Supplementary Material for Probability Functional Descent

A. Proofs and Computations

Lemma 1. Let J : P(X) > R Then ¥ : X — Risan
influence function of J at u if and only if

e, = [ v ).

de
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Proof. The left-hand side equals (1), which equals (2). [

Theorem 1 (Chain rule). Let J : P(X) — R be continu-
ously differentiable, in the sense that the influence function
U, exists and (p,v) — Egpp [¥,, ()] is continuous. Let
the parameterization 0 — g be differentiable, in the sense
that ﬁ(uﬂh — ) converges to a weak limit as h — 0.
Then

Vg:](,ue) = VQ]EJCNMQ [\Ij(x”’

where U = W e 18 treated as a function X — R that is not
dependent on 6.

Proof. Without loss of generality, assume 6 € R, as the
gradient is simply a vector of one-dimensional derivatives.
Let xc = ¢(to+c — ptg), and let x = lime_,o x. (weakly).
Then
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Assuming for now that
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we have by Lemma 1 that
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where the interchange of limits is by the definition of weak
convergence (recall we assumed that X is compact, so VU is
continuous and bounded by virtue of being continuous).

The equality we assumed is the definition of a stronger
notion of differentiability called Hadamard differentiabil-
ity of J. Our conditions imply Hadamard differentiability
via Proposition 2.33 of Penot (2012), noting that the map
(11, x) = [y ¥u dx is continuous by assumption. O

Theorem 2 (Fenchel-Moreau representation). Let J :
M(X) — R be proper, convex, and lower semicontinu-
ous. Then the maximizer of ¢ — E,.,[p(x)] — J* (@), if it
exists, is an influence function for J at p. With some abuse
of notation, we have that

Wy, = argmax B pfo(z)] — J* ()|
pEC(X)

Proof. We will exploit the Fenchel-Moreau theorem, which
applies in the setting of locally convex, Hausdorff topolog-
ical vector spaces (see e.g. Zalinescu (2002)). The space
we consider is M (X)), the space of signed, finite measures
equipped with the topology of weak convergence, of which
P(X) is a convex subset. M (X)) is indeed locally convex
and Hausdorff, and its dual space is C(X) (see e.g. Alipran-
tis & Border (2006), section 5.14).

We now show that a maximizer ¢* is an influence function.
By the Fenchel-Moreau theorem,

J(p) = T (n) = wesg&) [/X pdp — J*(@)},

and

J(u+ex) = sup

[/ <pdu+6/ wdx—J*(w)]
peC(X) X X

Because J is differentiable, ¢ — J (1 + €x) is differentiable,
so by the envelope theorem (Milgrom & Segal, 2002),

= *d

so that ¢* is an influence function by Lemma 1.
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The abuse of notation stems from the fact that not all in-
fluence functions are maximizers. This is true, though, if
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J(p) = ooif p & P(X):
/ U, dp — J*(V,)
X

:/ U, dp— sup [/ \Ifudl/—(](l/)}
X veP(X) X

inf {—/X\Ilud(y—u)—l—J(V)}

veP(X)
d
= inf I, _
uel7r>l(X) [ de T+ el =) =0 + J(V)}
> J(p),

since the convex function f(€) = J(u+e(v—p)) lies above
its tangent line:

f(1) = f(0) +1- f(0).

Since J(p) = J**(u), we have that

/@#du—J*(\I}#)z sup [/ wdufJ*(so)]-
X peC(X) X

O

The following lemma will come in handy in our computa-
tions.

Lemma 2. Suppose J : M(X) — R has a representation

J(w) = s [/Xs@du—K(w)}

where K : C(X) — R is proper, convex, and lower semi-
continuous. Then J* = K.

Proof. By definition of the convex conjugate, J = K*.
Then J* = K** = K, by the Fenchel-Moreau theorem.
O

We note that when applying this lemma, we will often im-
plicitly define the appropriate extension of J to M (X) to be
J(1) = sup,ec(x)lf wdp — K(p)]. The exact choice of
extension can certainly affect the exact form of the convex
conjugate; see Ruderman et al. (2012) for one example of
this phenomenon.

Proposition 2. Suppose p has density p(z) and v has den-
sity q(x). Then the influence function for Jys is

_ 1 p()

Vas(@) = 3 los S @)

Proof. The result follows from Lemma 1:

4

T Jys(pu+ ex)’

1 d[ p+ex
=- [ —|(p+ex)log+—+———
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Proposition 3. The convex conjugate of Jjg is

Jis(p) = —%Ezwy[log(l _ e2v(x)+log 2)] _

1
5 log 2.
Proof.

Tiste) = sw [ [ pdu= s
HEM(X) X

= sup/ [gpp - 1plog % - 1qlog %} dx.
p Jx 2 p+3q 2 7P+ 34

2
Setting the integrand’s derivative w.r.t. p to 0, we find that

pointwise, the optimal p satisfies

o= glos L
2 3P+ 354

We eliminate p in the integrand. Notice that the first two
terms in the integrand cancel after plugging in p. Since

q p 2
7:2(1_7):2 1 —2¢e*%),
ip+1iq p+q ( )

we obtain that
* 1 2 1
Jis(p) = —5 [ qlog(l —2e**)dzx — - log2.
2 /x 2
O

Proposition 5. Suppose p has density p(x) and v has den-
sity q(zx). The influence function for Jxg is

Uns(z) = log ZEB
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Proof. The result follows from Lemma 1:

d
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(p+ €x) log d
X

=0
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Proposition 7. The influence function for Jw is the Kan-
torovich potential corresponding to the optimal transport

Jrom p to v.

Proof. See Santambrogio (2015), Proposition 7.17.

Proposition 8. The convex conjugate of Jw is

Ry (#) = B [o(2)] + {ll el < 1}

O

Proof. Using Kantorovich—Rubinstein duality, we have that

Jw(p) = sup {/ sodu—/ sodV]
[lell<1 X X

©

where we use the notation

0  Aistrue,
{A} = { .

oo Ais false.

By Lemma 2,

Ti() = /Xgodw{nm <1,

Proposition 10. The influence function for Jyi is

\IJVI(Z) = IOg o(x

=sup | [ pdu— [ pdr—{llell < 1],

Proof. The result follows from Lemma 1:
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Proofs continue on the following page.
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Proposition 13. The influence function for Jry, is

> oo V' PE(s)

\I/RL(S,CL) = — W(s)

(Q7(s,0) = V7(s)),

where Q™ is the state-action value function, V'™ is the state value function, and p¥ is the marginal distribution of states after
t steps, all under the policy .

Proof. First, we note that

L+ e als)

de =
_ d 7(a,s) + ex(s,a)
de 7w(s)+ex(s) le=o
_ x(s.a) — x(s)m(als)
7(s) ’
where we abuse notation to denote x(s) = [ x(s,a’) da'.

We have
—JrL = E{Z’thlrt],
t=1

or, plugging in the measure,

oo oo oo
_JRL:/Z’)’t_thpo(SO)Hp(5j7rj|3jfl7aj H (ar|sk—1)
t=1 j=1 k=1

The integral is over all free variables; we omit them here and in the following derivation for conciseness.

In computing % JRL (T + €X)]|e=0, the product rule dictates that a term appear for every k, in which 7 (ag|sk—1) is replaced
with %(w + ex)(ar|Sk—1)|e=0. Hence:

d
- *JRL(W +ex)

e=0

(o9}
/ZV Tt Po(so H (s5:75l85-1,a5)

X Sk— 170k X(Sk—l)ﬂ(aﬂsk—l) o

X E P | I m(aplse—1)
k—1 =1
I#£k

oo
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. X(sp—1,ax) — x(sp—1)m(ak|skp—1) ﬁﬂ(adw_l)’

m(sk-1) =1
Ik
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reordering the summations. Note that for ¢ < k, the summand vanishes:
o0
/ 11 pCsjrilsj—1,a5)
j=k
oo

x (x(sk—1,ar) — X(sk—1)m(ar|se-1)) [ m(aelse—1)

l=k+1

= / (X(sk—1,ar) — x(sp—1)7(ak|sk-1))

= / (X(Sk—l) —X(Sk—l))
—0,

since all the variables ay, 7, Sk, Gk+1, Tk+1, Sk+1, - - - integrate away to 1. This yields:

d
- IJRL(W + €x)
€ €=

o0

e o) o
=3 [ 3ot tremton) [T assorslsy-v.a)
k=17 t=k j=1

X(8k—1,0x) — x(sk—1)7(ak|s -

k—1,0k) — X(Sk-1 k|Sk—1)

X | | m(ag|se—1).
¢

m(sk-1)

=1
(#k
Then, substituting the marginal distribution (note s;_1 is not integrated)
k-1 k-1
p2_1(3k—1)Z/Hp(sjﬁj\sj—haj)Hﬂ(atz\é’e—l)v
j=1 =1
we obtain
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k—1, 0k k—1 kISk—1
X H m(ag|se—1).
(Sk‘l) (=k+1

Let us rename the integration variables by decreasing their indices by k£ — 1:

d
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Substituting in

"(s0) = / St [T o550 ri15-1,a5) T m(aelser),
t=1 j=1

=1

oo oo oo
@ (so.an) = [ S0t [ plogerslsyoveap) [ wlardsi).
t=1 j=1

(=2
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we obtain

d
- d—JRL (m+ ex)

k-1 Q”(Smal)x(so’al) — V™ (s0)x(50)
‘Z/ it w(s0) |

Finally, by Lemma 1, we obtain that

_ > he0 V" PE(5)

\IIRL(S,Q) = 7T(S>

(Q7(s,a) = V7(s)).

Proposition 16. The convex conjugate of Jry, is
Th(9) = (= 1By () Vils) + {Vy exisis},
where V,, is the unique solution to ¢ = — AV, if it exists.
Proof. As mentioned in the text, we set the arbitrary distribution 7(s) = (1 — ) > s0q7'pF(s). In doing so, 7 (s, a)
becomes a state-action occupancy measure that describes the frequency of encounters of the state-action pair (s, a) over

trajectories governed by the policy 7(al|s). It is known that there is a bijection between occupancy measures 7 (s, a) and
policies 7(a|s) (Syed et al., 2008; Ho & Ermon, 2016).

We can enforce this setting by redefining
JRL( :—]EZ’}/t 17”15+{V8 7T Z’y },
t=1

where again {-} is the convex indicator function. This equation can be rewritten as

JrL(m) = —Er(s.a)R(s,a) + {Vs/ cw(s)) = (1 —v)po(s') + ’yEﬂ(s,a)p(sﬂs,a)},

where R(s,a) = Ep(s r|s,a) [r]. The constraint is known as the Bellman flow equation. This formulation is convex, as it is
the sum of an affine function and an indicator of a convex set (indeed, an affine subspace).

We recall —p = AV,,, where AV (s,a) = Ep (s r(s,q)[7 + 7V (5")] = V(5). Now, V,, is uniquely defined by ¢ if a solution
to the equation exists. To see this, note that V,, is the fixed point of the Bellman operator 7 defined by

(T(LV)(S) = (R + 410)(57 a) + ,Y]Ep(s’\s,a)v(s/)a

which is contractive and therefore has a unique fixed point. A representation of V,, may be obtained via fixed point iteration
using 7 for an arbitrary action a:

V,(s) = lim (T%)*0 = E® Zyt*I(R +©)(s¢,a),

k—o0
t=1

where the expectation is taken under the deterministic policy a.

We rewrite Jry, using a Lagrange multiplier V' (s)
Jru(7) = —En(s,a)R(s,a) + Slép/V(S/) [W(S’) — (1 =)po(s) — 'yEW(Sﬂ)p(sﬂs,a)] ds'
= Sl‘ip _Eﬂ(s,a)R(Sv a) + ETA’(S)V(S) - (1 - W)Epo(s)v(s) - VEW(s,a)Ep(sﬂs,a)V(sl)

=supEr(5,a)0(5,a) — (1 = 7)Ep, (5) Vi (5) — {V,, exists}.
@
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Note that (1 —7)E,, (5 Vi, (s) + {V,, exists} is convex in ¢; this stems from the fact that

Po
Vapt(i—ayer = aVe + (1 = a)Vyr.

The result follows from Lemma 2.



