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Abstract

We consider the problem of detecting the pres-
ence of the signal in a rank-one signal-plus-noise
data matrix. In case the signal-to-noise ratio is
under the threshold below which a reliable detec-
tion is impossible, we propose a hypothesis test
based on the linear spectral statistics of the data
matrix. When the noise is Gaussian, the error of
the proposed test is optimal as it matches the error
of the likelihood ratio test that minimizes the sum
of the Type-I and Type-II errors. The test is data-
driven and does not depend on the distribution
of the signal or the noise. If the density of the
noise is known, it can be further improved by an
entrywise transformation to lower the error of the
test.

1. Introduction
One of the fundamental questions in statistics is to detect
signals from given data. When the data is given as a matrix,
it is common to analyze the data by the largest eigenvalue
and the corresponding eigenvector, which is known as prin-
cipal component analysis (PCA). For a null model where
the signal is not present, the data is pure noise and the be-
havior of the largest eigenvalue is now well understood by
random matrix theory (Tracy & Widom, 1994; 1996; John-
stone, 2001; Tao & Vu, 2010; Erdős et al., 2012). If the data
matrix is of ‘signal-plus-noise’ type and the signal is in the
form of a vector, the model is often referred to as a ‘spiked
random matrix.’

When the signal is an N -dimensional vector and the data is
an N ×N real symmetric matrix, one of the most natural
signal-plus-noise models is of the form

M =
√
λxxT +H, (1)
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where the signal x ∈ RN and H is an N ×N Wigner ma-
trix. (See Definitions 1 and 2.) The spiked Wigner model
is widely used as a low-rank model for which PCA can be
applied to detect or recover signal from noisy high dimen-
sional data. It can be used in the signal detection/recovery
problems such as community detection (Abbe, 2017) and
submatrix localization (Butucea et al., 2013). In the commu-
nity detection, the spike x ∈ {1,−1}N indicates commu-
nities each node belongs to and the data matrix M models
noisy pairwise interactions with different means depending
on whether the corresponding nodes are in the same com-
munity or not. In the submatrix localization, the task is
to detect within a large Gaussian matrix small blocks with
atypical mean.

The Wigner matrix H represents the noise, and we assume
that Hij are independent random variables with mean 0 and
variance N−1. With the assumption, the spectral norm of
H , ‖H‖ → 2 as N → ∞ almost surely. Thus, when the
signal is normalized so that ‖x‖2 = 1, the strengths of
the signal ‖xxT ‖ and the noise ‖H‖ are comparable. If
the parameter λ, which corresponds to the signal-to-noise
ratio (SNR), is very large (λ � 1) or small (λ � 1), a
perturbation argument can be applied for PCA; if λ � 1,
the difference between the largest eigenvalues of M and√
λxxT is negligible, and if λ� 1, the largest eigenvalue

of M cannot be distinguished from that of H .

The case λ ∼ 1 has been intensively studied in random ma-
trix theory. The first result in this direction was obtained by
Baik, Ben Arous, and Péché (Baik et al., 2005) for complex
Wishart matrices, which is of the form X∗X where X is a
(rectangular) matrix with independent Gaussian entries, and
later extended to more general sample covariance matrices
(Paul, 2007; Nadler, 2008; Johnstone & Lu, 2009). Similar
results were proved for Wigner matrices (Péché, 2006; Féral
& Péché, 2007; Capitaine et al., 2009; Benaych-Georges &
Nadakuditi, 2011). In these results, the largest eigenvalue
exhibits phase transition; when λ > 1, the largest eigenvalue
separates from the other eigenvalues of M and converges to√
λ+ 1√

λ
, which is strictly larger than 2, whereas for λ < 1,

the behavior of the largest eigenvalue coincides with that of
the pure noise model. In the former case, the eigenvector
corresponding to the largest eigenvalue has nontrivial cor-
relation with the signal x, which means that the signal can
be detected and recovered by PCA. We refer to the work



Weak Detection of Signal in the Spiked Wigner Model

of Benaych-Georges and Nadakuditi (Benaych-Georges &
Nadakuditi, 2011) for more detail on the behavior of the
largest eigenvalues and corresponding eigenvectors.

When λ < 1, contrary to the case λ > 1, the spectral
norm of M converges to 2 and the behavior of the largest
eigenvalue cannot be distinguished from that of the null
model H . It is then natural to ask whether the presence of
the signal is detectable, and if so, which tests allow us to
detect the signal in the regime λ < 1.

The question about the detectability was considered by Mon-
tanari, Reichman, and Zeitouni in (Montanari et al., 2017),
where it was proved that no tests based on the eigenvalues
can reliably detect the signal if the noise H is a random
matrix from the Gaussian Orthogonal Ensemble (GOE). For
a non-Gaussian Wigner matrix H , Perry, Wein, Bandeira,
and Moitra (Perry et al., 2018) assumed that the signal x is
drawn from a distribution X , which they called the spike
prior, and found the critical value for λ ≤ 1 in terms of
X and H below which no tests based on the eigenvalues
can reliably detect signal. Further, they also established
an entrywise transformation of the data matrix by which
the signal can be detected via the largest eigenvalue even if
λ < 1 as long as λ is larger than the critical value.

For the subcritical case, El Alaoui, Krzakala, and Jordan
(El Alaoui et al., 2018) studied the weak detection, i.e., a test
with accuracy better than a random guess. More precisely,
they considered the hypothesis testing problem between the
null hypothesis that λ = 0 and the alternative hypothesis
that M is generated with a fixed λ > 0. Assuming that the
entries of

√
Nx are i.i.d. random variables with bounded

support and the noise is Gaussian, it was proved that the
error from the likelihood ratio (LR) test, which is the optimal
test in minimizing the error, converges to

erfc

(
1

4

√
− log(1− λ)− λ

)
(2)

if the variance of diagonal entries Hii tends to infinity. We
remark that Onatski, Moreira, and Hallin (Onatski et al.,
2013) considered the weak detection for real Wishart matri-
ces and obtained a Gaussian limit of the log LR.

While the likelihood ratio test is optimal due to the Neyman–
Pearson lemma, since LR tests require substantial knowl-
edge of the distribution of x, called prior, it is desirable to
design a test that does not require a priori knowledge on the
signal. For community detection problem in the stochas-
tic block model, Banerjee and Ma (Banerjee & Ma, 2017)
proposed a test based on the linear spectral statistics (LSS).
More precisely, denoting by µ1, . . . , µN the eigenvalues of
the data matrix, they considered the LSS

LN (f) =

N∑
i=1

f(µi) (3)

with f(x) = xk for positive integers k and achieved asymp-
totically optimal error by a linear combination of the LSS.

The results in (El Alaoui et al., 2018; Banerjee & Ma, 2017)
shed lights on the weak detection problem. However, the
analysis in these results seems to be restricted to the spe-
cific distributions of the noise - Gaussian distribution in
(El Alaoui et al., 2018) and Bernoulli distribution in (Baner-
jee & Ma, 2017). Moreover, the signal considered in the
previous works is delocalized, i.e., ‖x‖∞ = O(1/

√
N),

which may lose its validity if the signal is sparse or the
uniform prior is assumed.

In this paper, we construct an optimal and universal test that
detects the absence or presence of signal in (1) based on
LSS for any x with ‖x‖2 = 1 and for any Wigner matrix H .
We briefly summarize our main contributions as follows:

• Universality 1: For any deterministic or random x, the
proposed test and its error do not change, and thus we
do not need any prior information on x. Note that the
LR test requires the prior information on x.

• Universality 2: The proposed test and its error depend
on the distribution of the noise H only through the
variance of the diagonal entries and the fourth moment
of the off-diagonal entries. The entriesHij do not need
to be identically distributed but just independent.

• Optimality 1: The proposed test is with the lowest error
among all tests based on LSS.

• Optimality 2: When the noise is Gaussian, the er-
ror of the proposed test with low computational com-
plexity converges to the optimal limit (2) obtained in
(El Alaoui et al., 2018).

• Data-driven test: The various quantities in the proposed
test can be estimated from the observed data.

• Entrywise transformation: If the density function of
the noise matrix is known, which is non-Gaussian, the
test can be further improved by an entrywise transfor-
mation that effectively increases the SNR.

The main technical component of the present paper is the
central limit theorem (CLT) for the LSS of arbitrary analytic
functions for the random matrix in (1). The fluctuation of the
LSS is not only of fundamental importance per se in random
matrix theory, but also applicable to various applications
such as the fluctuations of the free energy of the spherical
spin glass (Baik & Lee, 2016; 2017). The LR in the weak
detection problem with Gaussian noise is directly related to
the free energy of spin glass as in (El Alaoui et al., 2018).
To our best knowledge, however, the CLT for spiked Wigner
matrices was proved only for the case where the signal
x = 1 := 1√

N
(1, 1, . . . , 1)T (Baik & Lee, 2017).
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If the density function of the noise matrix is known, we can
adapt the entrywise transformation in (Perry et al., 2018)
to further improve the proposed test. The transformation
effectively changes the SNR from λ to λFH , where FH is
the Fisher information of the density function of the (nor-
malized) off-diagonal entries in H . Since FH ≥ 1, and the
strict inequality holds if the noise is non-Gaussian, the error
from our test decreases in general after the transformation.

The rest of the paper is organized as follows. In Section 2,
we define the model and introduce previous results. In Sec-
tion 3, we state the main result and describe the algorithm
for the proposed test. In Section 4, we apply the entrywise
transformation and state the results for the improved test.
General results on the CLT for the LSS are collected in
Section 5. We conclude the paper in Section 6 with the
summary of our results and future research directions. Proof
of the theorems can be found in Supplementary Material.

2. Preliminaries
We first define the matrix in (1) more precisely. The Wigner
matrix is defined as follows:
Definition 1 (Wigner matrix). We say an N ×N random
matrix H = (Hij) is a (real) Wigner matrix if H is a sym-
metric matrix and Hij (1 ≤ i ≤ j ≤ N ) are independent
real random variables satisfying the following conditions:

• All moments of Hij are finite and E[Hij ] = 0.

• For all i < j, NE[H2
ij ] = 1, N

3
2E[H3

ij ] = w3,
N2E[H4

ij ] = w4 for some constants w3, w4 ∈ R.

• For all i, NE[H2
ii] = w2 for a constant w2 ≥ 0.

The signal-plus-noise model we consider is a (rank-one)
spiked Wigner matrix, which is defined as follows:
Definition 2 (Spiked Wigner matrix). We say an N × N
random matrixM =

√
λxxT+H is a spiked Wigner matrix

with a spike x and SNR λ if x = (x1, x2, . . . , xN ) ∈ RN
with ‖x‖2 = 1 and H is a Wigner matrix.

Denote by Pλ the joint probability of the observation, a
spiked Wigner matrix, with λ > 0 and P0 with λ = 0. If H
is a GOE matrix, where Hij are Gaussian with NE[H2

ii] =
2, and x is drawn from the spike prior X , the likelihood
ratio is given by

dPλ
dP0

=

∫
exp

(N
2

N∑
i,j=1

(√
λMijxixj−

λ

2
x2ix

2
j

))
dX (x).

For the spherical prior, i.e., X is the uniform distribution on
the unit sphere, with the spike x = 1, it was proved that

log
dPλ
dP0

⇒ N
(
±1

4
log

(
1

1− λ

)
,
1

4
log

(
1

1− λ

))
,

where the plus sign holds under the alternative M ∼ Pλ and
the minus sign holds under the null M ∼ P0. (See Section
3.1 of (Baik & Lee, 2016) and Theorem 1.4 of (Baik & Lee,
2017) with β =

√
λ/2.) For the i.i.d. bounded prior, i.e.,

the entries of
√
Nx are i.i.d. bounded random variables, the

same result was proved in (El Alaoui et al., 2018).

The proof of the convergence of dPλ
dP0

in (Baik & Lee, 2016;
2017) is based on the recent development of random ma-
trix theory, especially the study of the LSS. For a Wigner
matrix H , if we let λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenval-
ues of H , then for any continuous function f defined on a
neighborhood of [−2, 2],

1

N

N∑
i=1

f(λi)→
∫ 2

−2

√
4− x2
2π

f(x) dx

almost surely. The fluctuation of 1
N

∑
i f(λi) about its limit

is a subject of intensive study in random matrix theory, and it
is natural to introduce the LSS defined in (3) for the analysis.
The CLT for the LSS asserts that(

LN (f)−N
∫ 2

−2

√
4− x2
2π

f(x) dx

)
⇒ N (mH(f), VH(f)),

(4)

where the right-hand side denotes a Gaussian random vari-
able with mean mH(f) and variance VH(f). Note that the
fluctuation is of order N−1 and much smaller than that of
the conventional CLT, which is of order N−

1
2 .

For spiked Wigner matrices, the CLT for the LSS has been
proved only for the case x = 1 := 1√

N
(1, 1, . . . , 1)T in

(Baik & Lee, 2017). Let µ1 ≥ µ2 ≥ · · · ≥ µN be the
eigenvalues of a spiked Wigner matrix with a spike x and
SNR λ. If x = 1, then(

N∑
i=1

f(µi)−N
∫ 2

−2

√
4− x2
2π

f(x) dx

)
⇒ N (mM (f), VM (f)),

(5)

A remarkable fact in (5) is that the variance VM (f) is equal
to VH(f), the variance from the Wigner case, whereas the
mean mM (f) is different from mH(f) unless λ = 0. (See
Theorem 5 in Section 5 for the precise formulas for mM (f)
and VM (f).) It turns out that the same CLT holds for any
spike x as in Theorem 5, and the LSS provides us a test
statistic for a hypothesis testing.

3. Main Results
Let us denote by H0 the null hypothesis and H1 the alter-
native hypothesis, i.e.,

H0 : λ = 0, H1 : λ > 0.
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Suppose that the value of λ for H1 is known and our task
is to detect whether the signal is present from a given data
matrix M . If we construct a test based on the LSS for the
hypothesis testing, it is obvious that we need to maximize∣∣∣∣∣mM (f)−mH(f)√

VM (f)

∣∣∣∣∣ . (6)

In Theorem 6 in Section 5, we prove that the maximum of
(6) is attained if and only if f(x) = C1φλ(x)+C2 for some
constants C1 and C2, where

φλ(x) := log

(
1

1−
√
λx+ λ

)
+
√
λ

(
2

w2
− 1

)
x+ λ

(
1

w4 − 1
− 1

2

)
x2.

(7)

Thus, it is natural to define the test statistic Lλ by

Lλ :=

N∑
i=1

φλ(µi)−N
∫ 2

−2

√
4− z2
2π

φλ(z) dz

= − log det
(
(1 + λ)I −

√
λM

)
+
λN

2

+
√
λ

(
2

w2
− 1

)
TrM

+ λ

(
1

w4 − 1
− 1

2

)
(TrM2 −N).

(8)

Under H0, it is direct to see from Theorem 1.1 of (Bai &
Yao, 2005) and Section 3.1 of (Baik & Lee, 2016) that

Lλ ⇒ N (m0, V0),

where

m0 = −1

2
log(1− λ)

+

(
w2 − 1

w4 − 1
− 1

2

)
λ+

(w4 − 3)λ2

4
,

(9)

V0 = −2 log(1− λ)

+

(
4

w2
− 2

)
λ+

(
2

w4 − 1
− 1

)
λ2.

(10)

Our first main result is the CLT for Lλ under H1.
Theorem 1. Let M be a spiked Wigner matrix in Definition
2 with 0 < λ < 1. Denote by µ1 ≥ µ2 ≥ · · · ≥ µN the
eigenvalues of M . Then, for any spike x with ‖x‖2 = 1,

Lλ ⇒ N (m+, V0) . (11)

The mean of the limiting Gaussian distribution is given by

m+ = m0 − log(1− λ)

+

(
2

w2
− 1

)
λ+

(
1

w4 − 1
− 1

2

)
λ2

(12)

and the variance V0 is as in (10).

Theorem 1 is a direct consequence of a general CLT in
Theorem 5 in Section 5. (See Supplementary Material.)

In the simplest case with w2 = 2 and w4 = 3, e.g., when H
is a GOE matrix,

Lλ ⇒ N (−1

2
log(1− λ),−2 log(1− λ)) (13)

under H0 and

Lλ ⇒ N (−3

2
log(1− λ),−2 log(1− λ)) (14)

under H1 as shown in Figure 1.

Figure 1. The limiting density of the test statistic Lλ in (13) and
(14) under H0 (solid) and under H1 (dashed), respectively, with
λ = 0.8 for w2 = 2 and w4 = 3 (e.g. GOE noise)

Based on Theorem 1, we propose a hypothesis test described
in Algorithm 1. In this test, given a data matrix M , we
compute Lλ and compare it with the critical value

mλ :=
m0 +m+

2

= − log(1− λ) + (w2 − 1)

(
1

w4 − 1
− 1

w2

)
λ

+

(
w4

4
− 1 +

1

2(w4 − 1)

)
λ2

(15)

to accept or reject the null hypothesis test.
Theorem 2. The error of the test in algorithm 1,

err(λ) = P(Lλ > mλ|H0) + P(Lλ ≤ mλ|H1),

converges to erfc(Eλ/4), where

E2
λ = log

(
1

1− λ

)
+

(
2

w2
− 1

)
λ+

(
1

w4 − 1
− 1

2

)
λ2

and erfc(·) is the complementary error function defined as

erfc(z) =
2√
π

∫ ∞
z

e−x
2

dx .
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Algorithm 1 Hypothesis test
Input: data Mij , parameters w2, w4, λ
Lλ ← test statistic in (8)
mλ ← critical value in (15)
if Lλ ≤ mλ then

Accept H0

else
Reject H0

end if

Proof. Due to the symmetry, P(Lλ > mλ|H0) and
P(Lλ ≤ mλ|H1) converge to a common limit. Since

P(Lλ > mλ|H0) = P
(
Lλ −m0√

V0
≥ m+ −m0

2
√
V0

∣∣∣∣H0

)
and V0 = 2 (m+ −m0), we can identify the limit as

P
(
Z ≥

√
V0
4

)
for a standard Gaussian random variable Z. Thus, we can
conclude that

lim
N→∞

err(λ) = 2P
(
Z ≥

√
V0
4

)
= erfc

(
Eλ
4

)
. (16)

Remark 1. Even when the exact values of w2 and w4 are
not known, we can estimate the parameters from the data
matrix. Such estimates are accurate enough for the algo-
rithm as we can easily check from the Chernoff bound.

In case w4 = 3 and w2 =∞, we obtain

lim
N→∞

err(λ) = erfc

(
1

4

√
− log(1− λ)− λ

)
, (17)

which is equal to the error of the LR test, given in Corollary
5 of (El Alaoui et al., 2018). Furthermore, in case w4 = 3
and w2 <∞, we get

lim
N→∞

err(λ) = erfc

(
1

4

√
− log(1− λ)− λ+

2λ

w2

)
,

(18)
which coincides with the error of the LR test, obtained in
the remark after Theorem 2 of (El Alaoui et al., 2018) with
EPX [X3] = 0. Thus, our test achieves the optimal error
when λ is below a certain threhold λc above which reli-
able detection is possible as shown in (Barbier et al., 2016;
Lelarge & Miolane, 2019; El Alaoui et al., 2018). Since
λc = 1 in many cases including spherical, Rademacher,
and any i.i.d. prior with a sub-Gaussian bound (Perry et al.,
2018), and since universal tests such as ours cannot exploit
the knowledge on the prior, we have considered a test that
works for any λ < 1.

4. Test with Entrywise Transformation
In this section, we consder the case the density function
of the noise matrix is known, and we further improve the
proposed test by adapting the entrywise transformation in
(Perry et al., 2018). Suppose that each normalized entry√
NHij is drawn from a distribution P with a density func-

tion g. As shown in (Perry et al., 2018), it turns out that
the signal can be reliably detected by PCA if λ > 1/FH ,
where FH is the Fisher information of P defined by

FH =

∫ ∞
−∞

g′(w)2

g(w)
dw. (19)

Note that FH ≥ 1 with equality if and only if P is a Gaus-
sian. The main idea of improving the detection threshold
for PCA is based on the following transformation. Set

h(w) := −g
′(w)

g(w)
.

Given the data matrix M , one can consider a transformed
matrix M̃ obtained by

M̃ij =
1√
FHN

h(
√
NMij).

The transformation effectively changes the SNR from λ to
λFH for PCA, and thus it is possible to reliably detect the
signal if λFH > 1. For more detail, see Section 4 of (Perry
et al., 2018).

If λ < 1/FH , no tests based on PCA are reliable. Hence,
we consider the weak detection of the signal with the entry-
wise transformation. The effective change of the SNR by
the entrywise transformation suggests that the result in The-
orem 1 will also change correspondingly with the entrywise
transformation. For analysis, we will assume the following:

Assumption 1. For the spike x, we assume that ‖x‖∞ ≤
N−φ for some φ > 3

8 .

For the noise, let P and Pd be the distributions of the nor-
malized off-diagonal entries

√
NHij and the normalized

diagonal entries
√
NHii, respectively. We assume the fol-

lowing:

1. The density function g of P is smooth, positive every-
where, and symmetric (about 0).

2. For any fixed D, the D-th moment of P is finite.

3. The function h = −g′/g and its all derivatives are
polynomially bounded in the sense that |h(`)(w)| ≤
C`|w|C` for some constant C` depending only on `.

4. The density function gd of Pd satisfies the assumptions
1–3.
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Let h = −g′/g and hd = −g′d/gd. For a spiked Wigner
matrix M in Definition 2 that satisfies Assumption 1, define
a matrix M̃ by

M̃ij =
1√
FHN

h(
√
NMij) (i 6= j), (20)

M̃ii =

√
w2

FHd N
hd
(√ N

w2
Mii

)
, (21)

where

FH =

∫ ∞
−∞

g′(w)2

g(w)
dw, FHd =

∫ ∞
−∞

g′d(w)
2

gd(w)
dw.

The transformed matrix M̃ is not a spiked Wigner matrix
anymore. Nevertheless, as we will prove in Theorem 7 in
Section 5, the CLT for the LSS of M̃ holds with the mean
m
M̃
(f) and the variance V

M̃
(f). Denote by m

M̃0
(f) the

mean m
M̃
(f) with λ = 0. Then, as in Section 3, we need

to maximize ∣∣∣∣∣mM̃
(f)−m

M̃0
(f)√

V
M̃
(f)

∣∣∣∣∣ .
In Theorem 8, we prove that the maximum is attained if and
only if f(x) = C1φ̃λ(x) + C2 for some constants C1 and
C2, where

φ̃λ(x) := log

(
1

1−
√
λFHx+ λFH

)

+
√
λ

2
√
FHd

w2
−
√
FH

x

+ λ

(
GH

w̃4 − 1
− FH

2

)
x2.

(22)

Thus, denoting by µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃N the eigenvalues of
M̃ , we define the test statistic L̃λ by

L̃λ :=

N∑
i=1

φ̃λ(µ̃i)−N
∫ 2

−2

√
4− z2
2π

φ̃λ(z) dz

= − log det
(
(1 + λFH)I −

√
λFHM̃

)
+
λFH

2
N

+
√
λ

2
√
FHd

w2
−
√
FH

Tr M̃

+ λ

(
GH

w̃4 − 1
− FH

2

)
(Tr M̃2 −N),

(23)

where

GH =
1

2FH

∫ ∞
−∞

g′(w)2g′′(w)

g(w)2
dw,

and

w̃4 =
1

(FH)2

∫ ∞
−∞

(g′(w))4

(g(w))3
dw.

The CLT for L̃λ holds as follows:

Theorem 3. Let M be a spiked Wigner matrix in Definition
2 that satisfy Assumption 1. Suppose that λ < 1

FH
. Then,

L̃λ ⇒ N (m̃0, Ṽ0) if λ = 0

and
L̃λ ⇒ N (m̃+, Ṽ0) if λ > 0.

The means and the variance of the limiting Gaussian distri-
butions are given by

m̃0 = −1

2
log(1− λFH)

+

(
(w2 − 1)GH

w̃4 − 1
− FH

2

)
λ+

w̃4 − 3

4
(λFH)2,

m̃+ = m̃0 − log(1− λFH)

+

(
2FHd
w2
− FH

)
λ+

(
(GH)2

w̃4 − 1
− (FH)2

2

)
λ2,

and

Ṽ0 = −2 log(1− λFH) +

(
4FHd
w2
− 2FH

)
λ

+

(
2(GH)2

w̃4 − 1
− (FH)2

)
λ2 .

Theorem 3 is a direct consequence of a general CLT in
Theorem 7 in Section 5.

With the entrywise transformation, we modify the hypoth-
esis test as in Algorithm 2, where we compute L̃λ and
compare it with

m̃λ :=
m̃0 + m̃+

2

= − log(1− λFH)

+

(
FHd
w2
− FH +

(w2 − 1)GH

w̃4 − 1

)
λ

+

(
w̃4

4
− 1

)
(λFH)2 +

(λGH)2

2(w̃4 − 1)
.

(24)

The parameters w2 and w̃4 can be estimated from the data
matrix as in Algorithm 1, and the densities can be estimated
by methods such as the kernel density estimation.

Theorem 4. The error of the test in Algorithm 2,

err(λ) = P(L̃λ > m̃λ|H0) + P(L̃λ ≤ m̃λ|H1),
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Algorithm 2 Hypothesis test with entrywise transformation
Input: data Mij , parameters w2, w4, λ, densities g, gd
M̃ ← transformed matrix in Equations (20) and (21)
L̃λ ← test statistic in (23)
m̃λ ← critical value in (24)
if L̃λ ≤ m̃λ then

Accept H0

else
Reject H0

end if

converges to erfc(Ẽλ/4), where

Ẽ2
λ = log

(
1

1− λFH

)
+

(
2FHd
w2
− FH

)
λ

+

(
(GH)2

w̃4 − 1
− (FH)2

2

)
λ2.

The proof closely follows the proof of Theorem 2, and we
omit the detail.

Example 1. Consider the case where the density function
of the noise matrix is given by

g(x) = gd(x) =
1

2 cosh(πx/2)
=

1

eπx + e−πx
.

Sample Wij = Wji from the density g and let Hij =

Wij/
√
N . Let x = (x1, x2, . . . , xN ) where

√
Nxi’s are

i.i.d. Rademacher random variable. Let the data matrix
M =

√
λxxT +H . The parameters are w2 = 1, w4 = 5.

In the test proposed in Section 3, we compute

Lλ = − log det
(
(1 + λ)I −

√
λM

)
+
λN

2

+
√
λTrM − λ

4
(TrM2 −N),

(25)

and accept H0 if Lλ ≤ − log(1− λ) + 3λ2

8 and reject H0

otherwise. The limiting error of the test is

erfc

(
1

4

√
− log(1− λ) + λ− λ2

4

)
. (26)

We can further improve the test by introducing the entrywise
transformation given by

h(x) = −g
′(x)

g(x)
=
π

2
tanh

πx

2
.

The Fisher information FH is π2

8 , which is strictly larger
than 1. We first construct a pre-transformed matrix M̃ by

M̃ij =
2
√
2

π
√
N
h(
√
NMij) =

√
2

N
tanh

(
π
√
N

2
Mij

)
.

If λ > 1
FH

= 8
π2 , we can use PCA to reliably detect the

signal. If λ < 8
π2 , we compute the test statistic

L̃λ = − log det

(
(1 +

π2λ

8
)I −

√
π2λ

8
M̃

)
+
π2λN

16

+
π
√
λ

2
√
2
Tr M̃ +

3π2λ

16
(Tr M̃2 −N).

(Here, GH = FH = π2

8 and w̃4 = 3
2 .) We accept H0 if

L̃λ ≤ − log

(
1− π2λ

8

)
+

3π4λ2

512

and reject H0 otherwise. The limiting error with entrywise
transformation is

erfc

(
1

4

√
− log(1− π2λ

8
) +

π2λ

8
+

3π4λ2

128

)
. (27)

Since erfc(z) is a decreasing function of z and π2

8 > 1, it
is direct to see that the limiting error in (27) is strictly less
than the limiting error in (26) as illustrated in Figure 2.

Figure 2. The limiting errors (26) of Algorithm 1 (solid) and (27)
of Algorithm 2 (dashed), respectively, for Example 1.

5. Central Limit Theorems
In this section, we collect general CLTs for the LSS. The
mean and the variance will be written in terms of Cheby-
shev polynomials (of the first kind) for which we use the
following definition.
Definition 3 (Chebyshev polynomial). The n-th Chebyshev
polynomial Tn is a degree n polynomial defined by the
orthogonality condition

∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

=


0 if m 6= n,

π if m = n = 0,
π
2 if m = n 6= 0.
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Our first result in this section is a general CLT for the LSS.
Theorem 5. Assume the conditions in Theorem 1. For any
function f analytic on an open interval containing [−2, 2],(

N∑
i=1

f(µi)−N
∫ 2

−2

√
4− z2
2π

f(z) dz

)
⇒ N (mM (f), VM (f)) .

The mean and the variance of the limiting Gaussian distri-
bution are given by

mM (f) =
1

4
(f(2) + f(−2))− 1

2
τ0(f) + (w2 − 2)τ2(f)

+ (w4 − 3)τ4(f) +

∞∑
`=1

√
λ`τ`(f)

and

VM (f) = (w2 − 2)τ1(f)
2 + 2(w4 − 3)τ2(f)

2

+ 2

∞∑
`=1

`τ`(f)
2,

where

τ`(f) =
1

π

∫ 2

−2
T`

(x
2

) f(x)√
4− x2

dx

with the `-th Chebyshev polynomial T`.

Our second result classifies all functions that are optimal for
the hypothesis test.
Theorem 6. Assume the conditions in Theorem 5. Ifw2 > 0
and w4 > 1, then∣∣∣∣∣mM (f)−mH(f)√

VM (f)

∣∣∣∣∣ ≤
∣∣∣∣m+ −m0√

V0

∣∣∣∣ . (28)

The equality holds if and only if f = C1φλ + C2 for some
constants C1 and C2 with the function φλ defined in (7).

The function of the form φλ in (7) was considered by Baner-
jee and Ma for hypothesis testing in stochastic block models;
see Remark 3.3 in (Banerjee & Ma, 2017). Instead of us-
ing polynomial approximation of φλ as in (Banerjee & Ma,
2017), we use φλ itself since it is analytic for any x in
an open interval (−

√
λ− 1√

λ
,
√
λ+ 1√

λ
), which contains

[−2, 2]. In the signal detection test we consider, if there is
an eigenvalue outside the interval (−

√
λ− 1√

λ
,
√
λ+ 1√

λ
),

it implies that the signal is present with high probability.

Our result for the pre-transformed CLT is the following
theorem:
Theorem 7. Assume the conditions in Theorem 3. For any
function f analytic on an open interval containing [−2, 2],(

N∑
i=1

f(µ̃i)−N
∫ 2

−2

√
4− z2
2π

f(z) dz

)
⇒ N (m

M̃
(f), V

M̃
(f)) .

The mean and the variance of the limiting Gaussian distri-
bution are given by

m
M̃
(f) =

1

4
(f(2) + f(−2))− 1

2
τ0(f) +

√
λFHd τ1(f)

+ (w2 − 2 + λGH)τ2(f) + (w̃4 − 3)τ4(f)

+

∞∑
`=3

√
(λFH)`τ`(f)

(29)

and

V
M̃
(f) = (w2 − 2)τ1(f)

2 + 2(w̃4 − 3)τ2(f)
2

+ 2

∞∑
`=1

`τ`(f)
2.

Note that V
M̃
(f) does not depend on the existence of the

spike. Let m
M̃0

(f) be m
M̃
(f) in (29) with λ = 0. For the

transformed matrix M̃ , we have the following result that
corresponds to Theorem 6.

Theorem 8. Assume the conditions in Theorem 7. Then∣∣∣∣∣mM̃
(f)−m

M̃0
(f)√

V
M̃
(f)

∣∣∣∣∣ ≤
√
m̃+ − m̃0

Ṽ0
. (30)

The equality holds if and only if f(x) = C1φ̃λ(x) + C2 for
some constants C1 and C2 with φ̃λ defined in (22).

6. Conclusion and Future Works
In this paper, we proposed a hypothesis test for a signal de-
tection problem in a rank-one spiked Wigner model. Based
on the central limit theorem for the linear spectral statis-
tics of the data matrix, we established a test statistic that
does not require any prior information on the signal. The
test and its error depends on the noise matrix only through
the variance of the diagonal entries and the fourth moment
of the off-diagonal entries. The error of the proposed test
is the lowest among all tests based on the linear spectral
statistics, and it also matches the error of the likelihood
ratio test if the noise is Gaussian. When the density of the
noise is known, we further improve the test by adapting the
entrywise transformation introduced in (Perry et al., 2018).

An interesting future research direction is to extend the test
to the case with a spike of higher rank. We believe that it
is possible to prove the central limit theorem for the linear
statistics even when the rank of the signal is higher, and our
test can be naturally extended to the model. We also hope
to generalize our results to the data matrix with non-Wigner
noise, where the variances of off-diagonal entries of the
noise matrix are not identical, including (sparse) stochastic
block models.
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