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Abstract

We study the problem of optimizing the cluster-
ing of a set of vectors when the quality of the
clustering is measured by the Entropy or the Gini
impurity measure. Our results contribute to the
state of the art both in terms of best known approx-
imation guarantees and inapproximability bounds:
(i) we give the first polynomial time algorithm
for Entropy impurity based clustering with ap-
proximation guarantee independent of the number
of vectors and (ii) we show that the problem of
clustering based on entropy impurity does not
admit a PTAS. This also implies an inapproxima-
bility result in information theoretic clustering for
probability distributions closing a problem left
open in [Chaudhury and McGregor, COLT08]
and [Ackermann et al., ECCC11]. We also re-
port experiments with a new clustering method
that was designed on top of the theoretical tools
leading to the above results. These experiments
suggest a practical applicability for our method,
in particular, when the number of clusters is large.

1. Introduction

Data clustering is a fundamental tool in machine learn-
ing that is commonly used to reduce the computational
resources required to analyse large datasets. For comprehen-
sive descriptions of different clustering methods and their
applications refer to (Hennig et al., 2015; Jain et al., 1999).
In general, clustering is the problem of partitioning a set
of items so that, in the output partition, similar items are
grouped together and dissimilar items are separated. When
the items are represented as vectors that correspond to fre-
quency counts or probability distributions many clustering
algorithms rely on so called impurity measures (e.g., en-
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tropy) that estimate the dissimilarity of a group of items
(see, e.g., (Dhillon et al., 2003) and references therein) In
a simple example of this setting a company may want to
group users according to their taste for different genres of
movies. Each user u is represented by a vector, where the
value of the ith component counts the number of times u
watched movies from genre . To evaluate the dissimilarity
of a group of users we calculate the impurity of the sum of
their associated vectors and then we select the partition for
which the sum of the dissimilarities of its groups is mini-
mum. The design of clustering methods based on impurity
measures is the central theme of this paper.

Problem Description. An impurity measure [ : v € RI —
I(v) € R* is a function that assigns to a vector v a non-
negative value I(v) so that the more homogeneous v, with
respect to the values of its coordinates, the larger its impurity.
Well-known examples of impurity measures are the Entropy
impurity (aka Information Gain in the context of random
forests) and the Gini impurity (Breiman et al., 1984):
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We are given a collection of n many g-dimensional vectors
V' with non-negative values and we are also given an impu-
rity measure /. The goal is to find a partition P of V into k
disjoint groups of vectors V7, ..., V) so as to minimize the
sum of the impurities of the groups in P, i.e.,

J(P)zzk_:l< > v). (1)

m=1 veVn,

We refer to this problem as the PARTITION WITH MINIMUM
WEIGHTED IMPURITY PROBLEM (PMWIP). While we
present results for I;,; our main focus is on the Entropy
impurity Ig,:. We use PMWIPg,; (PMWIPg;,,;) to refer
to PMWIP with impurity measure gyt (Igini)-

Motivations. Clustering based on impurity measures is
used in a number of relevant application as: (i) partition
the values of attributes during the branching phase in the
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construction of random forest/decision trees (Breiman et al.,
1984; Burshtein et al., 1992; Chou, 1991; Coppersmith et al.,
1999; Laber et al., 2018). (ii) clustering of words based on
their distribution over a text collection for improving clas-
sification tasks (Baker & McCallum, 1998; Dhillon et al.,
2003) and (iii) quantization of memoryless channels/design
of polar codes (Tal & Vardy, 2013; Kurkoski & Yagi, 2014;
Kartowsky & Tal, 2017; Pereg & Tal, 2017; Nazer et al.,
2017). Although these papers present their clustering opti-
mization criterion in terms of different information theoretic
concepts, e.g., mutual information, information gain, KL-
divergence, we note that all of them can be rephrased in
terms of our objective function, the entropy impurity mea-
sure. These equivalences are discussed in (Chou, 1991).

Despite of its wide use in relevant applications and entropy
being, arguably, the most important measure in Informa-
tion Theory as well as relevant in Machine Learning, the
current understanding of PMWIP from the perspective of
algorithms/complexity is very limited as we detail further.
This contrasts with what is known for clustering in metric
spaces where the gap between the ratios achieved by the
best known algorithms and the largest known inapproxima-
bility factors, assuming P # N P, are somehow tight (see
(Awasthi et al., 2015) and references therein). Our study
contributes to change this scenario.

Our Results. First we present a simple linear
time algorithm that simultaneously guarantees (i) an
O(log ) ¢y |Iv]l1) approximation for PMWIP gy,; (ii) an
O(logn + log g) approximation for the case where all vec-
tors in V" have the same ¢ norm and (iii) a 3-approximation
for the PMWIPg;,,;. The last is tight in the sense that one
cannot obtain a PTAS for PMWIP;,,;, unless P=NP, due
to its connection with the k-means problem (Awasthi et al.,
2015; Laber & Murtinho, 2019. To appear).

Then, we present a second algorithm that provides an
O(log?(min{k, g}))-approximation for PMWIPz,, in
polynomial time. Our algorithm is the first approximation
algorithm for clustering based on entropy minimization,
among those that do not rely on assumptions over the in-
put data, which achieves an approximation that does not
depends on n. We also explore a relation between vertex
covers and star decompositions in cubic graphs to prove
that PMWIPg,,; is APX-Hard even for the case where all
vectors have the same ¢;-norm. This result solves a prob-
lem that remained open in previous work (Chaudhuri &
McGregor, 2008; Ackermann et al., 2011).

In order to assess the potential of our theoretical
tools/findings for practical purposes we developed a new
clustering method, on top of them, and compared it with
D1vISIVE CLUSTERING (Dhillon et al., 2003), an adap-
tation of k-means that uses Kullback-Leibler divergence
(KL-divergence) instead of squared Euclidean distance. We

observe in our experiments, over two datasets, that the new
method obtains partitions with impurity close to that ob-
tained by DIVISIVE CLUSTERING. The advantage of our
method is that it is much faster, especially when the number
of clusters is large, since it runs in O(nlogn + ng) time
while D1vISIVE CLUSTERING has ©(ngk) complexity per
iteration.

Techniques. In terms of algorithmic techniques, when
g > k, the first step of both algorithms proposed here is to
employ an extension of the approach introduced in (Laber
et al., 2018) that allows to reduce the dimensionality of the
vectors in V' from g to k with a controllable additive loss in
the approximation ratio. In (Laber et al., 2018), where the
case k = 2 is studied, after the reduction step, an optimal
clustering algorithm is used. However, for arbitrary k, the
focus of our work, the same strategy cannot be applied since
the problem is NP-Complete. Thus, it is crucial to devise
novel procedures to handle the case where g < k.

The procedure employed by the first algorithm is quite sim-
ple: it assigns vectors to groups according to the domi-
nant coordinate, that is, one with the largest value. The
procedure of the second algorithm is significantly more
involved, it relies on the combination of the following re-
sults: (i) the existence of an optimal algorithm for g = 2
(Kurkoski & Yagi, 2014);(ii) the existence of a mapping
X :RI — R2 such that for a set of vectors B which is pure,
i.e., a set of vectors with the same dominant component,
IEnt(EveB V) = O(lOg g)IETLt<Zv€B X(V)) and (1]1) a
structural theorem that states that there exists a partition
whose impurity is at an O(log2 g) factor from the optimal
one and such that at most one of its groups is mixed, i.e.,
it is not pure. The search for a partition of this type with
low impurity can be achieved in pseudo-polynomial time
via Dynamic Programming. To obtain a polynomial time
algorithm we then employ a filtering technique similar to
that employed for obtaining a FPTAS for the subset sum
problem.

Related Work. We first discuss theoretical work on the
problem. Kurkoski and Yagi (Kurkoski & Yagi, 2014)
showed that PMWIPg,,; can be solved in polynomial time
when g = 2. The correctness of this algorithm relies on a
theorem, proved in (Breiman et al., 1984), which is gener-
alized for g > 2 and k groups in (Chou, 1991; Burshtein
etal., 1992; Coppersmith et al., 1999). These theorems state
that there exists an optimal solution that can be separated
by hyperplanes in RY9. These results imply the existence
of an O(n¥) optimal algorithm when & = 2. Recently, it
was proved that PMWIPg,,; is N P-Complete, even when
k = 2, and constant approximation algorithms were given
for a class of impurity measures that includes Entropy and
Gini for k£ = 2 (Laber et al., 2018). As noted before their
approach cannot be directly employed to handle the case
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where k is arbitrary.

PMWIPg,,; has recently attracted large interest in the infor-
mation theory community in the context of efficient quan-
tizer design, and also motivated by the construction of polar
codes (Tal & Vardy, 2013; Kurkoski & Yagi, 2014; Kar-
towsky & Tal, 2017; Pereg & Tal, 2017; Nazer et al., 2017)
In our terminology, the focus of this series of work is prov-
ing bounds on the increase of impurity when we reduce the
number of clusters from n to k.

PMWIPg,,; is a generalization of MTC g (Chaudhuri
& McGregor, 2008), the problem of clustering a set of n
probability distributions into k& groups minimizing the total
Kullback-Leibler (KL) divergence from the distributions to
the centroids of their assigned groups. MTC g 1, corresponds
to the particular case of PMWIPg,,; where each vector
in V has the same ¢; norm. While the optimal solutions
of PMWIPg,,; and MTC g, match, the problems differ
in terms of approximation since the objective function for
MTC g, has an additional constant term — >\, Ipn:(V)
so that an a-approximation for MTC g, problem implies
an o-approximation for PMWIPg,,;, while the converse is
not necessarily true.

In (Chaudhuri & McGregor, 2008) an O(log n) approxima-
tion for MTC, is given. Some (1 + €)-approximation
algorithms were proposed for a constrained version of
MTC g, where every element of every probability distri-
bution lies in the interval [A, v] (Ackermann et al., 2008;
Ackermann & Blomer, 2009; Ackermann et al., 2010; Lu-
cic et al., 2016). The algorithm from (Ackermann et al.,
2008; 2010) runs in O(n20(mk/elog(mk/€))) time, where m
is a constant that depends on € and A. In (Ackermann &
Blomer, 2009) the running time is improved to O(ngk +
g20(k/€log(k/€)) 10672 (p)) via the use of weak coresets.
Recently, using strong coresets, O(ngk + 2P°WW(9%/) time
is obtained (Lucic et al., 2016). We shall note that these
algorithms provide guarantees for y-similar Bregman diver-
gences, a class of metrics that includes domain constrained
K L divergence. By using similar assumptions on the com-
ponents of the input probability distributions, Jegelka et. al.
(Jegelka et al., 2008) show that Lloyds k-means algorithm—
which also has an exponential time worst case complex-
ity (Vattani, 2011)—obtains an O(log k) approximation for
MTCkr.

Among the algorithms mentioned for MTC g 1., the one that
allows a more direct comparison with ours is the method
proposed in (Chaudhuri & McGregor, 2008) since it runs
in polytime and does not rely on assumptions over the in-
put data. As discussed before an a-approximation for the
MTC g, problem implies c-approximation for the special
case of PMWIP g,,; with vectors of the same ¢; norm, so
the approximation measure used in (Chaudhuri & McGre-
gor, 2008) is more challenging. However, our results apply

to a more general problem and nonetheless we are able to
provide approximation guarantee depending on the mini-
mum between the logarithm of the number of clusters and
the dimension while the guarantee in (Chaudhuri & McGre-
gor, 2008) depends on the logarithm of the number of input
vectors.

In terms of computational complexity, Chaudhuri and Mc-
Gregor (Chaudhuri & McGregor, 2008) proved that a variant
of MTC g1, where the centroids must be chosen from the
vectors in V' is NP-Complete. Ackermann et. al. (Acker-
mann et al., 2011) proved that MTC g, is NP-Hard. Our
hardness result for PMWIPg,,; implies that clustering with
KL-Divergence if APX-Hard, improving the previous re-
sults.

Experimental work on clustering using impurity measures
have been performed by a number of authors (Baker & Mc-
Callum, 1998; Coppersmith et al., 1999; Slonim & Tishby,
1999; Dhillon et al., 2003; Li et al., 2004; Lucic et al., 2016).
A variant of Loyds k-means that uses Kullback-Leibler di-
vergence rather than squared Euclidean distance was pro-
posed independently in (Chou, 1991; Dhillon et al., 2003).
Experiments from (Dhillon et al., 2003) suggest that this
method, denoted by them as DIVISIVE CLUSTERING, is
superior to those proposed in (Baker & McCallum, 1998;
Slonim & Tishby, 1999). That is the reason why we decided
to compare our method with this specific one.

2. Preliminaries

We start defining some notations employed throughout the
paper. An instance of PMWIP is a triple (V, I, k), where V'
is a collection of non-null vectors in RY with non-negative
integer coordinates, k is an integer larger than 1 and 7 is a
impurity measure.

We assume that for each component ¢ = 1,..., g there
exists at least one vector v € V whose ith coordinate is non-
zero, i.e., the vector EVGV v has no zero coordinates—for
otherwise we could consider an instance of PMWIP with
the vectors lying in some dimension ¢’ < g¢. For a set of
vectors S, the impurity 7(S) of S'is given by 1(}_,c4V).
The impurity of a partition ? = (V1) ... V(¥)) of the set
Vis then I(P) = Y5 I(V@). We use opt(V, I, k) to
denote the minimum possible impurity for a k-partition of
V" and, whenever the context is clear, we simply talk about
instance V (instead of (V, I, k)) and of the impurity of an
optimal solution as opt(V') (instead of opt(V, I, k)). We
say that a partition (V1. .., V(*)) is optimal for input
(VL k)i 320, (VD) = opt(V, 1, k).

For an algorithm A and an instance (V, I, k), we denote by
A(V,I,k) and I(A(V,I,k)) the partition output by A on
instance (V, I, k) and its impurity, respectively. Whenever
it is clear from the context, we omit to specify the instance
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and write I(A) for I(A(V,I,k)).

We use bold face font to denote vectors, e.g., u, v, . ... For
a vector u we use u; to denote its ith component. Given two
vectors u = (U1, ...,uy) and v = (v1,...,v,) weuse u-v
to denote their inner product and uo v = (uqv1,. .., Ugvy)
to denote their component-wise (Hadamard) product. We
use 0 and 1 to denote the vectors in RY with all coordinates
equal to 0 and 1, respectively. We use [m] to denote the set
of the first m positive integers. For ¢ = 1, ..., g we denote
by e; the vector in RY with the ¢th coordinate equal to 1 and
all other coordinates equal to 0.

The impurity measures we will focus on, namely Gini and
Entropy, are special cases of the class of frequency-weighted
impurity measures based on concave functions (Copper-
smith et al., 1999). A fundamental property of such im-
purity measures is that they are superadditive as shown in
(Coppersmith et al., 1999). Moreover, Gini and Entropy
are members of a certain class of impurity measures C de-
fined in (Laber et al., 2018). Impurities from this class
satisfy a special subsystem property which will be used in
our analysis to relate the impurity of partitions for instances
of dimension g with that for instances of dimension k£ when
g>k.

Lemma 2.1 (Subsystem Property, (Laber et al., 2018)). Let
I be an impurity measure in C. Then, for every u € RY. and
pairwise orthogonal vectors AV, ..., d®) € {0,1}9, such
that Zle d® = 1, we have

k
I(u) < 1((u.d<1>, .. .,u~d(k))> +3 I(uod™). ()
=1

Moreover, for I = Ig,: we have that (2) holds with equality.

All the proofs can be found in the supplementary material.

3. Handling High-dimensional Vectors

In this section we present an approach to address instances
(V,1,k) with I € {Igini, Ipn:} and g > k. It consists of
two steps: finding a *good’ projection of RY into R* and
then solving PMWIP for the projected instance with g = k.
Thus, in the next sections we will be focusing on how to
build this projection and how to solve instances with g < k.
The material of this section is a generalization for arbitrary
k of the results introduced in (Laber et al., 2018) for & = 2.

Let D be the family of all sequences D of k pairwise or-
thogonal directions in {0,1}9, such that >, ,d = 1.
For each D = (d,...,.d®¥)) € D and any v € RY we
define the operation projp : RY — RX by projp(v) =
(v-d®, ... v-d®). We also naturally extend the operation
to sets of vectors .S, by defining projp(S) as the multiset
of vectors obtained by applying projp to each vector of .S.

Let A be an algorithm that on instance (V,I,k)

chooses a sequence of vectors D € D and
returns a partition (V) ... V() such that
(projp(VW), ... .projp(V®)) is a ’good’ parti-

tion for the k-dimensional instance (projp(V),I,k). In
this section we quantify the relationship between the ap-
proximation attained by (projp(V)), ... projp(V¥))
for (projp(V), I, k) and the corresponding approximation
attained by (V1) ... V) for instance (V, I, k). In the
rest of the section, we assume [ and k fixed and we omit to
specify them.

Letu = ) .y Vvand ul® = > vey V. From the sub-
system property and the superadditivity of I we have the
following upper bound on the impurity of the partition re-
turned by A on instance (V, I, k).

k
1A <31 ((u@ A, a®. d(k)))+z I(uod).
=1

deD
3)

Let D be an arbitrary sequence in D. We have the following
lower bounds on opt(V):

> I(uod))}

d’eD’
“)

The proof of the first bound in max is obtained using the
fact that the impurities /g, and I;,; are sums of subaddi-
tive functions. To prove the second bound in max we first
use the fact that opt(V') can be lower bounded by opt(V”)
where V' is an instance with nk vectors obtained by cre-
ating k vectors viey,...vigei for each v € V. Then, we
use the hyperplane separation theorem proved in (Burshtein
et al., 1992; Coppersmith et al., 1999) to show that opt(V")
corresponds to a partition of the coordinates of u. The re-
sult follows because the second argument of max in lower
bound (4) considers all partitions of coordinates of u.

opt(V) > max{opt(projp(V)), g}é%

Putting together (3) and (4) we have

Lemma 3.1. Fix an instance (V, I, k) with g > k and also
a sequence D € D. Let A be an algorithm that outputs
partition P = (VU ... . V) for instance (V, I, k) and
let projp(P) = (projp(VW), ... projp(V¥) be the
partition corresponding to P for the set projp (V). It holds
that

I(A) _ ST ((® - a®, o u® . d®)) .
opt(V) — opt(projp(V))
ZdeD I(uod) )
minpep Zd’ED I(u o d')
Note that the first ratio in the last expression
is the approximation attained by the partition
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projp(VD), ... projp(V*)) on the instance projp (V).
Thus, the above inequality says that we can obtain a good
approximation for instance (V') of PMWIP by properly
choosing a set D of k orthogonal directions in {0, 1}9, and
also—given the choice of D—a good approximation for the
instance (projp(V)) of PMWIP.

4. The Dominance Algorithm

For a vector v we say that 7 is the dominant component for
v if v; > v; for each j # i. In such a case we also say that
v is ¢-dominant. For a set of vectors U we say that ¢ is the
dominant component in U if 7 is the dominant component

foru=73 . v.
Given an instance (V,I,k) letu = >, v and let us

assume that, up to reordering of the components, it holds
that u; < wu;—1,fori =2,...,g.

Let AP°™ be the algorithm that proceeds according to the
following cases:

i g > k. AP°™ assigns each vector v = (vy,...,vy) €
V to group ¢ where ¢ is the dominant component of
g
vector v/ = (1, ..., Vg1, )7, V))

ii g < k. AP°™ assigns each vector v € V to group i
where ¢ is the dominant component of v.

The only difference between cases (i) and (ii) is the reduc-
tion of dimensionality employed in the former to aggregate
the smallest components with respect to u.

Let D = {dW,...,d®} € D where d) = e, fori =
1,...,k—landd® =1-35"!d®. We notice that that
vector v’ in case (i) is exactly projp(v). Thus, if g > k,
we can rewrite (5) as

I(AP™ (V)

o L(AP™(projp (V)
opt(V, 1, k)

~ opt(projp(V), 1, k)
Yacpl(uod)
minpep Y gep (uod’)

+

(6)

We can prove that the first term of the righthand side of
(6) is upper bounded by O(log (>, v [[V[[1)). In fact, by
using the superaditivity of I we just need to bound, for each
group V) in the partition obtained by AP°™, the ratio
Ient(Xvev® V)/ 2ove(iy LEnt(v). This can be achieved
by using the following bounds on I(v) that depend on the
largest component of v

vl

. <

T IV V)
olv]

Tia() < 2(1vls — vl ().

(7

VIl = [1v]1o0) log (

We can also prove that the bound on the second ratio in (6) is
O(log k). The proof makes use of the fact that the sequence
D’ € D that minimizes the denominator in the rightmost
ratio of (6) is the one that induces the most balanced partition
of the coordinates of u. Therefore, we have

Theorem 4.1. AP°™ is an O(log(},cy IV[1)))-
approximation algorithm for PMWIP g,,.

Remark 4.1. Let s be a large integer. The instance
{(s,0),(2,1),(0,1)} and k = 2 shows that the above anal-
ysis is tight up to constant factors. In fact, the impurity of
AP°™ s larger than log s while the impurity of the partition
that leaves (s,0) alone is 4.

In the full paper we also show that AP°™ guarantees
O(logn + logg)-approximation for the restriction of
PMWIPg,,; where all vectors in V' have the same ¢ -norm.
Moreover, by reasoning along the same lines we obtain

Theorem 4.2. Algorithm AP°™ is a linear time 3-
approximation for general instances (V, Igini, k) and a
2-approximation algorithm for restricted instances where
g <k.

5. Better Approximation for PMWIP,,,

In this section we only focus on the entropy impurity mea-
sure. We will use I for Ig,,; and PMWIP for PMWIPg,,;.

Under the assumption g < k, we will show the exis-
tence of an O(log2 g)-approximation polynomial time al-
gorithm for PMWIP. Note that due to the approach of
Section 3 (see, in particular equation (5)), this implies
an O(log?(min{g, k}))-approximation algorithm for any
g and k. We will assume here that vectors in V' have non-
negative integer coordinates.

Abusing notation, for a set of vectors B we will use || B||;
todenote || .5 V|1 and || B|o to denote || 3 5 V]|oo-
Recall that a vector v is called ¢-dominant if ¢ is the largest
component in v, i.e., v; = ||v]|c. Accordingly, we say
that a set of vectors B (often, in this section, referred to
as a bucket) is ¢-dominant if ¢ is the largest component in
the bucket, i.e., || Bllow = > cpvi- We use dom(v) and
dom(DB), respectively, to denote the index of the dominant
component of vectors v and Zve BV-

We will say that a bucket B is ¢-pure if each vector in B
is .-dominant. A bucket which is not i-pure for any ¢ will
be called a mixed bucket. Following the bound on the im-
purity of a vector v given by inequality (7), we define the
ratio of a vector v as ratio(v) = ||[v|1/(||[v]l1 = [|V|leo)
and, accordingly, the ratio of bucket B as ratio(B) =
IBll1/(1Bllx = 1 Bllso)-
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5.1. Our Key Algorithm Design Tools.

The example of Remark 4.1, apart from establishing the
tightness of APom for Iy, also shows that we cannot
obtain a very good partition by just considering those con-
taining only pure buckets. However, perhaps surprisingly,
the situation is different if we allow at most one mixed
bucket. This is formalized in Theorem 5.1, our first and
main tool to obtain good approximate solutions for instances
of PMWIP. This structural theorem will be used by our al-
gorithms to restrict the space where a partition with low
impurity is searched. Its proof is based on a reasonably
involved exchange argument: we start with an optimal par-
tition and then show how to exchange vectors among its
buckets so that a new partition P’ is obtained, that satisfies
the desired properties.

Theorem 5.1. There exists a partition P’ with the follow-
ing properties: (i) it has at most one mixed bucket; (ii) if
v is an i-dominant vector in the mixed bucket and v' is
an i-dominant vector of a i-pure bucket, then ratio(v) <
ratio(v'); (iii) the impurity of P is at an O(log? g) factor
from the minimum possible impurity.

Our second tool is a transformation y2¢ that maps vectors
in RY into vectors in R2. The nice property of this transfor-
mation is that it preserves the impurity of a set B of i-pure
vectors up to a log g factor times a lower bound on I(B) as
formalized by Proposition 5.2. Thus, in the light of The-
orem 5.1, instead of searching for low-impurity partitions
of g-dimensional vectors with at least k-1 pure buckets, we
can search for those in a 2-dimensional space.

The transformation x2¢ is defined as follows x?¢(v) =
(I[Vllso: [Vl = [[¥lloe) if [Vlloo = lv]l1 and x> (v) =
(Iv]l1/2, ||[v]|1/2), otherwise.

Let I5(B) denote the 2-impurity of the set B, that is defined
as the impurity of the set of 2-dimensional vectors obtained
by applying x2¢ to each vector in B. We have that

Proposition 5.2. Fix i € [g] and let B be an i-pure
bucket. It holds that (1/2)I5(B) < I(B) < 2I3(B) +

O(logg) >oyep I(v)-

Finally, our last tool is the following result from (Kurkoski &
Yagi, 2014), here stated following our notation, that shows
that PMWIP can be optimally solved when g = 2.

Theorem 5.3 ((Kurkoski & Yagi, 2014)). Let V' be a set of
2-dimensional vectors and let k be an integer larger than 1.
There exists a polynomial time algorithm to build a partition
of V into k buckets with optimal impurity.

Motivated by the previous results we define A%C as the
algorithm that takes as input a set of vectors B and an
integer b and produces a partition of B into b buckets by
executing the following steps: (i) every vector v € B is

mapped to x> (v); (ii) the algorithm given by Theorem 5.3
is applied over the transformed set of vectors to distribute
them into b buckets; (iii) the partition of B corresponding
to the partition produced in step (ii) is returned.

By Proposition 5.2 for an i-pure set of vectors, B, the impu-
rity of the partition P constructed by the algorithm .4%¢ on
input (B, b) is at most an O(log g) factor from the minimum
possible impurity for a partition of set B into b buckets.

Algorithm A%C is employed as a subroutine of the algo-
rithms presented in the next section.

5.2. The Approximation Algorithm

We first present a pseudo-polynomial time algorithm that
provides an O(log? g) approximation and then we show
how to convert it into a polynomial time algorithm with the
same approximation. The key idea is to look among the
partitions that satisfy the properties of Theorem 5.1 for one
that (roughly speaking) minimizes the impurity of its mixed
bucket plus the sum of the 2-impurity of its pure buckets.

A pseudo-polytime algorithm. Given an instance of the
PMWIP, let S; = {v|dom(v) = j' for some j' < j} and
C = > ey IVl For fixed w,i € [g],£ € [[V]],c €
[C],b € [L] let us denote by Q*(w, ¢, S;, b, ¢) a partition of
S; into b buckets that satisfies the following properties:

a it has one bucket, denoted by B Q*, that contains ex-
actly ¢ vectors that are w-dominant;

b it contains at most one mixed bucket. This mixed

bucket, if it exists, is the bucket BL".

¢ For every i, if v and v’ are, respectively, i-dominant
vectors in BC" and V \ B<'; then ratio(v) <
ratio(v');

d the total sum of all but the w-component of vectors in
B isequalto ¢, ie., c = | BL |1 — (X ,cpor Vu);

e For the buckets in Q*(w, £, S;,b,¢) \ B2, the sum of
the 2-impurities is minimum among the partitions for
S; into b buckets that satisfy the previous items.

The algorithm builds partitions Q*(w, ¢, Sy, k, ¢) for all the
different possible combinations of w, ¢ and ¢ and, then,
returns the one with minimum impurity.

This approach is motivated by the following: Let P* be
a partition that contains one mixed bucket, denoted by
B, and satisfies the properties of Theorem 5.1. For
such a partition, let w* = dom(B;},,,), {* be the number
of w*-dominant vectors in B}, and ¢* = || B}, —

> veps . Vw+ (the sum of all but the w* component of

3 *
the vectors in B, .

) Then, it is possible to prove that for
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the impurity of a partition Q* = Q*(w*, £*,5,, k, c*) the
same upper bound O(log® g)OPT(V, I) holds as for the
impurity of P* (yielding Theorem 5.4). The key observa-
tions are: (i) the impurity of the bucket BS™ of Q* sat-
isfies the same upper bound as the the impurity of B} .
since |[B<"|); is at most twice | B%,;,|l; and | B2 ||} —
Sveper tur = 1Bl = Syeps v = % i) the
sum of the 2-impurity of the buckets in Q* \ B<" is at
most the sum of the 2-impurity of the buckets P* \ B, . .
Hence, by Proposition 5.2, up to constant factors, the sum
of the impurity of the buckets in Q* \ B<" is at most
the sum of the impurity of the buckets P* \ B? .. plus
O(logg) > ey I(v) = O(logg)OPT(V,I). Therefore,
by the assumption I(P*) = O(log® g)OPT(V, I) we get
the desired bound I(Q*) = O(log® )OPT(V, I).

xT

Now we show how to build the partitions Q*(w, ¢, S;, b, ¢).
To simplify let us also assume, w.l.o.g., that w = 1. Let
Q* = 9Q*(1,4,5;,b, c) be a partition that satisfies properties
(a)-(e) above and let I5“"°(Q*) = I,(Q*\ B2") be the total
2-impurity of the buckets of @ which are pure by definition.
Note that Q* is the partition with minimum 75“"“() among
those that satisfy (a)-(d).

Let V; = {v|dom(v) = j} and V;(j) be the set of
the 7 vectors of V; of smallest ratio. In addition, let
ci(7) = [IVi()llr = Xvev (s v1. ie., the total sum of all
components but the first of the vectors in V(7).

The 2-impurity of the pure buckets of Q*(w, ¢, S;, b, ¢), by
property (e), satisfies the following recurrence when 7 > 1.
Iémre(g*(]-v ¢,Si,b, C)) = min {12(A2C(V; \ Vx])v b/))

0<5<|V;l
0<b’ <b

+I5(Q (1,4, 5-1,b =V e — ci(5)))}
®)

In fact, for each ¢ and for some j the first j many i-dominant
vectors (of smallest ratio) are in B and the remaining ¢-
dominant vectors are optimally partitioned in some b’ < b
many ¢-pure buckets, where the optimality is with respect
to their 2-impurity, which is given by algorithm A2C .

In the basis case, where ¢ = 1, we have
I5"(Q*(1,4,81,b,¢)) = I(A? (V1 \ Vi(£),b — 1)), if
c=cy(f),and IY""°(Q*(1,4, S1,b,c)) = oo, otherwise.

For a fixed w and ¢, our pseudo-polynomial algorithm em-
ploys a dynamic programming approach based on equation
(8). It uses a list U; to store the partitions Q*(w, ¢, S;, b, ¢)
such that 7(Q*(w, ¢, S;, b, ¢)) # oo. It first constructs the
list U; using the basis case and then U;;; from U; using
Equation (8). The partition with minimum impurity of type
Q*(w, £, Sk, L, ¢) is returned.

It is not hard to argue that the algorithm runs in polynomial
time onn = |[V|and C' = > .y [[v[[i. Then, from the

approach of Section 3 (equation (5)) we have the following.

Theorem 5.4. There exists a pseudo-polynomial time
O(log?(min{g, k}))-approximation algorithm for PMWIP.

A polynomial time algorithm. The key idea to obtain a
polytime algorithm is to employ a variation of the pseudo-
polytime algorithm in which the number of partitions in the
list U; is controlled so that we can guarantee the existence
of a polynomial number of them. For that, the interval
[0,> vcv [VIl1] is partitioned into 4% uniform subintervals
and just the partition with the smallest impurity, among
those that lie in the subinterval, is kept. The subinterval of a
partition Q(w, ¢, S;, b, ¢) is defined by its fifth parameter c.

The approximation relies on the fact that for every partition
‘P built by the pseudo-polytime algorithm there exists a
partition built by the poly-time algorithm that has impurity
similar to that of P. The proof has the same flavor of the
one employed to show that the SUBSET SUM problem
admits a FPTAS. As a result we have:

Theorem 5.5. There is a polynomial time
O(log®(min{g, k}))  approximation  algorithm  for
PMWIP.

6. Innaproximability of PMWIPj,,; and
MTCgk,,

We give the main ideas of our proof that PMWIPg,,; is
APX-Hard. Our strategy consists of reducing the c-gap
problem, associated with the minimum vertex cover in
cubic graphs, to a ¢’-gap problem for PMWIPg,;. A c-
gap problem for the former was established in (Chlebik &
Chlebikovd, 2006).

Let G = (V, E) be a cubic graph for which it is hard to
distinguish whether the minimum vertex cover has size at
most k or larger than ck, where c is a constant larger than 1.
‘We build a reduced instance R for PMWIPg,,; as follows:
we create a binary vector v, of dimension |V|, for each edge
e =1j € E, in which the only components with value 1 are
i and j. We note that every vector in the reduced instance
has ¢; norm 2. Moreover, the number of clusters in R is k.

We prove that: (a) if G has a vertex cover of size k then R
has a partition with impurity at most k' = (| E| — 2k)(6 +
3log3) + (3k — | E|)6 and (b) if the minimum vertex cover
in G has size at least ck then every partition of size k in R
has impurity at least ¢k’ for some constant ¢/ > 1

The correctness of item (a) relies on the following structural
property of cubic graphs: if a cubic graph G = (V, E) has
a minimal vertex cover with k vertexes then it is possible
to decompose G into k stars such that each of them has
either 2 or 3 edges. The value of &/, given in the previous
paragraph, is exactly the impurity of the clustering induced
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by this set of & stars. The correctness of item (b) is based on
the following facts: (i) k¥’ is a lower bound on the impurity
of any k-clustering for any set of |E| binary vectors such
that all of them have ¢; norm 2 and (ii) if the minimum
vertex cover of G has size at least k - ¢ then any k-clustering
of 'R must have a non negligible number of clusters that do
not correspond to stars with 2 or 3 edges so that its impurity
will be at least k¢’

The same arguments can also be used to show the inapprox-
imability of instances where all vectors have /; norm equal
to any constant value, and in particular 1, i.e., the case where
PMWIPg,,; corresponds to MTC 1. Then, we have

Theorem 6.1. The PMWIP g,,; is APX-Hard even for the
case where all vector have the same {1 norm. Hence,
MTCg, is APX-Hard, too.

7. New Fast Method for Information
Clustering

Although the focus of our research is mainly theoretical, we
also designed RATIO-GREEDY, a fast and practical algo-
rithm that relies on the results developed so far.

The RATIO-GREEDY algorithm. If £ < g, RATIO-
GREEDY runs the AP°™, the dominance algorithm pre-
sented in Section 4. Thus, we focus on the case k > g.
Let V; be the set of i-dominant vectors and let L; be the list
obtained by sorting the vectors in V; according to their ratios
as defined in Section 5. For the following explanation it will
be convenient to think of L; as a list of adjacent clusters that
initially contains |V;| unitary clusters.

RATIO-GREEDY predefines the number of clusters t;
that will be available for the i-dominant vectors so
that > 7 ¢, = k. It heuristically set ¢, =
kIpnt(Vi)/ 2251 LEne (V).

Then, for each ¢, RATIO-GREEDY greedily reduces the num-
ber of clusters in L; from |V;| to t; by iteratively selecting
two adjacent clusters in the current list and replacing them
with their union so that a list with one less cluster is obtained.
The pair of adjacent clusters that is selected to be merged,
at each iteration, is the one for which loss(+, -) is minimum,
where the loss(C, C") of two clusters C and C’ is given by
loss(C,C") = Ipnt(CUC") — Ignt(C) — Ignt(CY).

RATIO-GREEDY can be implemented to run in O(n logn +
ng) time, exploiting a binary heap to select the adjacent clus-
ters in L; whose merge incurs the minimum [oss. Note that
the impurity of the partition obtained by RATIO-GREEDY is
no worse than that obtained by A”°™ due to the superaddi-
tivity of /gy, thus it inherits its approximation guarantees.

Experiments. We compared RATIO-GREEDY with D1vI-
SIVE CLUSTERING (DC for short), an adaptation of the
k-means method proposed in (Dhillon et al., 2003) to solve
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Figure 1. Impurities (vertical axis) of the partitions obtained by
RATIO-GREEDY and DIVISIVE-CLUSTERING for different values
of k (horizontal axis).

PMWIPg,;. The key difference between them is that DC
employs KL-divergence rather than Euclidean squared dis-
tance. When k > g, the initialization of DC resembles
APem gince it consists of splitting the vectors in V; among
k/g clusters. When k < g we initialize DC using AP°™,

We tested these methods on clustering 51.480 words from
the 20NEWS corpus and 170.946 words from RCV1 corpus,
according to their distributions w.r.t. 20 and 103 different
classes respectively. The distribution vectors associated with
the words are built according to the methodology employed
in (Dhillon et al., 2003) to address text classification tasks.
Figure 1 shows the impurities of the partitions obtained for
different values of k for both datasets. DC-INIT, DC-ITER1
and DC-ALL correspond, respectively, to different points in
the execution of DC: right after its initialization, after its first
iteration and at the end. For both datasets, we observe that
RATIO-GREEDY obtains partitions clearly better than that
of DC-INIT. With respect to DC-ITER1, it produces similar
results for 20NEWS while for RCV1 it is significantly better
when the number of clusters gets larger. The key advantage
of RATIO-GREEDY, however, is its execution time. As an
example for RCV1, with k£ = 2000, it is 55 times faster than
a single iteration of DC. Moreover, after 5 iterations of DC,
RATIO-GREEDY still had a partition with lower impurity.

For additional details of the experiments see the supplemen-
tary material. Code and datasets are available in (Murtinho,
2019)
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