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In this appendix, we prove the theorems and technical results in the main article, “Weak Detection of Signal in the Spiked
Wigner Model.”

NOTATIONAL REMARKS

We use the standard big-O and little-o notation: aN = O(bN ) implies that there exists N0 such that aN ≤ CbN for some
constant C > 0 independent of N for all N ≥ N0; aN = o(bN ) implies that for any positive constant ε there exists N0

such that aN ≤ εbN for all N ≥ N0.

For X and Y , which can be deterministic numbers and/or random variables depending on N , we use the notationX = O(Y )
if for any (small) ε > 0 and (large) D > 0 there exists N0 ≡ N0(ε,D) such that P(|X| > N ε|Y |) < N−D whenever
N > N0.

For an event Ω, we say that Ω holds with high probability if for any (large) D > 0 there exists N0 ≡ N0(D) such that
P(Ωc) < N−D whenever N > N0.

A. Proof of Theorem 5
We adapt the strategy of Bai and Silverstein (Bai & Silverstein, 2004), and Bai and Yao (Bai & Yao, 2005). In this method,
we first express the left-hand side of (4) by using a contour integral via Cauchy’s integration formula. The integral is then
written in terms of the Stieltjes transforms of the empirical spectral measure and the semicircle measure. Since the Stieltjes
transform of the empirical spectral measure converges weakly to a Gaussian process, we find that the linear eigenvalue
statistic also converges to a Gaussian random variable. Precise control of error terms requires estimates on the resolvents
from random matrix theory, which are known as the local laws.

Denote by ρN the empirical spectral distribution of M , i.e.,

ρN =
1

N

N∑
i=1

δµi . (A.1)

As N →∞, ρN converges to the Wigner semicircle measure ρ, defined by

ρ(dx) =

√
(4− x2)+

2π
dx. (A.2)

Choose (N -independent) constants a− ∈ (−3,−2), a+ ∈ (2, 3), and v0 ∈ (0, 1) so that the function f is analytic on the
rectangular contour Γ whose vertices are (a− ± iv0) and (a+ ± iv0). Since ‖M‖ → 2 almost surely, we assume that all
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eigenvalues of M are contained in Γ. Thus, from Cauchy’s integral formula, we find that

N∑
i=1

f(µi) =

N∑
i=1

1

2πi

∮
Γ

f(z)

z − µi
dz =

1

2πi

∮
Γ

f(z)

(
N∑
i=1

1

z − µi

)
dz

= − N

2πi

∮
Γ

f(z)

(∫ ∞
−∞

ρN (dx)

x− z

)
dz.

(A.3)

The procedure decouples the randomness of µi and the function f , and we can solely focus on the randomness of µi via the
integral of the function (x− z)−1 with respect to the random measure ρN (dx).

Let us recall the Stieltjes transform to handle the random integral of (x− z)−1. For a measure ν and a variable z ∈ C+, the
Stieltjes transform sν(z) of ν is defined by

sν(z) =

∫ ∞
−∞

ν(dx)

x− z
. (A.4)

We abbreviate sρN (z) ≡ sN (z). Then, (A.3) can be rewritten as

N∑
i=1

f(µi) = − N

2πi

∮
Γ

f(z)sN (z)dz. (A.5)

Similarly, we also find that

N

∫ 2

−2

√
4− x2

2π
f(x) dx =

N

2πi

∮
Γ

f(z)s(z)dz, (A.6)

where we let s(z) = sρ(z), the Stieltjes transform of the Wigner semicircle measure. Thus, we obtain that

N∑
i=1

f(µi)−N
∫ 2

−2

√
4− x2

2π
f(x) dx = − N

2πi

∮
Γ

f(z)
(
sN (z)− s(z)

)
dz. (A.7)

We remark that s(z) satisfies

s(z) =
1

2π

∫ 2

−2

√
4− x2

x− z
dx =

−z +
√
z2 − 4

2
. (A.8)

We use the results from the random matrix theory to analyze the right-hand side of (A.7). For z ∈ C+, define the resolvent
R(z) of M by

R(z) = (M − zI)−1. (A.9)

Note that the normalized trace of the resolvent satisfies

1

N
TrR(z) =

1

N

N∑
i=1

1

µi − z
= sN (z). (A.10)

Let

ξN (z) = N(sN (z)− s(z)) =

N∑
i=1

[Rii(z)− s(z)]. (A.11)

As discussed in Section 1, Theorem 5 was proved in (Baik & Lee, 2017) for

x = 1 =
1√
N

(1, 1, . . . , 1)T .

We introduce an interpolation between x and 1 as follows: Since x,1 ∈ SN−1, the (N −1)-dimensional unit sphere, we can
consider a parametrized curve y : [0, 1]→ SN−1, a segment of the geodesic on SN−1 joining x and 1 such that y(0) = x
and y(1) = 1. We write

y(θ) = (y1(θ), y2(θ), . . . , yN (θ))T (A.12)
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and also define

Mij(θ) =
√
λyi(θ)yj(θ) +Hij , R(θ, z) = (M(θ)− zI)−1, ξN (θ, z) =

N∑
i=1

[Rii(θ, z)− s(z)]. (A.13)

Our strategy of the proof is to show that the limiting distribution of ξN (θ, z) does not change with θ. More precisely, we
claim that

∂

∂θ
ξN (θ, z) = O(N−

1
2 ) (A.14)

for any z ∈ Γ. Once we prove the claim, we can use the lattice argument to prove Theorem 5 as follows: Choose points
z1, z2, . . . , z16N ∈ Γ so that |zi − zi+1| ≤ N−1 for i = 1, 2, . . . , 16N (with the convention z16N+1 = z1). For each zi, the
claim (A.14) shows that

ξN (1, zi)− ξN (0, zi) = O(N−
1
2 ). (A.15)

For any z ∈ Γ, if zi is the nearest lattice point from z, then |z − zi| ≤ N−1. From the Lipschitz continuity of ξN , we then
find |ξN (θ, z)− ξN (θ, zi)| = O(N−1) uniformly on z and zi. Hence,

|ξN (1, z)− ξN (0, z)| ≤ |ξN (1, z)− ξN (1, zi)|+ |ξN (1, zi)− ξN (0, zi)|+ |ξN (0, zi)− ξN (0, z)| = O(N−
1
2 ). (A.16)

Now, integrating over Γ, we get

1

2πi

∮
Γ

f(z)ξN (1, z)dz − 1

2πi

∮
Γ

f(z)ξN (0, z)dz = O(N−
1
2 ). (A.17)

This shows that the limiting distribution of the right-hand side of (A.7) does not change even if we change x into 1.
Therefore, we get the desired theorem from Theorem 1.6 and Remark 1.7 of (Baik & Lee, 2017).

We now prove the claim (A.14). For the ease of notation, we omit the z-dependence in some occasions. Using the formula

∂Rjj(θ)

∂Mab(θ)
=

{
−Rja(θ)Rbj(θ)−Rjb(θ)Raj(θ) if a 6= b,

−Rja(θ)Raj(θ) if a = b,
(A.18)

and the fact that M and R(θ) are symmetric, it is straightforward to check that

∂

∂θ
ξN (θ) =

N∑
a,b=1

∂Mab(θ)

∂θ

∂ξN (θ)

∂Mab(θ)
= −
√
λ

N∑
a,b=1

ẏa(θ)yb(θ)

N∑
j=1

Rja(θ)Rbj(θ) , (A.19)

where we use the notation ẏa ≡ ẏa(θ) = dya(θ)
dθ .

To estimate the right-hand side of (A.19), we first note that

N∑
a,b=1

ẏa(θ)yb(θ)

N∑
j=1

Rja(θ)Rbj(θ) = 〈ẏ(θ), R(θ)2y(θ)〉 (A.20)

For the resolvents of the Wigner matrices, we have the following lemma from (Knowles & Yin, 2013).

Lemma A.1 (Isotropic local law). For an N -independent constant ε > 0, let Γε be the ε-neighborhood of Γ, i.e.,

Γε = {z ∈ C : min
w∈Γ
|z − w| ≤ ε}.

Choose ε small so that the distance between Γε and [−2, 2] is larger than 2ε, i.e.,

min
w∈Γε,x∈[−2,2]

|x− w| > 2ε. (A.21)

Then, for any deterministic v,w ∈ CN with ‖v‖ = ‖w‖ = 1, the following estimate holds uniformly on z ∈ Γε:∣∣〈v, (H − zI)−1w〉 − s(z)〈v,w〉
∣∣ = O(N−

1
2 ). (A.22)
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Proof of Lemma A.1. We prove the lemma by using the results in (Knowles & Yin, 2013). If z = E + iη ∈ Γε for some
E ∈ [a− − ε, a+ + ε] and η ∈ [v0 − ε, v0 + ε], we get the estimate from Theorem 2.2 of (Knowles & Yin, 2013) since the
control parameter Ψ(z) in Equation (2.7) of (Knowles & Yin, 2013) is bounded by

Ψ(E + iv0) ≡

√
Im s(E + iη)

Nη
+

1

Nη
= O(N−

1
2 ).

A similar estimate holds for z = E − iη ∈ Γε with E ∈ [a− − ε, a+ + ε] and η ∈ [−v0 − ε,−v0 + ε]. On the other hand,
if z = E + iη ∈ Γ for E ∈ [a− − ε, a− + ε] ∪ [a+ − ε, a+ + ε] and η ∈ (0, v0 + ε], we can check from an elementary
calculation that | Im s(E + iη)| ≤ Cη for some constant C independent of N . Thus, the upper bound in Equation (2.10) of
(Knowles & Yin, 2013) becomes √

Im s(E + iη)

Nη
= O(N−

1
2 ).

A similar estimate holds for z = E − iη ∈ Γε with E ∈ [a− − ε, a− + ε] ∪ [a+ − ε, a+ + ε] and η ∈ (0, v0 + ε]. This
completes the proof of the lemma.

To show that the right-hand side of (A.20) is negligible, we want to use Lemma A.1. The main difference between the
right-hand side of (A.20) and the left-hand side of (A.22) is that the former contains the square of the resolvent, and it is not
the resolvent of H but of M(θ). We can overcome the first difficulty by rewriting R(θ, z) as

R(θ, z)2 = (M(θ)− zI)−2 =
∂

∂z
(M(θ)− zI)−1 =

∂

∂z
R(θ, z), (A.23)

which can be checked from the definition of the resolvent. Hence we find that

〈ẏ(θ), R(θ, z)2y(θ)〉 =
∂

∂z
〈ẏ(θ), R(θ, z)y(θ)〉. (A.24)

Later, we will apply Cauchy’s integral formula to estimate the derivative in (A.20) by an integral of the inner product
〈ẏ(θ), R(θ, z)y(θ)〉.

Next, we obtain an analogue of Lemma A.1 by using the resolvent expansion. Set S(z) = (H − zI)−1. We have from the
definition of the resolvents that

R(θ, z)−1 − S(z)−1 =
√
λy(θ)y(θ)T , (A.25)

and after multiplying S(z) from the right and R(θ, z) from the left, we find that

S(z)−R(θ, z) =
√
λR(θ, z)y(θ)y(θ)TS(z). (A.26)

Thus,

〈ẏ(θ), S(z)y(θ)〉 = 〈ẏ(θ), R(θ, z)y(θ)〉+
√
λ〈ẏ(θ), R(θ, z)y(θ)y(θ)TS(z)y(θ)〉

= 〈ẏ(θ), R(θ, z)y(θ)〉+
√
λ〈ẏ(θ), R(θ, z)y(θ)〉〈y(θ), S(z)y(θ)〉

= 〈ẏ(θ), R(θ, z)y(θ)〉
(

1 +
√
λ〈y(θ), S(z)y(θ)〉

)
.

(A.27)

From the isotropic local law, Lemma A.1, we find that

〈y(θ), S(z)y(θ)〉 = s(z) +O(N−
1
2 ). (A.28)

Recall that ‖y(θ)‖ = 1. Then, it is obvious that 〈ẏ(θ),y(θ)〉 = 1
2

d
dθ‖y(θ)‖2 = 0. Hence, again from Lemma A.1, we also

find that
〈ẏ(θ), S(z)y(θ)〉 = s(z)〈ẏ(θ),y(θ)〉+O(N−

1
2 ) = O(N−

1
2 ). (A.29)

We then have from (A.27) that

〈ẏ(θ), R(θ, z)y(θ)〉 =
〈ẏ(θ), S(z)y(θ)〉

1 +
√
λ〈y(θ), S(z)y(θ)〉

= O(N−
1
2 ), (A.30)
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where we used that |s| ≤ 1 and λ < 1, hence 1 +
√
s > c > 0 for some (N -independent) constant c.

Consider the boundary of the ε-neighborhood of z, ∂Bε(z) = {w ∈ C : |w − z| = ε}. If we choose ε as in the assumption
of Lemma A.1, ∂Bε(z) does not intersect [−2, 2]. Applying Cauchy’s integral formula, we get

∂

∂z
〈ẏ(θ), R(θ, z)y(θ)〉 =

1

2πi

∮
∂Bε(z)

〈ẏ(θ), R(θ, w)y(θ)〉
(w − z)2

dw = O(N−
1
2 ). (A.31)

Thus, we get from (A.20) and (A.31) that

〈ẏ(θ), R(θ)2y(θ)〉 = O(N−
1
2 ). (A.32)

Plugging the estimate into the right-hand side of (A.19), we get the claim (A.14).

B. Proof of Theorem 6 and Theorem 8
In this section, we prove Theorem 6 by applying Theorem 5. (The proof of Theorem 8 is exactly same as the proof of
Theorem 6 except that we use Theorem 7 instead of Theorem 5.) First, we notice that

mM (f)−mH(f) =

∞∑
`=1

√
λ`τ`(f). (B.1)

Recall that

VM (f) = (w2 − 2)τ1(f)2 + 2(w4 − 3)τ2(f)2 + 2

∞∑
`=1

`τ`(f)2

= w2τ1(f)2 + 2(w4 − 1)τ2(f)2 + 2

∞∑
`=3

`τ`(f)2.

(B.2)

Assuming w2 > 0 and w4 > 1, by Cauchy’s inequality, we obtain that

|mM (f)−mH(f)|2 ≤

(
λ

w2
+

λ2

2(w4 − 1)
+

∞∑
`=3

λ`

2`

)
VM (f). (B.3)

From the identity log(1− λ) = −
∑∞
`=1 λ

`/`, we get

|mM (f)−mH(f)|2

VM (f)
≤ λ

w2
+

λ2

2(w4 − 1)
+

∞∑
`=3

λ`

2`
=

(
1

w2
− 1

2

)
λ+

(
1

2(w4 − 1)
− 1

4

)
λ2 − 1

2
log(1− λ), (B.4)

which proves the first part of the theorem.

Since we only used Cauchy’s inequality, the equality in (B.3) holds if and only if

w2τ1(f)√
λ

=
2(w4 − 1)τ2(f)

λ
=

2`τ`(f)√
λ`

(` = 3, 4, . . . ). (B.5)

We now find all functions f that satisfy (B.5). Letting 2C be the common value in (B.5), we rewrite (B.5) as

τ1(f) =
2C
√
λ

w2
, τ2(f) =

Cλ

w4 − 1
, τ`(f) =

C
√
λ`

`
(` = 3, 4, . . . ). (B.6)

Since f is analytic, we can consider the Taylor expansion of it. Using the Chebyshev polynomials, we can expand f as

f(x) =

∞∑
`=0

C`T`

(x
2

)
. (B.7)
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Then, from the orthogonality relation of the Chebyshev polynomials, we get for ` ≥ 1 that

τ`(f) =
C`
π

∫ 2

−2

T`

(x
2

)
T`

(x
2

) dx√
4− x2

=
C`
π

∫ 1

−1

T` (y)T` (y)
dy√

1− y2
=
C`
2
. (B.8)

Thus, (B.6) holds if and only if

f(x) = c0 + 2C

(
2
√
λ

w2
T1

(x
2

)
+

λ

w4 − 1
T2

(x
2

)
+

∞∑
`=3

√
λ`

`
T`

(x
2

))

= c0 + 2C
√
λ

(
2

w2
− 1

)
T1

(x
2

)
+ 2Cλ

(
1

w4 − 1
− 1

2

)
T2

(x
2

)
+ 2C

∞∑
`=1

√
λ`

`
T`

(x
2

) (B.9)

for some constant c0. It is well-known from the generating function of the Chebyshev polynomials that

∞∑
`=1

t`

`
T` (x) = log

(
1√

1− 2tx+ t2

)
. (B.10)

(See, e.g., (18.12.9) of (Olver et al., 2010).) Since T1(x) = x and T2(x) = 2x2 − 1, we find that (B.9) is equivalent to

f(x) = c0 + C
√
λ

(
2

w2
− 1

)
x+ Cλ

(
1

w4 − 1
− 1

2

)(
x2 − 2

)
+ C log

(
1

1−
√
λx+ λ

)
. (B.11)

This concludes the proof of Theorem 6.

C. Computation of the test statistic
Lemma C.1. Let

Lλ =

N∑
i=1

φλ(µi)−N
∫ 2

−2

√
4− y2

2π
φλ(y) dy (C.1)

where φλ is defined as in (7). Then,

Lλ = − log det
(

(1 + λ)I −
√
λM

)
+
λN

2
+
√
λ

(
2

w2
− 1

)
TrM + λ

(
1

w4 − 1
− 1

2

)
(TrM2 −N). (C.2)

Proof. It is straightforward to see that

N∑
i=1

φλ(µi) = − log det
(

(1 + λ)I −
√
λM

)
+
√
λ

(
2

w2
− 1

)
TrM + λ

(
1

w4 − 1
− 1

2

)
TrM2. (C.3)

To compute the integral in the definition of Lλ, we use the formula∫ 2

−2

log(z − y)

√
4− y2

2π
dy =

z

4

(
z −

√
z2 − 4

)
+ log

(
z +

√
z2 − 4

)
− log 2− 1

2
(C.4)

for z > 2. See, e.g., Equation (8.5) of (Baik & Lee, 2016). Putting z = (1 + λ)/
√
λ, we get∫ 2

−2

log

(
1

1−
√
λy + λ

) √
4− y2

2π
dy = −

∫ 2

−2

(
log
√
λ+ log

(
1 + λ√
λ
− y
)) √

4− y2

2π
dy = −λ

2
. (C.5)

Finally, it is elementary to check that∫ 2

−2

y
√

4− y2

2π
dy = 0,

∫ 2

−2

y2
√

4− y2

2π
dy = 1. (C.6)

This proves Equation (C.2).
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Lemma C.2. Let

mH(φλ) =
1

4
(φλ(2) + φλ(−2))− 1

2
τ0(φλ) + (w2 − 2)τ2(φλ) + (w4 − 3)τ4(φλ) (C.7)

and

mM (φλ) =
1

4
(φλ(2) + φλ(−2))− 1

2
τ0(φλ) + (w2 − 2)τ2(φλ) + (w4 − 3)τ4(φλ) +

∞∑
`=1

√
λ`τ`(φλ) (C.8)

where φλ is defined as in (7). Then,

mH(φλ) = −1

2
log(1− λ) +

(
w2 − 1

w4 − 1
− 1

2

)
λ+

(w4 − 3)λ2

4
(C.9)

and

mM (φλ) = mH(φλ)− log(1−
√
λ2) +

(
2

w2
− 1

)√
λ2 +

(
1

w4 − 1
− 1

2

)
λ2. (C.10)

In particular, mH(φλ) < mM (φλ) if λ ∈ (0, 1).

Proof. Recall that φλ is the function f in (B.11) with C = 1 and c0 = ( 2
w4−1 − 1)t. Thus, from (B.6),

τ1(φλ) =
2
√
λ

w2
, τ2(φλ) =

λ

w4 − 1
, τ`(φλ) =

√
λ`

`
(` = 3, 4, . . . ). (C.11)

Moreover,

τ0(φλ) = c0 =

(
2

w4 − 1
− 1

)
λ. (C.12)

Since

φλ(2) + φλ(−2) = log

(
1

1− 2
√
λ+ λ

)
+ log

(
1

1 + 2
√
λ+ λ

)
+ 8λ

(
1

w4 − 1
− 1

2

)
= −2 log(1− λ) + 8λ

(
1

w4 − 1
− 1

2

)
,

(C.13)

we find that

mH(φλ) = −1

2
log(1− λ) + 2λ

(
1

w4 − 1
− 1

2

)
− λ

2

(
2

w4 − 1
− 1

)
+

(w2 − 2)λ

w4 − 1
+

(w4 − 3)λ2

4

= −1

2
log(1− λ) +

(
w2 − 1

w4 − 1
− 1

2

)
λ+

(w4 − 3)λ2

4
.

(C.14)

Moreover, we also find that

mM (φλ) = mH(φλ) +
2λ

w2
+

λ2

w4 − 1
+

∞∑
`=3

λ`

`

= mH(φλ) +

(
2

w2
− 1

)
λ+

(
1

w4 − 1
− 1

2

)
λ2 +

∞∑
`=1

λ`

`

= mH(φλ)− log(1− λ) +

(
2

w2
− 1

)
λ+

(
1

w4 − 1
− 1

2

)
λ2.

(C.15)

Finally, it is obvious mM (φλ) > mH(φλ) if λ ∈ (0, 1) since τ`(φλ) > 0 for all ` = 1, 2, . . . .

Remark C.3. For any λ,

VM (φλ) = VH(φλ) = −2 log(1− λ) +

(
4

w2
− 2

)
λ+

(
2

w4 − 1
− 1

)
λ2, (C.16)

which can be easily checked from (C.11).
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D. Proof of Theorem 7
Recall that the normalized off-diagonal entries

√
NHij are identically distributed with density g and the normalized diagonal

entries
√
N/w2Hii are identically distributed with density gd. In Assumption 1, we further assumed that the densities g and

gd are smooth, positive everywhere, with subexponential tails, and symmetric (about 0). We also assumed that

‖x‖∞ = O(N−φ)

for some 3
8 < φ ≤ 1

2 .

As discussed in Section 4, we consider the entrywise transformation defined by a function

h(w) := −g
′(w)

g(w)
. (D.1)

If λ = 0, it is immediate to see that for i 6= j

E[h(
√
NMij)] =

∫ ∞
−∞

h(w)g(w)dw = −
∫ ∞
−∞

g′(w)dw = 0.

Further, with λ = 0, as shown in Proposition 4.2 of (Perry et al., 2018),

FH := E[h(
√
NMij)

2] =

∫ ∞
−∞

h(w)2g(w)dw =

∫ ∞
−∞

g′(w)2

g(w)
dw ≥ 1, (D.2)

where the equality holds if and only if
√
NHij is a standard Gaussian (hence h(w) = w). For the diagonal entries, we

similarly define

hd(w) := −g
′
d(w)

gd(w)
. (D.3)

Then, if λ = 0, E[hd(
√
N/w2Mii)] = 0 and

FHd := E[hd(
√
N/w2Mii)

2] =

∫ ∞
−∞

g′d(w)2

gd(w)
dw ≥ 1, (D.4)

We define a transformed matrix M̃ as follows: the off-diagonal terms of M̃ are defined by

M̃ij =
1√
FHN

h(
√
NMij) (i 6= j), M̃ii =

√
w2

FHd N
hd
(√ N

w2
Mii

)
. (D.5)

Note that the entries of M̃ are independent up to symmetry. Since g is smooth, h is also smooth and all moments of
√
NM̃ij

are O(1). Thus, applying a high-order Markov inequality, it is immediate to find that M̃ij = O(N−
1
2 ).

D.1. Decomposition of the transformed matrix

We first evaluate the mean and the variance of each off-diagonal entry by using the comparison method with the pre-
transformed entries. For i 6= j, we find that

E[M̃ij ] =
1√
FHN

∫ ∞
−∞

h(w)g(w −
√
λNxixj)dw

= − 1√
FHN

∫ ∞
−∞

g′(w)

g(w)

(
g(w −

√
λNxixj)− g(w)

)
dw.

(D.6)

In the Taylor expansion

g(w −
√
λNxixj)− g(w)

=

4∑
`=1

g(`)(w)

`!

(
−
√
λNxixj

)`
+
g(5)(w − θ

√
λNxixj)

5!

(
−
√
λNxixj

)5 (D.7)
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for some θ ∈ (0, 1). Note that the second term and the fourth term in the summation are even functions. Since g′/g is an
odd function, from the symmetry we find that

E[M̃ij ] =

√
λxixj√
FH

∫ ∞
−∞

g′(w)2

g(w)
dw + C3Nx

3
ix

3
j +O(N3x5

ix
5
j )

=
√
λFHxixj + C3Nx

3
ix

3
j +O(N3x5

ix
5
j )

(D.8)

for some (N -independent) constants C3 and C5. Similarly,

E[M̃2
ij ] =

1

FHN

∫ ∞
−∞

(
g′(w)

g(w)

)2

g(w −
√
λNxixj)dw

=
1

N
+

1

FHN

∫ ∞
−∞

(
g′(w)

g(w)

)2 (
g(w −

√
λNxixj)− g(w)

)
dw

=
1

N
+
λx2

ix
2
j

2FH

∫ ∞
−∞

g′(w)2g′′(w)

g(w)2
dw +O(Nx4

ix
4
j ) =

1

N
+ λGHx2

ix
2
j +O(Nx4

ix
4
j ).

(D.9)

For the diagonal entries, we similarly get

E[M̃ii] =
√
λFHd x

2
i +O(Nx6

i ) (D.10)

and

E[M̃2
ii] =

w2

N
+

λx4
i

2FH

∫ ∞
−∞

g′d(w)2g′′d (w)

gd(w)2
dw +O(Nx8

i ) =:
w2

N
+ λGHd x

4
i +O(Nx8

i ). (D.11)

We omit the detail.

The evaluation of the mean and the variance shows that the transformed matrix M̃ is not a spiked Wigner matrix when λ > 0,
since the variances of the off-diagonal entries are not identical. Our strategy is to approximate M̃ as a spiked generalized
Wigner matrix for which the sum of the variances of the entries in each row is equal to 1. Let S be the variance matrix of M̃
defined as

Sij = E[M̃2
ij ]− (E[M̃ij ])

2. (D.12)

From (D.8), (D.9), (D.10), and (D.11),

Sij =
1

N
+λ(GH−FH)x2

ix
2
j+O(N‖x‖8∞) (i 6= j), Sii =

w2

N
+λ(GHd −FHd )x4

i+O(N‖x‖8∞) (i 6= j), (D.13)

hence

N∑
j=1

Sij =
w2

N
+ λ(GHd − FHd )x4

i +
∑
j:j 6=i

(
1

N
+ λ(GH − FH)x2

ix
2
j

)
+O(N2‖x‖8∞)

= 1 +
w2 − 1

N
+ λ(GH − FH)x2

i +O(N2‖x‖8∞),

(D.14)

which shows that M̃ is indeed approximately a spiked generalized Wigner matrix.

D.2. CLT for a general Wigner-type matrix

To adapt the strategy of Section A, we use the local law for general Wigner-type matrices in (Ajanki et al., 2017). Consider
a matrix W = (Wij)1≤i,j≤N defined by

Wij =
1√
NSij

(M̃ij − E[M̃ij ]) (i 6= j), Wii =

√
w2

NSii
(M̃ii − E[M̃ii]) (D.15)
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Note that E[Wij ] = 0, E[W 2
ij ] = 1

N (i 6= j), and E[W 2
ii] = w2

N . Then, the matrix W is a Wigner matrix. We set

RW (z) = (W − zI)−1 (z ∈ C+). (D.16)

Next, we introduce an interpolation for W . For 0 ≤ θ ≤ 1, we define a matrix W (θ) by

Wij(θ) = (1− θ)Wij + θ(M̃ij − E[M̃ij ]) =
(

1− θ + θ
√
NSij

)
Wij

=

(
1 +

θNλ(GH − FH)x2
ix

2
j

2
+O(N2x4

ix
4
j )

)
Wij (i 6= j)

(D.17)

and

Wii(θ) = (1− θ)Wii + θ(M̃ii − E[M̃ii]) =

(
1− θ + θ

√
NSii
w2

)
Wii

=

(
1 +

θNλ(GHd − FHd )x4
i

2w2
+O(N2x8

i )

)
Wii.

(D.18)

Note that W (0) = W and W (1) = M̃ − E[M̃ ]. For 0 ≤ θ ≤ 1, W (θ) is a general Wigner-type matrix considered in
(Ajanki et al., 2017) satisfying the conditions (A)-(D) therein. Moreover, if we let

RW (θ, z) = (W (θ)− zI)−1 (z ∈ C+), (D.19)

then Theorem 1.7 of (Ajanki et al., 2017) asserts that the limiting distribution of RWij (z) is mi(z)δij , where mi(θ, z) is the
unique solution to the quadratic vector equation

− 1

mi(θ, z)
= z +

N∑
j=1

E[Wij(θ)
2]mj(θ, z). (D.20)

Recall that s(z) = (−z +
√
z2 − 4)/2 is the Stieltjes transform of the Wigner semicircle measure. It is direct to check that

1 + zs(z) + s(z)2 = 0. With an ansatz mi(θ, z) = s(z) +C1x
2
i +C2N

−1, we can then find mi(θ, z) = s(z) +O(‖x‖2∞);
see also Theorem 4.2 of (Ajanki et al., 2017).

For the resolvent RW (θ, z), we have the following lemma from (Ajanki et al., 2017).

Lemma D.1 (Anisotropic local law). Let Γε be the ε-neighborhood of Γ as in Lemma A.1. Then, for any deterministic
v = (v1, . . . , vN ),w = (w1, . . . , wN ) ∈ CN with ‖v‖ = ‖w‖ = 1, the following estimate holds uniformly on z ∈
Γε ∩ {z ∈ C+ : Im z > N−

1
2 }: ∣∣∣∣∣∣

N∑
i,j=1

viR
W
ij (θ, z)wj −

N∑
i=1

mi(θ, z)viwi

∣∣∣∣∣∣ = O(N−
1
2 ). (D.21)

Proof. See Theorem 1.13 of (Ajanki et al., 2017). Note that ρ(z), κ(z) = O(Im z) in Theorem 1.13 of (Ajanki et al., 2017),
which can be checked from Equations (1.25), (4.5a), (4.5f), and (1.17) of (Ajanki et al., 2017).

Let Γε1/2 := Γε ∩ {z ∈ C+ : | Im z| > N−
1
2 }. On Γε1/2, as a simple corollary to Lemma D.1, we obtain∣∣〈v, RW (θ, z),w〉 − s(z)〈v,w〉

∣∣ = O(N−
1
2 ), (D.22)

which is analogous to Lemma A.1.

We have the following lemma for the difference between TrRW (0, z) and TrRW (1, z) on Γε1/2.

Lemma D.2. Let RW (θ, z) be defined as in Equations (D.17) and (D.19). Then, the following holds uniformly for
z ∈ Γε1/2:

TrRW (1, z)− TrRW (0, z) = λ(GH − FH)s′(z)s(z) +O(N
3
2 ‖x‖4∞). (D.23)
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We will prove Lemma D.2 later in this section.

On Γ\Γε1/2, we use the following results on the rigidity of eigenvalues.

Lemma D.3. Denote by µW1 (θ) ≥ µW2 (θ) ≥ · · · ≥ µWN (θ) the eigenvalues of W (θ). Let γi be the classical location of the
eigenvalues with respect to the semicircle measure defined by∫ 2

γi

√
4− x2

2π
dx =

1

N

(
i− 1

2

)
(D.24)

for i = 1, 2, . . . , N . Then,
|µWi (θ)− γi| = O(N−

2
3 ). (D.25)

Proof. See Corollary 1.11 of (Ajanki et al., 2017). Note that the limiting measure ρ is the semicircle measure in Corollary
1.11 of (Ajanki et al., 2017) since NE[Wij(θ)

2] = 1 +O(N‖x‖4∞) = 1 + o(1) for i 6= j.

From Lemma D.3, we find that

|TrRW (1, z)− TrRW (0, z)| =

∣∣∣∣∣
N∑
i=1

(
1

µWi (1)− z
− 1

µWi (0)− z

)∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

µWi (0)− µWi (1)

(µWi (1)− z)(µWi (0)− z)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

|µWi (0)− γi|+ |γi − µWi (1)|
(µWi (1)− z)(µWi (0)− z)

∣∣∣∣∣ = O(N
1
3 ).

(D.26)

Thus, from (D.23) and (D.26),

1

2πi

∮
Γ

f(z) TrRW (1, z)dz − 1

2πi

∮
Γ

f(z) TrRW (0, z)dz

=
1

2πi

∫
Γε
1/2

f(z)
(
TrRW (1, z)− TrRW (0, z)

)
dz +

1

2πi

∫
Γ\Γε

1/2

f(z)
(
TrRW (1, z)− TrRW (0, z)

)
dz

=
λ(GH − FH)

2πi

∫
Γε
1/2

f(z)s′(z)s(z)dz +O(N
3
2 ‖x‖4∞) +O(N−

1
6 )

=
λ(GH − FH)

2πi

∮
Γ

f(z)s′(z)s(z)dz +O(N
3
2 ‖x‖4∞) +O(N−

1
6 )

(D.27)

D.3. CLT for a general Wigner-type matrix with a spike

Recall that W (1) = M̃ − E[M̃ ]. Our next step in the approximation is to consider M̃ = W (1) + E[M̃ ]. Since E[M̃ ] is not
a rank-1 matrix, we instead consider

A(θ) = W (1) + θ
√
λFHxxT , RA(θ, z) = (A(θ)− zI)−1 (D.28)

for θ ∈ [0, 1]. Note that A(0) = W (1).

We follow the same strategy as in Section A. For z ∈ Γε1/2, we use

∂

∂θ
TrRA(θ, z) = −

N∑
i=1

N∑
a,b=1

∂Aab(θ)

∂θ
RAia(θ, z)RAbi(θ, z)

= −
√
λFH

∂

∂z

N∑
a,b=1

xaxbR
A
ba(θ, z) = −

√
λFH

∂

∂z
〈x, RA(θ, z)x〉.

(D.29)

Recall that RA(0, z) = RW (1, z) satisfies the isotropic local law in (D.22),∣∣〈v, RA(0, z),w〉 − s(z)〈v,w〉
∣∣ =

∣∣〈v, RW (1, z),w〉 − s(z)〈v,w〉
∣∣ = O(N−

1
2 ). (D.30)
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As in (A.25) and (A.26), we can easily check that

RA(0, z)−RA(θ, z) = θ
√
λFHRA(θ, z)xxTRA(0, z), (D.31)

hence
〈x, RA(0, z)x〉 = 〈x, RA(θ, z)x〉+ θ

√
λFH〈x, RA(θ, z)x〉〈x, RA(0, z)x〉. (D.32)

We thus find that

〈x, RA(θ, z)x〉 =
〈x, RA(0, z)x〉

1 + θ
√
λFH〈x, RA(0, z)x〉

=
s(z)

1 + θ
√
λFHs(z)

+O(N−
1
2 ). (D.33)

Plugging it back to (D.29) and applying Cauchy’s integral formula again, we find that

∂

∂θ
TrRA(θ, z) = −

√
λFHs′(z)

(1 + θ
√
λFHs(z))2

+O(N−
1
2 ). (D.34)

Now, integrating over θ, we get

TrRA(1, z)− TrRA(0, z) =
s′(z)

s(z)

(
1

1 + θ
√
λFHs(z)

)∣∣∣∣∣
θ=1

θ=0

+O(N−
1
2 )

= −
√
λFHs′(z)

1 +
√
λFHs(z)

+O(N−
1
2 ).

(D.35)

On Γ\Γε1/2, we use the interlacing property of the eigenvalues. Let EA0 and EA1 be the cumulative distribution functions for
the eigenvalue counting measures of A(0) and A(1), respectively, i.e., if we let µAi (θ) be the i-th eigenvalue of A(θ) and
denote by µA1 (θ) ≥ µA2 (θ) ≥ · · · ≥ µAN (θ) the eigenvalues of A(θ), then

EA0 (w) =
1

N
|{µAi (0) : µAi (0) < w}|, EA1 (w) =

1

N
|{µAi (1) : µAi (1) < w}|. (D.36)

The interlacing property is that
N |EA0 (w)− EA1 (w)| ≤ 1. (D.37)

In terms of EA0 , we can represent the trace of the resolvent RA(0, z) by

TrRA(0, z) =

N∑
i=1

1

µAi (0)− z
= N

∫ ∞
−∞

EA0 (dx)

(x− z)2
, (D.38)

where we used integration by parts with empirical spectral measure of A(0). Similarly,

TrRA(1, z) = N

∫ ∞
−∞

EA1 (dx)

(x− z)2
,

and we get

TrRA(1, z)− TrRA(0, z) = N

∫ ∞
−∞

EA1 (dx)− EA0 (dx)

(x− z)2
. (D.39)

From the rigidity, Lemma D.3, we have that ‖A(0)‖ − 2 = o(1). Moreover, since A(0) = W (1) is a general Wigner-type
matrix and A(θ) is a rank-1 perturbation of A(0) with ‖A(0) − A(θ)‖ < 1, it is not hard to see that ‖A(θ)‖ − 2 = o(1)
with high probability as well. Thus,

TrRA(1, z)− TrRA(0, z) = N

∫ ∞
−∞

EA1 (dx)− EA0 (dx)

(x− z)2
= N

∫ 2+ε

−2−ε

EA1 (dx)− EA0 (dx)

(x− z)2
= O(1). (D.40)

Following the idea in (D.27), we obtain from (D.35) and (D.40) that

1

2πi

∮
Γ

f(z) TrRA(1, z)dz − 1

2πi

∮
Γ

f(z) TrRA(0, z)dz

= − 1

2πi

∮
Γ

f(z)

√
λFHs′(z)

1 +
√
λFHs(z)

dz +O(N−
1
2 ).

(D.41)
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D.4. CLT for a general Wigner-type matrix with a spike and small perturbation

While the rank-1 spike in A is
√
λFHxxT , the mean of the diagonal entry

E[M̃ii] =
√
λFHd x

2
i +O(N‖x‖6∞), (D.42)

which is different from
√
λFHx2

i in general. We thus define a matrix B(θ) for 0 ≤ θ ≤ 1 by

Bij(θ) = Aij(1) (i 6= j), Bii(θ) = Aii(1) + θ(E[M̃ii]−
√
λFHx2

i − C3Nx
6
i ) (D.43)

for the constant C3 in (D.8). By definition, B(0) = A(1) and

M̃ii = Bii(1) + C3Nx
6
i . (D.44)

We also set
RB(θ, z) = (B(θ)− zI)−1.

For z ∈ Γε1/2,

∂

∂θ
TrRB(θ, z) = −

N∑
i,a=1

(
E[M̃aa]−

√
λFHx2

a − C3Nx
6
a

)
RBia(θ, z)RBai(θ, z)

= − ∂

∂z

N∑
a=1

(
E[M̃aa]−

√
λFHx2

a − C3Nx
6
a

)
RBaa(θ, z).

(D.45)

Since ‖B(θ)−A(1)‖ = O(‖x‖2∞), we find that

RBaa(θ, z)−RBaa(0, z) = RBaa(θ, z)−RAaa(1, z) = O(‖x‖2∞)

for a = 1, 2, . . . , N . Denote by ea a standard basis vector whose a-th coordinate is 1 and all other coordinates are zero.
From (D.31), we find that

〈ea, RA(0, z)x〉 = 〈ea, RA(1, z)x〉+
√
λFH〈ea, RA(1, z)x〉〈x, RA(0, z)x〉, (D.46)

hence

〈ea, RA(1, z)x〉 =
〈ea,x〉s(z)

1 +
√
λFHs(z)

+O(N−
1
2 ). (D.47)

Using the same argument again, we obtain that

RAaa(1, z) = 〈ea, RA(1, z)ea〉 = s(z)−
√
λFHs(z)2

1 +
√
λFHs(z)

|〈x, ea〉|2 +O(N−
1
2 ) = s(z) +O(N−

1
2 ), (D.48)

hence
RBaa(θ, z) = RAaa(1, z) +O(N−

1
2 ) = s(z) +O(N−

1
2 ) (D.49)

as well. Thus,

N∑
a=1

(
E[M̃aa]−

√
λFHx2

a − C3Nx
6
a

)
RBaa(θ, z)

=

N∑
a=1

(
E[M̃aa]−

√
λFHx2

a

)
s(z) +O(N‖x‖4∞) +O(N−

1
2 )

=
√
λ(
√
FH −

√
FHd )s(z) +O(N‖x‖4∞) +O(N−

1
2 )

(D.50)

and
∂

∂θ
TrRB(θ, z) = −

√
λ(
√
FHd −

√
FH)s′(z) +O(N‖x‖4∞) +O(N−

1
2 ). (D.51)



Weak Detection of Signal in the Spiked Wigner Model

Applying the estimate RBaa(θ, z)−RAaa(1, z) = O(‖x‖2∞) on Γ\Γε1/2, we obtain that

1

2πi

∮
Γ

f(z) TrRB(1, z)dz − 1

2πi

∮
Γ

f(z) TrRB(0, z)dz

= −

√
λ(
√
FHd −

√
FH)

2πi

∮
Γ

f(z)s′(z)dz +O(
√
N‖x‖2∞) +O(N−

1
2 ).

(D.52)

By construction, for all i, j,
M̃ij = Bij(1) + C3Nx

3
ix

3
j +O(N2x5

ix
5
j ). (D.53)

Set x3 = (x3
1, x

3
2, . . . , x

3
N )T , B′ = B(1) + C3Nx3(x3)T , and RB

′
(z) = (B′ − zI)−1. Then, z ∈ Γε1/2,

〈ea, RB(z)ea〉 − 〈ea, RB
′
(z)ea〉 = C3N〈ea, RB

′
x3〉〈x3, RBea〉 = O(N‖x‖6∞). (D.54)

On Γ\Γε1/2, we use the estimate

RBaa(z)−RB
′

aa(z) = O(N‖x‖6∞). (D.55)

Then,

1

2πi

∮
Γ

f(z) TrRB
′
(z)dz − 1

2πi

∮
Γ

f(z) TrRB(1, z)dz = O(N2‖x‖6∞) +O(N
√
N‖x‖6∞). (D.56)

Finally, if we set E = M̃ −B′′, then Eij = O(N2x5
ix

5
j ). Then, since ‖x‖∞ = N−φ for some φ > 3

8 ,

‖E‖ ≤ ‖E‖HS =

 N∑
i,j=1

|Eij |2
 1

2

= O

N2‖x‖8∞

 N∑
i,j=1

x2
ix

2
j

 1
2

 = O
(
N2‖x‖8∞

)
= o(N−1). (D.57)

Thus, if we let RM̃ (z) = (M̃ − z)−1, for any z ∈ Γε,

1

2πi

∮
Γ

f(z) TrRM̃ (z)dz − 1

2πi

∮
Γ

f(z) TrRB
′
(z)dz = o(1) (D.58)

with high probability.

D.5. Proof of Theorem 7 and Theorem 8

We are now ready to prove Theorem 7.

Denote by µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃N the eigenvalues of M̃ . Recall that we denoted by µW1 (0) ≥ µW2 (0) ≥ · · · ≥ µWN (0) the
eigenvalues of W (0). From Cauchy’s integral formula, as in (A.3), we have

N∑
i=1

f(µ̃i)−N
∫ 2

−2

√
4− x2

2π
f(x) dx

=

(
N∑
i=1

f(µWi (0))−N
∫ 2

−2

√
4− x2

2π
f(x) dx

)
+

(
N∑
i=1

f(µ̃i)−
N∑
i=1

f(µWi (0))

)

=

(
N∑
i=1

f(µWi (0))−N
∫ 2

−2

√
4− x2

2π
f(x) dx

)
−
(

1

2πi

∮
Γ

f(z) TrRM̃ (z)dz − 1

2πi

∮
Γ

f(z) TrRW (0, z)dz

)
.

(D.59)

Since W is a Wigner matrix, the first term in the right-hand side converges to a Gaussian random variable, and the mean and
the variance of the limiting Gaussian distribution are given by

mW (f) =
1

4
(f(2) + f(−2))− 1

2
τ0(f) + (w2 − 2)τ2(f) + (w̃4 − 3)τ4(f) (D.60)
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and

VW (f) = (w2 − 2)τ1(f)2 + 2(w̃4 − 3)τ2(f)2 + 2

∞∑
`=1

`τ`(f)2, (D.61)

respectively, where

w̃4 =
1

(FH)2

∫ ∞
−∞

(h(w))
4
g(w) dw =

1

(FH)2

∫ ∞
−∞

(g′(w))4

(g(w))3
dw, (D.62)

corresponding to the leading order term in the fourth moment of Wij . (Note that the fourth moments of Wij are not equal,
but the difference between N2E[(Wij)

4] and w̃4 is negligible.)

For the second term in the right-hand side of (D.59), combining (D.27), (D.41), (D.52), (D.56), and (D.58), we obtain that

1

2πi

∮
Γ

f(z) TrRM̃ (z)dz − 1

2πi

∮
Γ

f(z) TrRW (0, z)dz

=
λ(GH − FH)

2πi

∮
Γ

f(z)
s(z)3

1− s(z)2
dz − 1

2πi

∮
Γ

f(z)

√
λFHs′(z)

1 +
√
λFHs(z)

dz

−

√
λ(
√
FHd −

√
FH)

2πi

∮
Γ

f(z)s′(z)dz + o(1)

(D.63)

with high probability. From (D.59), we thus find that the CLT for the LSS holds, i.e.,(
N∑
i=1

f(µM̃i )−N
∫ 2

−2

√
4− x2

2π
f(x) dx

)
→ N (m

M̃
(f), V

M̃
(f)), (D.64)

and the variance V
M̃

(f) = VW (f) since the second term in (D.59) converges to a deterministic number as N →∞, which
corresponds to the change of the mean. In particular,

m
M̃

(f)−mW (f) = −λ(GH − FH)

2πi

∮
Γ

f(z)s′(z)s(z)dz +
1

2πi

∮
Γ

f(z)

√
λFHs′(z)

1 +
√
λFHs(z)

dz

+

√
λ(
√
FHd −

√
FH)

2πi

∮
Γ

f(z)s′(z)dz

=
1

2πi

∮
Γ

f(z)s′(z)

[
−λ(GH − FH)s(z) +

√
λFH

1 +
√
λFHs(z)

+
√
λ(
√
FHd −

√
FH)

]
dz.

(D.65)

Following the computation in the proof of Lemma 4.4 in (Baik & Lee, 2017) with the identity s′(z) = s(z)2

1−s(z)2 , we find that
the right-hand side of (D.65) is given by

1

2πi

∮
Γ

f(z)s′(z)

[
−λ(GH − FH)s(z) +

√
λFH

1 +
√
λFHs(z)

+
√
λ(
√
FHd −

√
FH)

]
dz

= (
√
λFHd −

√
λFH)τ1(f) + (λGH − λFH)τ2(f) +

∞∑
`=1

√
(λFH)`τ`(f).

(D.66)

(See also Remark 1.7 of (Baik & Lee, 2017).) This proves Theorem 7.

D.6. Proof of Lemma D.2

In this subsection, we prove Lemma D.2.

NOTATIONAL REMARKS

In the rest of the section, we use C order to denote a constant that is independent of N . Even if the constant is different
from one place to another, we may use the same notation C as long as it does not depend on N for the convenience of the
presentation.
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Proof of Lemma D.2. To prove the lemma, we consider

∂

∂θ
TrRW (θ, z) = −

N∑
i=1

N∑
a,b=1

∂Wab(θ)

∂θ
RWia (θ, z)RWbi (θ, z)

= − ∂

∂z

N∑
a,b=1

∂Wab(θ)

∂θ
RWba (θ, z),

(D.67)

where we again used that ∂
∂zR

W (θ, z) = RW (θ, z)2. We expand the right-hand side by using the definition of W (θ),

Wab(θ) =
(

1− θ + θ
√
NSab

)
Wab, (D.68)

and get

N∑
a,b=1

∂Wab(θ)

∂θ
RWba (θ, z) =

N∑
a,b=1

(
−1 +

√
NSab

)
WabR

W
ba (θ, z) =

N∑
a,b=1

−1 +
√
NSab

1− θ + θ
√
NSab

Wab(θ)R
W
ba (θ, z)

=
Nλ(GH − FH)

2

N∑
a,b=1

x2
ax

2
bWab(θ)R

W
ba (θ, z) +O(

√
N‖x‖2∞).

(D.69)

Here, we used the properties that Wab(θ) = O(N−
1
2 ), RWba (θ, z) = O(N−

1
2 ) for b 6= a, RWaa(θ, z) = O(1), and∑

a x
2
a =

∑
b x

2
b = 1, which imply∣∣∣∣∣∣N2

N∑
a,b=1

x4
ax

4
bWab(θ)R

W
ba (θ, z)

∣∣∣∣∣∣ ≤ N2‖x‖4∞
N∑

a,b=1

x2
ax

2
b |Wab(θ)R

W
ba (θ, z)| = O(N‖x‖4∞) (D.70)

and ∣∣∣∣∣N
N∑
a=1

x4
ax

4
bWaa(θ)RWaa(θ, z)

∣∣∣∣∣ ≤ N‖x‖2∞
N∑
a=1

x2
a|Waa(θ)RWaa(θ, z)| = O(

√
N‖x‖2∞). (D.71)

Since W (θ)RW (θ, z) = I + zRW (θ, z),

N∑
a,b=1

x2
bWab(θ)R

W
ba (θ, z) =

N∑
b=1

x2
b(W (θ)RW (θ, z))bb = 1 + z

N∑
b=1

x2
bR

W
bb (θ, z)

= 1 + zs(z) +O(N−
1
2 ).

(D.72)

Plugging it into (D.69), we get

N∑
a,b=1

∂Wab(θ)

∂θ
RWba (θ, z)

=
λ(GH − FH)

2
(1 + zs(z)) +

Nλ(GH − FH)

2

N∑
a,b=1

(
x2
a −

1

N

)
x2
bWab(θ)R

W
ba (θ, z) +O(

√
N‖x‖2∞).

(D.73)

It remains to estimate the second term in the right-hand side of (D.73). Set

X ≡ X(θ, z) :=

N∑
a,b=1

(
x2
a −

1

N

)
x2
bWab(θ)R

W
ba (θ, z). (D.74)

We notice that |X| = O(N−1) on Γε1/2 by a naive power counting as in (D.69). To obtain a better bound for X , we use a
method based on a recursive moment estimate, introduced in (Lee & Schnelli, 2018). We need the following lemma:
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Lemma D.4. Let X be as in (D.74). Define an event Ωε by

Ωε =

N⋂
i,j=1

(
{|Wij(θ)| ≤ N−

1
2 +ε} ∩ {|RWij (θ, z)− δijs(z)| ≤ N−

1
2 +ε}

)
.

Then, for any fixed (large) D and (small) ε, which may depend on D,

E[|X|2D|Ωε] ≤ CN
1
2 +ε‖x‖4∞E[|X|2D−1|Ωε] + CN1+4ε‖x‖8∞E[|X|2D−2|Ωε]

+ CN1+5ε‖x‖12
∞E[|X|2D−3|Ωε] +N1+9ε‖x‖16

∞E[|X|2D−4|Ωε].
(D.75)

We will prove Lemma D.4 at the end of this section. With Lemma D.4, we are ready to obtain an improved bound for
X . First, note that P(Ωcε) < N−D

2

, which can be checked by applying a high-order Markov inequality with the moment
condition on M̃ (Assumption 1(iii)). We decompose E[|X|2D] by

E[|X|2D] = E[|X|2D · 1(Ωε)] + E[|X|2D · 1(Ωcε)] = E[|X|2D|Ωε] · P(Ωε) + E[|X|2D · 1(Ωcε)]. (D.76)

The second term in the right-hand side of (D.76), the contribution from the exceptional event Ωcε is negligible, since
P(Ωcε) < N−D

2

,

E[|X|2D · 1(Ωcε)] ≤
(
E[|X|4D]

) 1
2 (P(Ωcε))

1
2 ≤ N−D

2

2

(
E[|X|4D]

) 1
2 (D.77)

and

E[|X|4D] ≤

 N∑
a,b=1

|WabR
W
ba |

4D

≤ N8D

(Im z)4D
max
a,b

E[|Wab|4D] ≤ N10D, (D.78)

where we used a trivial bound |RWba | ≤ ‖RW ‖ ≤ 1
Im z .

From Young’s inequality

ab ≤ ap

p
+
bq

q
,

which holds for any a, b > 0 and p, q > 0 with 1
p + 1

q = 1, we find that

N
1
2 +ε‖x‖4∞|X|2D−1 = N

(2D−1)ε
2D N

1
2 +ε‖x‖4∞ ·N−

(2D−1)ε
2D |X|2D−1

≤ 1

2D
N (2D−1)ε(N

1
2 +ε‖x‖4∞)2D +

2D − 1

2D
N−ε|X|2D.

(D.79)

Applying Young’s inequality for other terms in (D.75), we get

E[|X|2D|Ωε] ≤ CN (2D−1)ε(N
1
2 +ε‖x‖4∞)2D + CN (D−1)ε(N1+4ε‖x‖8∞)D

+ CN ( 2D
3 −1)ε(N1+5ε‖x‖12

∞)
2D
3 + CN (D2 −1)ε(N1+9ε‖x‖16

∞)
D
2 + CN−εE[|X|2D|Ωε].

(D.80)

Absorbing the last term in the right-hand side to the left-hand side and plugging the estimates (D.77) and (D.78) into (D.76),
we now get

E[|X|2D] ≤ CN (2D−1)ε(N
1
2 +ε‖x‖4∞)2D + CN (D−1)ε(N1+4ε‖x‖8∞)D

+ CN ( 2D
3 −1)ε(N1+5ε‖x‖12

∞)
2D
3 + CN (D2 −1)ε(N1+9ε‖x‖16

∞)
D
2 +N−

D2

2 +5D.
(D.81)

For any fixed ε′ > 0 independent of D, from the (2D)-th order Markov inequality,

P
(
|X| ≥ N ε′

√
N‖x‖4∞

)
≤ N−2Dε′ E[|X|2D]

(
√
N‖x‖4∞)2D

≤ N−2Dε′N5Dε. (D.82)

Thus, by choosing D sufficiently large and ε = 1/D, we find that

|X| = O(
√
N‖x‖4∞).
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We now go back to (D.67) and use (D.73) with the bound |X| = O(
√
N‖x‖4∞). Since ‖x‖∞ = O(N−φ) for some

3
8 < φ ≤ 1

2 ,
N∑

a,b=1

∂Wab(θ)

∂θ
RWba (θ, z) =

λ(GH − FH)

2
(1 + zs(z)) +O(N

3
2 ‖x‖4∞). (D.83)

To handle the derivative of the right-hand side, we use Cauchy’s integral formula as in (A.31) with a rectangular contour,
contained in Γε1/2, whose perimeter is larger than ε. Then, we get from (D.67) that

∂

∂θ
TrRW (θ, z) = −λ(GH − FH)

2

∂

∂z
(1 + zs(z)) +O(N

3
2 ‖x‖4∞). (D.84)

Since 1 + zs(z) + s(z)2 = 0,
∂

∂z
(1 + zs(z)) =

∂

∂z
(−s(z)2) = −2s(z)s′(z). (D.85)

After integrating over θ from 0 to 1, we conclude that (D.23) holds for a fixed z ∈ Γε1/2. To prove the uniform bound in the
lemma, we can use the lattice argument in Section A; see Equations (A.14)-(A.17).

Finally, we prove the recursive moment estimate in Lemma D.4.

Proof of Lemma D.4. We consider

E[|X|2D] = E

 N∑
a,b=1

(
x2
a −

1

N

)
x2
bWab(θ)R

W
ba (θ, z)XD−1X

D

 .
For simplicity, we omit the θ-dependence and z-dependence of W ≡W (θ) and RW ≡ RW (θ, z).

We use the following inequality that generalizes Stein’s lemma (see Proposition 5.2 of (Baik et al., 2018)): Let Φ be a C2

function. Fix a (small) ε > 0, which may depend on D. Recall that Ωε is the complement of the exceptional event on which
|Wab| or |RWba | is exceptionally large for some a, b, defined by

Ωε =

N⋂
i,j=1

(
{|Wij | ≤ N−

1
2 +ε} ∩ {|RWij − δijs| ≤ N−

1
2 +ε}

)
.

Then,
E[WabΦ(Wab)|Ωε] = E[W 2

ab]E[Φ′(Wab)|Ωε] + ε1, (D.86)

where the error term ε1 admits the bound

|ε1| ≤ C1E
[
|Wab|3 sup

|t|≤1

Φ′′(tWab)
∣∣∣Ωε] (D.87)

for some constant C1. The estimate (D.86) follows from the proof of Proposition 5.2 of (Baik et al., 2018) with p = 1,
where we use the inequality (5.38) therein only up to second to the last line.

In the estimate (D.86), we let
Φ(Wab) = RWbaX

D−1X
D

(D.88)

so that

E[|X|2D|Ωε] =

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE [WabΦ(Wab)|Ωε] . (D.89)

We now consider the term E [WabΦ(Wab)|Ωε] in (D.89). Applying the equation (D.86),

E[WabΦ(Wab)|Ωε] = E[W 2
ab]E[Φ′(Wab)|Ωε] + ε1

= E[W 2
ab]
(
−E

[
RWbbR

W
aaX

D−1X
D|Ωε

]
− E

[
RWbaR

W
baX

D−1X
D|Ωε

]
+(D − 1)E

[
RWba

∂X

∂Wab
XD−2X

D∣∣Ωε]+DE
[
RWba

∂X

∂Wab
XD−1X

D−1∣∣Ωε])+ ε1.

(D.90)
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We plug it into (D.89) and estimate each term. We decompose the term originated from the first term in (D.90) as

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbbR

W
aaX

D−1X
D|Ωε

]

=

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbb (RWaa − s)XD−1X

D|Ωε
]

+ s

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbbX

D−1X
D|Ωε

]
.

(D.91)

The first term satisfies that∣∣∣∣∣∣
N∑

a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbb (RWaa − s)XD−1X

D|Ωε
]∣∣∣∣∣∣

≤ CN2‖x‖4∞N−1N−
1
2 +εE[|X|2D−1|Ωε] = CN

1
2 +ε‖x‖4∞E[|X|2D−1|Ωε]

(D.92)

for some constant C. For the second term, we recall that
∑
a(x2

a − 1
N ) = 0 and E[W 2

ab] are identical except for a 6= b.
Thus, ∣∣∣∣∣∣s

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbbX

D−1X
D|Ωε

]∣∣∣∣∣∣
≤ C

∣∣∣∣∣
N∑
b=1

∣∣x2
b −

1

N

∣∣x2
b |w2 − 1|N−1E

[
RWbbX

D−1X
D|Ωε

]∣∣∣∣∣
≤ C ′N‖x‖4∞N−1E[|X|2D−1|Ωε] = C ′‖x‖4∞E[|X|2D−1|Ωε]

(D.93)

for some constants C and C ′. We then find that
N∑

a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbbR

W
aaX

D−1X
D|Ωε

]
≤ CN 1

2 +ε‖x‖4∞E[|X|2D−1|Ωε] (D.94)

for some constant C. For the second term in (D.90), we also have

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWbaR

W
baX

D−1X
D|Ωε

]
≤ CN2ε‖x‖4∞E[|X|2D−1|Ωε]. (D.95)

To estimate the third term and the fourth term in (D.90), we notice that on Ωε∣∣∣∣ ∂X∂Wab

∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

(
x2
i −

1

N

)
x2
jWijR

W
bi R

W
ja +

(
x2
a −

1

N

)
x2
bR

W
ba

∣∣∣∣∣∣ ≤ CN 1
2 +3ε‖x‖4∞. (D.96)

for some constant C. Thus, we obtain that
N∑

a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWba

∂X

∂Wab
XD−2X

D∣∣Ωε] ≤ CN1+4ε‖x‖8∞E[|X|2D−2|Ωε] (D.97)

and
N∑

a,b=1

(
x2
a −

1

N

)
x2
bE[W 2

ab]E
[
RWba

∂X

∂Wab
XD−1X

D−1∣∣Ωε] ≤ CN1+4ε‖x‖8∞E[|X|2D−2|Ωε]. (D.98)

Hence, from (D.90), (D.94), (D.95), (D.97), and (D.98),∣∣∣∣∣∣
N∑

a,b=1

(
x2
a −

1

N

)
x2
bE [WabΦ(Wab)|Ωε]

∣∣∣∣∣∣ ≤ CN 1
2 +ε‖x‖4∞E[|X|2D−1|Ωε]

+ CN1+4ε‖x‖8∞E[|X|2D−2|Ωε] + ε1.

(D.99)
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It remains to estimate |ε1| in (D.87). Proceeding as before,

N∑
a,b=1

(
x2
a −

1

N

)
x2
bE
[
|Wab|3Φ′′(Wab)

∣∣∣Ωε]
≤ CN ε‖x‖4∞E[|X|2D−1|Ωε] + CN1+2ε‖x‖8∞E[|X|2D−2|Ωε] + CN1+5ε‖x‖12

∞E[|X|2D−3|Ωε].

(D.100)

We want to compare Φ′′(Wab) and Φ′′(tWab) for some |t| < 1. Let RW,t be the resolvent of W where Wab and Wba are
replaced by tWab and tWba, respectively, and let Xt be defined as X in (D.74) with the same replacement for Wab (and
Wba) and also RW is replaced by RW,t. Then,

RW,tji −R
W
ji = (1− t)RWjaWabR

W,t
bi , (D.101)

and

Xt −X =

N∑
i,j=1

(
x2
i −

1

N

)
x2
jWij(R

W,t
ji −R

W
ji )− (1− t)

(
x2
a −

1

N

)
x2
bWabR

W,t
ba . (D.102)

Thus, on Ωε,
|Xt −X| ≤ CN4ε‖x‖4∞. (D.103)

Using the estimates (D.101) and (D.103), on Ωε, we obtain that

|Φ′′(Wab)− Φ′′(tWab)| ≤ C|Φ′′(Wab)|+N
1
2 +5ε‖x‖12

∞|X|2D−4 (D.104)

uniformly on t ∈ (−1, 1).

Combining (D.89) and (D.99) with (D.100), (D.104), and (D.87), we finally get

E[|X|2D|Ωε] ≤ CN
1
2 +ε‖x‖4∞E[|X|2D−1|Ωε] + CN1+4ε‖x‖8∞E[|X|2D−2|Ωε]

+ CN1+5ε‖x‖12
∞E[|X|2D−3|Ωε] + CN1+9ε‖x‖16

∞E[|X|2D−4|Ωε].
(D.105)

This proves the desired lemma.
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