use the fact that for any a € (1,2):

Ime-9=<(5)

i1=74+1

IN

The bound then becomes

MK
B zuAf;lu;]
Ld=1
[K 1 t+2 3 t+1 9 t+2 3
< E AY 1— 2 2 4 1-2 2 1
< 5 |S 1A I (1-2) +o" X s 1T (1-2) o
Ld=1 1 i=2 =2 j=i+1
[K] 3 t+1 9 . 3 9
2 2 7 i+ 1Y)2 7
< E A + 2 4. 4 2 4
= ;” all <t+3> T iz \tr3) T A+ o)P
[K] E) t+2 9 . 3
2 \? 1 i+ 1)°2
- E A e 2 4
D llaql <t+3 T2 e <t+3>
Ld=1 i =2
Note that (i +1)% < 2i fori = 2,3, ..., thus
MK
E zuAgﬂng]
Ld=1
[K E] 9 t+2 3
2 2 I i14+1)2
< B[S A (25) o
= t+3 A2(t+3)§ =)
[K 3 9 t+2
2 2 5 1
< E AY)2 () +o2—2 N
>~ _; H dHQ t+3 AQ(t+3)% P Z%
t+2 1 t+2
finally note thatZ = </ —dx<2 t+3)2 Thus
12 1

IN
=

2 , 9
Z”A I3 (t+3) to A2(t +3)

substltutlng A =2¢ — 3y(K — 1) gives

- E ZIIA [E <t+3> to [26 — 3y(K — 1)]2(t + 3)

This leads us to the final theorem.

Online Alternating Minimization

B. CNNs experiments: details

We compare SGD, Adam, and AM-Adam on the LeNet-5(LeCun et al., 1998) architecture on both MNIST and Fashion-
MNIST (Xiao et al., 2017) datasets.

Fashion-MNIST is a dataset of Zalando’s article images, consisting of a training set of 60,000 examples and a test set
of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend
Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning
algorithms. It shares the same image size and structure of training and testing splits.

We fix the batchsize to 128, and run a hyperparameter grid search for each algorithm and dataset using the following values:
weight-learning rates of 2e-M for M=2,3.,4,5; batch-wise mu-increments of le-2,1e-5, le-7; epoch-wise mu-multipliers of
1, 1,1; code learning-rates of 0.1, 1 (note: only weight learning rates are varied for SGD and Adam). SGD was allowed a
standard epoch-wise learning rate decay of 0.9. AM-Adam used only one subproblem iteration (both codes and weights) for
each minibatch, an initial x value of 0.01, and a maximum g value of 1.5. In total, six total grid searches were performed.

For each hyperparameter combination, each algorithm was run on at least 5 initializations, training for 10 epochs on 5/6 of
the training dataset. The mean final accuracy on the validation set (the remaining 1/6 of the training dataset) was used to
select the best hyperparameters.

Finally, each algorithm with its best hyperparameters on each dataset was used to re-train Lenet-? with N intializations,
this time evaluated on the test set. The mean performances are plotted in Figures ?? for MNIST and Figures ?7? for
Fashion-MNIST.

The winning hyperparameters for Fashion-MNIST are: Adam: LR=0.002 SGD: LR=0.02 AM: weight-LR= 0.002;
code-LR= 1.0; batchwise p-increment=1e-5; epochwise p-multiplier=1.1

The winning hyperparameters for MNIST are: Adam: LR=0.002 SGD: LR=0.02 AM: weight-LR= 0.002; code-LR=
1.0; batchwise p-increment=1e-7; epochwise p-multiplier=1.1

C. RNN experiments: details
C.1. Architecture and AM Adaptation

We also compare SGD, Adam, and AM-Adam on a standard Elman RNN architecture. That is a recurrent unit that, at
time ¢, yields an output z* and hidden state h* based on a combination of input z* and the previous hidden state h~!, for
t =1,...,T. The equations for the unit are:

ht = o{Uz' + Wh!~! + b} (14)
' =Vh, (15)

where b is a bias, o is a fanh activation function, and U € R¥>*! W € R?*? and V € R'*? are learnable parameter
matrices that do not vary with ¢. Denote with m the length of one sequence element, so =%, 2t € R™. Then let d be the
number of hidden units, so ht € R?,

We train this architecture to classify MNIST digits where each image is vectorized and fed to the RNN as a sequence of
T = 784 pixels (termed "Sequential MNIST" in (Le et al., 2015)). Thus for each ¢, the input ¢ is a single pixel. A final
matrix C is then used to classify the output sequence z* using the same multinomial loss function as before:

> L(yn, ReLU(z,,),C), (16)

1 784

where z,, = [z}, ..., 27%4]T is the output sequence for the n*” training sample, and C € R!°*784 In summary, the prediction

is made only after processing all 784 pixels.

To train this family of architectures using Alt-Min, we introduce two sets of auxiliary variables (codes). First, we introduce
a code for each element of the sequence just before input to the activation function:

d=Uzst + Wh 1 + b (17)

Online Alternating Minimization

where ¢! is the internal RNN code at time ¢. Using the "unfolded" interpretation of an RNN, we have introduced a code
between each repeated "layer". Second, we treat the output sequence z as an auxiliary variable in order to break the gradient
chain between the loss function and the recurrent unit.

C.2. Experiments

We compare SGD, Adam, and AM-Adam on the Elman RNN architecture with hidden sizes d = 15 and d = 50 on the
Sequential MNIST dataset. We fix the batchsize to 1024, and run a hyperparameter grid search for each algorithm using
the following values: weight-learning rates of 5e-M, for M=1,2,3,4,5 (all methods); weight sparsity = 0, 0.01, 0.1 (SGD
and Adam); batch-wise mu-increment le-M for M=2,3,4; epoch-wise mu-multiplier for 1, 1.1, 1.25, 1.5; mu-max=1, 5.
SGD was allowed a standard learning-rate-decay of 0.9. AM-Adam used an initial x value of 0.01, and used 5 subproblem
iterations for both code and weight optimization subproblems.

Note: in an offline hand-tuning search, we determined that weight-sparsity only hurt Alt-Min, so it was not included in
official the grid search. Also note that a larger batchsize is used for the RNN experiments because of the relatively strong
dependence of the training time on batchsize. This dependence is because for each minibatch, a series of loops though
t =1,...,784 are required.

For each hyperparameter combination, each algorithm was run on at least 3 initializations, training for 10 epochs on 5/6 of
the training dataset. The mean final accuracy on the validation set (the remaining 1/6 of the training dataset) was used to
select the best hyperparameters.

Finally, each algorithm with its best hyperparameters on each dataset was used to re-train the Elman RNN with N
intializations, this time evaluated on the test set.

The winning hyperparameters for d=15 are: Adam: learning rate = 0.005, L1=0; SGD: learning rate = 0.05, L1=0;
AM-Adam: learning rate = 0.005, max-mu=1, mu-multiplier=1.1, mu-increment=0.01. Results are depicted in Figure 6.

The winning hyperparameters for d=50 are: Adam: learning rate = 0.005, L1=0.01; SGD: learning rate = 0.005, L1=0;
AM-Adam: learning rate = 0.005, max-mu=1, mu-multiplier=1.0, mu-increment=0.0001. Results are depicted in Figure 9.
Sequential MNIST, RNN 1-50

0.9 0.894
0.8 A
. 077 1st Epoch 0913
g 0.836
@ 0.8
g 06
< 0.6
0.5 - 0.4 1 / 0.414
0.2 1
0491 4 Am-adam (N=19)
" - T T . .
—— 56D (N=43) 0 10 20 30 40 50
—— Adam (N=54) Minibatches
— : T T

0.3-

T
2 9 6 8 10
Epochs

Figure 9. RNN-50, Sequential MNIST.

D. Fully connected networks: details

Performance of the online (i.e., SGD, Adam, AM-Adam, AM-mem) and offline (i.e., AM-Adam-off, AM-mem-off, Taylor)
methods are compared on the MNIST and CIFAR-10 datasets for two fully connected network architectures with two
identical hidden layers of 100 and 500 units each. We also consider a different architecture with one hidden layer of 300
units for the larger HIGGS dataset. Optimal hyperparameters are reported below for each set of experiments.

D.1. MNIST Experiments

The standard MNIST training dataset is split into a reduced training set (first 50,000 samples) and a validation set (last
10,000 samples) for hyperparameter optimization. More specifically, an iterative bayesian optimization scheme is used
to find the optimal learning rates (Ir) maximizing classification accuracy on the validation set after 50 epochs of training.

Online Alternating Minimization

Rather than learning rates, for Taylor’s method we optimize the vpr04 and Ynoniin parameters. The procedure is repeated for
five different weight initializations and for both architectures considered. Table 1 reports hyperparameters yielding the
highest accuracy among the 5 weight initializations.

Algorithm Hidden units per layer Ir Yprod Ynonlin
Adam 100 0.0210
Adam 500 0.0005
SGD 100 0.2030
SGD 500 0.1497
AM-Adam 100 0.1973
AM-Adam 500 0.1171
AM-mem 100 0.1737
AM-mem 500 0.1376
AM-Adam-off 100 0.5003
AM-Adam-off 500 0.4834
AM-mem-off 100 0.4664
AM-mem-off 500 0.2503

Taylor 100 582.8 54.15

Taylor 500 4442 111.7

Table 1. Optimal hyperparameters for fully connected networks on MNIST

D.2. CIFAR-10 Experiments

Similary to what done for the MNIST dataset, we split the standard CIFAR-10 training dataset into a reduced training set
(first 40,000 samples) and a validation set (last 10,000 samples) used to evaluate accuracy for hyperparameter optimization.
Table 2 reports hyperparameters for all the methods yielding the highest accuracy among the 5 weight initializations. Since
not included in the original publication, we do not consider Taylor’s method on this dataset.

Algorithm Hidden units per layer Ir

Adam 100 0.0029
Adam 500 0.0002
SGD 100 0.1500
SGD 500 0.1428
AM-Adam 100 0.1974
AM-Adam 500 0.1011
AM-mem 100 0.1746
AM-mem 500 0.1016
AM-Adam-off 100 0.5000
AM-Adam-off 500 0.4844
AM-mem-off 100 0.2343
AM-mem-off 500 0.2277

Table 2. Optimal hyperparameters for fully connected networks on CIFAR-10

D.3. HIGGS Experiments

For the Higgs experiment, we compare only our best performing AM-Adam online method to Adam and SGD. Also, due
to the increased computational costs associated to this dataset, we consider only one weight initialization and replace the
bayesian optimization scheme with a simpler grid search. Table 3 reports the hyperparameters yielding the highest accuracy.

Online Alternating Minimization

Algorithm Hidden units per layer Ir

Adam 300 0.001
SGD 300 0.050
AM-Adam 300 0.001

Table 3. Hyperparameters used for fully connected networks on HIGGS

D.4. Related Work: ProxProp

As we mentioned in the introduction, a closely related auxiliary methods, called ProxProp, was recently proposed in
(Thomas Frerix, 2018). However, there are several importnant differences between ProxProp and our approach. ProxProp
only analyzes and experimentally evaluates a batch version, only briefly mentioning in section 4.2.3 that theory is extendable
to mini-batch setting, without explicit convergence rates/formal proofs/experiments. Also, an assumption on eigenvalues
(from eq. 14 in (Thomas Frerix, 2018)) bounded away from zero is mentioned; however, in flat regions of optimization
landscape (often found by solvers like SGD) this condition is not met, as most eigenvalues are close to zero (see, e.g.
Chaudhari et al 2016). We believe that our assumptions are less restrictive from that perspective (and convergence in
mini-batch setting is formally proven). Further differences include: (1) our formulation involves only one set of auxiliary
variables/’codes” (linear z in ProxProp) rather than two (linear and nonlinear), reducing memory footprint (and potentially
computing time); (2) ProxProp experiments are limited to batch mode, while we compare batch vs mini-batch vs SGD; (3)
ProxProp processes both auxiliary variables and weights sequentially, layer by layer (we process auxiliary variables first,
then weights in all layers independently/in parallel), which is important for ProxProp. (4) Finally, we also propose two
different mini-batch methods, AM-SGD (closer to ProxProp) and AM-mem, which is very different from ProxProp as. it
exploits surrogate objective method of online dictionary learning in (Mairal et al., 2009).

MNIST
8837 —— AM-Adam (N=4)
300 8662

8128 455 4 —4— SGD (N=4)
g 250 —— Adam (N=4)
T3 200
BE
£F 150 450 -
g

vl
S 445
=]
[¥)
&
10618
350 440
« 300 8.678
3 7.910
F5250
29
£ 2200 435
<E
o 150
3
100 —— Adam —— AM-adam —— AM-memory
50 —— SGD 430 T T T T T
450 452 454 456 458 460
1 Epcuchs20 * Minibatches
Figure 10. Runtimes on MNIST, fully-connected architecture Figure 11. Runtimes on MNIST, LeNet5.

D.5. Computational Efficiency: Runtimes

Runtime results for AM-Adam were quite comparable in most experiments to those of Adam and SGD (see Figures 10 and
11). Runtimes of all methods grew linearly with mini-batches/epochs, and were similar to each other: e.g., for LeNet/MNIST
(Figure 11), practically same slope was observed for all methods, and the runtimes were really close (e.g. 440, 442 and 443
seconds for 450 mini-batches for Adam, SGD and AM, respectively). On MNIST, using fully-connected networks (Figure
10), slight increase was observed in the slope of AM versus SGD and Adam, but the times were quite comparable: e.g., at
30 epochs, Adam took 8.7 seconds, while AM-SGD and AM-mem took 9.6 and 9.7 seconds, respectively. Note that we are
comparing an implementation of AM which does not yet exploit parallelization; the latter is likely to provide a considerable
speedup, similar to the one presented in (Carreira-Perpinan & Wang, 2014).

