
Sensitivity Analysis of Linear Structural Causal Models

A. Proof of propositions 1 and 2
The propositions follow directly from the definitions, but
we state the proofs here for completeness. For proposition 1,
first note ES is a functional of the covariance matrix ⌃ and it
is by definition identifiable. Thus, if Q is identifiable, we can
also uniquely compute Q from ⌃ and, since B = ES �Q,
and each of its components are identifiable, B can also
be uniquely computed from ⌃ and it is thus identifiable.
Conversely, if B is identifiable, just write Q = ES + B,
which means Q can be uniquely determined from ⌃ and it
is also identifiable.

Proposition 2 follows the same argument. First note that if
Q is ✓-identifiable then we can write B(✓) = ES � Q(✓)
which is uniquely determined by ⌃ and ✓, giving us a bias
function parameterized in terms of ✓. Conversely, if there
exists a function B(✓) which, by definition, gives us a
unique bias in terms of ✓ (and the data ⌃), we can write
Q(✓) = ES +B(✓). This implies Q can be uniquely deter-
mined from ⌃ and ✓ and it is thus ✓-identifiable.

B. Proof and pseudocode for Theorem 1
Theorem 1 (PUSHFORWARD). Given a linear SCM with
graph G, covariance matrix ⌃, a set of known di-
rected edges D, and known bidirected edge ✏xy, let the
pair hG0,⌃0i be constructed from G and ⌃ as follows:

1. x$ y is removed and �0
xy

= �xy � ✏xy;

2. 8c 2 Ch(x), c 6= y, the bidirected edges c $ y are
added if they do not exist, and ✏0

cy
= ✏cy + �cy✏xy;

3. 8z 2 De(y), z 6= x, if there is an edge on any directed
path from y to z that is not in D, then z is removed
from G0. For the remaining z, �0

xz
= �xz � ✏xy�yz ,

where �yz is the sum of all directed paths from y to z;

4. All other parameters and covariances remain the same.

Then if �ab is identifiable in G0 it is
(✏xy,D)-identifiable in G.

Before moving forward, we use a couple definitions from the
literature, which make reasoning about paths in the graph
easier:

Definition 3. (Foygel et al., 2012) A path ⇡ from v to w is
a trek if it has no colliding arrowheads, that is, ⇡ is of the
form:

v ... $! ...! w

v ... k ! ...! w

v ... w

v ! ...! w

Algorithm 2 PF - PUSHFORWARD

1: function PF(G,⌃,D, ✏xy , x)
2: initialize hG0,⌃0i hG,⌃i
3: update ✏0

xy
 0 in G0 and �0

xy
 �0

xy
� ✏xy in ⌃0

4: for each c 2 Ch(x) do
5: update ✏0

cy
 ✏0

cy
+ �xc✏xy in G0

6: end for
7: for each z 2 De(y) do
8: if Edges(�yz) ✓ D then
9: update �0

xz
= �xz � ✏xy�yz

10: else
11: remove z from G0

12: end if
13: end for
14: return hG0,⌃0i
15: end function

Definition 4. (Foygel et al., 2012) A trek monomial ⇡(⇤, E)
for trek ⇡ is defined as the product of the structural parame-
ters along the trek, multiplied by the trek’s top error term
covariance.

In particular, if ⇡ does not contain a bidirected edge9,

⇡(⇤, E) = ✏2
k

Y

x!y2⇡

�xy

where k is the node at the “top" of the trek (it has no incom-
ing edges). If the trek contains bidirected edge ✏ab, then

⇡(⇤, E) = ✏ab
Y

x!y2⇡

�xy

Lemma 1. (Foygel et al., 2012) The covariance between v
and w, �vw can be written as the sum of the trek monomials
of all treks between v and w (Tvw):

�vw =
X

⇡2Tvw

⇡(⇤, E)

At its core, identifiability of an edge � in linear Gaussian
SCM can be reduced to the problem of finding whether there
exists a unique solution for � in terms of covariances in the
system of equations defined by the rules of path analysis
(Foygel et al., 2012), and knowledge of existing directed
and bidirected effects.

With this in mind, we can prove PUSHFORWARD.

Proof. Specified in the theorem is a covariance matrix ⌃, a
graph of the structural equations G, a set of known directed
edges D, and known bidirected edge ✏xy .

9Note also that we can have a trek from v to v, including a trek
that takes no edges at all, which would be simply ✏2v

Sensitivity Analysis of Linear Structural Causal Models

The system of equations constraining values of structural
parameters is

�vw =
X

⇡2Tvw

⇡(⇤, E) 8v, w 2 G

We first look at �xy , and define a new known quantity �0
xy

:

�xy = ✏xy +
X

⇡2Txy\{✏xy}

⇡(⇤, E)

�0
xy

= �xy � ✏xy =
X

⇡2Txy\{✏xy}

⇡(⇤, E)

We also look at all descendants of y, (z 2 Z) where the
directed paths from y to z (�yz) are made entirely of known
edges (Edges(�yz) ✓ D). We define

�ab =
1

✏2
a

X

⇡2T !
xy

⇡(⇤, E)

where T !
xy

represents the set of treks taking only directed
edges from a to b: a! ...! b.

For each such descendant of y, z, we define the quantity
�0
xz

�xz = �yz✏xy +
X

⇡2Txy\T !
✏xyyz

⇡(⇤, E)

�0
xz

= �xz � �yz✏xy =
X

⇡2Txy\T !
✏xyyz

⇡(⇤, E)

Here, we used T !
✏xyyz

to represent the treks starting from
✏xy , and continuing from y to x (half-treks from x to z using
✏xy).

Finally, we define �0
vw

= �vw for all other covariances
between nodes a and b where both a and b are either non-
descendants of y, or have their paths to y known.

This gives us a new system of equations in the original vari-
ables. All that remains to be shown is that an identified
quantity �0

ab
in G0 which contains a “pushed-forward” bidi-

rected edge guarantees that the above-generated system of
equations can be solved for the corresponding variable �ab.

As per the definition of G0, it is identical to G, except:

1. the bidirected edge x$ y is removed

2. 8c 2 Ch(x), the edges c$ y are added.

3. Descendants of y, z, where all edges of �yz are not
known are removed

This new model G0, with parameters ⇤0 and E 0 has system
of equations:

�
00

vw
=

X

⇡2Tvw

⇡(⇤0, E 0) 8v, w 2 G0

We compare this new system of equations to the modified
equations of G.

• For all non-descendants of x or y, all covariance equa-
tions are identical (Both graphs have the same treks
from non-descendants of x and y to all other nodes, and
these covariances were not modified in the augmented
equations).

• For all descendants of x, the modified equations for
G have ✏xy�xc wherever G0 has ✏0

cy
when G does not

have bidirected edge c$ y. If G already includes an
✏cy, then it has (✏xy�xc + ✏cy) for each ✏0

cy
. This can

be seen by comparing the treks available in the two
models. We can create a map of treks in G to treks in
G0. Treks not crossing the added/removed bidirected
edges are identical. All that remains are treks crossing
✏xy in G, and ✏0

cy
in G0. Suppose we have a trek from

a to b in G0 a ... c $ y ! ... ! b, crossing
the bidirected edge ✏0

cy
. The corresponding trek in G

across ✏cy, if it exists, and the trek a ... c !
x$ y ! ...! b both map to it. Since we have a map
from treks in G to all treks in G0, which differs only in
the specified spot, the equations are likewise identical
save for the mapping difference.

• The covariances between x and the descendants of
y and y have likewise identical equations. This is
because the removed treks in the modified equations
are the only possibilities including ✏xy , so all variables
behave as if the bidirected edge did not exist. This can
also be seen by recognizing that setting ✏xy = 0 would
result in the same equation as removing all instances of
the variable. Since the only treks from x which include
✏xy start by crossing x$ y, and continue on a directed
path, removing all directed paths from y multiplied by
✏xy achieves the desired effect.

Finally, we notice that any algorithm for identifiability in
this new model G0 certifies that the system of equations can
be uniquely solved for a given parameter, and the answer
can be written in terms of ⌃00.

We argue that the same parameter can be solved using the
augmented equations of the original model G, replacing
⌃00 with ⌃0 in the estimand returned from the identifiability
algorithm for G0. This would be directly true if the modified
equations for G were really identical to the equations for
G0. However, the equations of G differ in ✏xy and ✏xc as

Sensitivity Analysis of Linear Structural Causal Models

mentioned above. We show that this difference does not
affect the solutions for any of the directed or bidirected
edges except ✏xc.

Looking at the form of the structural equations, we get a
sum of treks, which are themselves a product of paths. We
exploit the mapping created above between treks in G to
treks in G0 to get:

�00
wv

=
X

treks not passing ✏0
cy

+
X

treks passing ✏0
cy

Each trek can pass an ✏ at most once, at the top of the trek.
Looking at the treks of G0, we get:

X
treks passing ✏0

cy
= �0

cw
✏0
cy
�0
yv

+ �0
cv
✏0
cy
�0
yw

= (�0
cw

+ �0
cv
)✏0

cy
(�0

yv
+ �0

yw
)

The corresponding equation in G is:

X
treks passing ✏xy = (�cw+�cv)(✏xy�xc+✏cy)(�yv+�yw)

With the fact that the � are all identical in both G and G0 in
terms of equation structure, we get:

X
treks passing ✏0

cy
= (�cw + �cv)✏

0
cy
(�yv + �yw)

Our goal now is to replace the ✏xy�xc + ✏cy from the equa-
tion of G with a temporary variable ✏Tc, giving

X
treks passing ✏xy = �cw✏Tc�yv

With this new system of equations, the temporary variable
✏Tc corresponds to ✏0

cy
, and the two systems are identical in

their unknowns, making any solution in G0 a solution for
the modified G equations.

To achieve this, we need to show that the substitution is
valid. The argument we are making is that if we have a
system of equations:

K1 = x+ (x+ 5)

K2 = 3x

we can replace x+ 5 with y, giving:

K1 = x+ y

K2 = 3x

y = x+ 5

If the equations

K1 = x+ y

K2 = 3x

are sufficient for uniquely identifying the value of x, then
assuming consistency of the original equations, the same
solution for x is valid for the full system, including the third
equation.

This is exactly the situation we have for our trek equations.
We define ✏Tc = ✏xy�xc+✏cy , and if the system of equations
excluding the equation constraining ✏Tc has a solution for a
given parameter, the same solution will be valid for the full
system.

Lastly, we notice that ✏cy can be obtained from the solutions
to ✏Tc, ✏xy,�xc using the same equation.

This completes the proof.

C. Identification, sensitivity analysis and
Gröbner bases

Gröbner bases are a symbolic method of computer algebra
used to solve systems of polynomial equations. García-
Puente et al. (2010) have shown that the identification (ID)
problem in linear SCMs can be reduced to solving a system
of polynomial equations and how Gröbner bases provide a
complete solution.

In this section we will take a practical approach of showing
how to set up the ID problem so it can be solved with Gröb-
ner bases. We also show how to extend this to include sen-
sitivity parameters, solving the problem of ✓-identification.
Our approach is based on García-Puente et al. (2010). For a
basic understanding of Gröbner bases, please refer to Cox
et al. (1992).

Gröbner bases can be seen as an algorithm to do variable
elimination in complex polynomial equations. Let us illus-
trate the variable elimination approach in the simple instru-
mental variable graph:

x

z

y
b

a

✏xy

We can write the (normalized) covariance equations induced
by the graph as follows:

�xy = a+ ✏xy

�zy = b⇥ a

�zx = b

Given these equations, the goal is to solve for a in terms of
the covariances of ⌃ only. Normally, one would approach

Sensitivity Analysis of Linear Structural Causal Models

this directly, by simply eliminating one variable at a time.
For example, after eliminating b, we get:

�xy = a+ ✏xy

�zy = �zx ⇥ a

Next, we would eliminate ✏xy , by putting it in terms of a:

✏xy = �xy � a

Then, we have a final equation just in terms a and the ⌃.
This equation can be solved for a, and depending on how
many values of a satisfy the constraint, it give us our identi-
fication result (here, only a = �zy

�zx
is valid).

Gröbner bases perform an equivalent operation—they suc-
cessively eliminate variables from the system of equations.
In this situation, we want to eliminate ✏xy and b, leaving
only a and the covariances. In SAGE (The Sage Developers,
2018), this reduces to the following code:

R.<a,b,epsilon_xy,sigma_zx,sigma_zy,sigma_xy>
= PolynomialRing(QQ)

Ideal(
sigma_xy - (a+epsilon_xy),
sigma_zy - (b*a),
sigma_zx - (b)

).elimination_ideal([epsilon_xy,b]).groebner_basis()

If the result is a first degree polynomial in a, there is a single
solution.

The extension of this method to the ✓-identification prob-
lem entailed by sensitivity analysis is straightforward. As
sensitivity parameters are treated like known variables, we
simply do not eliminate them. In the above example, if we
were to treat ✏xy as a sensitivity parameter, our code would
be:

R.<a,b,epsilon_xy,sigma_zx,sigma_zy,sigma_xy>
= PolynomialRing(QQ)

Ideal(
sigma_xy - (a+epsilon_xy),
sigma_zy - (b*a),
sigma_zx - (b)

).elimination_ideal([b]).groebner_basis()

with an identical interpretation: if the resulting polynomials
in a, ⌃ and ✏xy are linear in a, we conclude that knowing
the givens is sufficient to identify a.

Unfortunately, despite the completeness of this approach,
Gröbner bases are doubly-exponential in the number of vari-
ables, and in this case each edge corresponds to a variable
(Bardet, 2002). This limits the practical solvable graph size
to 4 or 5 nodes (Foygel et al., 2012; García-Puente et al.,
2010). Our own experiments hit upon the same limitation,
with attempted computations on 5-node graphs sometimes
taking several days for identifying single edges, despite us-
ing an optimized representation of the equations (Foygel
et al., 2012).

D. Detailed description of computational
experiments

In this section, we provide a detailed description of our
computational experiments, including pseudocode and addi-
tional tests. Our computational experiments have two main
goals.

First, they aim to empirically verify the generality of our
constrained identification algorithm CID, by comparing our
results to the ground truth obtained via computer algebra.

Second, note that CID has three separate components:

1. The QID algorithm (Chen et al., 2017), which we use
both for the identification of directed edges, and for
incorporating constraints on directed edges that can be
used as sensitivity parameters;

2. The graphical manipulations performed by PUSHFOR-
WARD, which we use to incorporate constraints on
bidirected edges; and,

3. The order in which to perform the graphical manipula-
tion of PUSHFORWARD. In CID we chose to perform
a topological ordering as described in Algorithm 1.

Thus, our computational experiments also aim to disentangle
the contributions of each of those components to our results.

Solving all 3 and 4-Node sensitivity queries

Our computational experiments rely on the ability to find
ground-truth answers to the question of whether a target
coefficient �ab is ✓-identifiable in a given graph G (this is
defined to be a query). As explained in Section C of this
supplementary material, these ground truth answers can
be obtained with algebraic methods, more precisely using
Gröbner bases (García-Puente et al., 2010).

For 3-node models we have 50 connected graphs with 720
possible queries; for 4-node models, we have 3,745 con-
nected graphs and 1,059,156 possible queries. Note that,
for 5-node models, we have 1,016,317 connected graphs
and 11,615,669,904 possible queries. As mentioned in Sec-
tion C, ground-truth computations using computer algebra
can take hours (or sometimes days) for a single 5-node
graph, redering an exhaustive study of sensitivity queries in
5-node models impractical.

We have thus performed an exhaustive computation of the
ground truth answer of all possible queries in 3 and 4 node
models via computer algebra using SAGE (The Sage Devel-
opers, 2018). These results give us a list stating for every
graph G, every edge �ab, and all possible subsets of di-
rected and bidirected edges used as sensitivity parameters ✓,
whether �ab can be uniquely computed from ⌃ and ✓.

Sensitivity Analysis of Linear Structural Causal Models

Our main interest lies on those queries that can be identified
only when ✓ 6= ; (we call this a sensitivity query)—in
other words, we do not consider those edges that can be
identified from ⌃ alone, since in these cases the parameter
is identifiable and a sensitivity analysis would not be needed.
The ground truth numbers of all ✓-identifiable queries only
when ✓ 6= ; are 320 for 3-node models and 578,858 for
4-node models.

Our exhaustive computations also allow us to see how many
sensitivity queries can be solved using only subsets of di-
rected edges or only subsets of bidirected edges as sensitivity
parameters. The decomposition then becomes the follow-
ing. For 3-node models, there are 19 sensitivity queries
that can be solved using only subsets of directed edges as
sensitivity parameters, 109 using only subsets of bidirected
edges, and, as before, 320 total queries which are solvable
using an arbitrary combination of both. For 4-node mod-
els, these numbers increase to 15,740, 52,016 and 578,858
respectively. These numbers reveal that incorporating con-
straints on bidirected edges is an essential step for deriving
sensitivity curves.

Comparing QID and CID to ground-truth answers

Once we have obtained ground-truth answers to all queries
in 3 and 4-node models, we run both the QID as well as the
CID algorithm for each of those queries and check whether
they can correctly decide whether ✓ is an admissible set of
sensitivity parameters for �ab in G (and thus able to provide
a sensitivity curve). This comparison gives us the numbers
we have presented in the main text in Table 1.

Alternative ordering methods for PUSHFORWARD

In the main text, the CID algorithm applies PUSHFORWARD
in a topological ordering for processing multiple bidirected
edges. The method does not perform all possible graphi-
cal manipulations, and as such, a valid concern is that it
might be less capable than a more general search. Another
interesting question is to check whether simpler methods
would perform as well as the current CID implementation.
To tackle these questions, we tested additional ordering
methods for handling multiple bidirected edges.

For simplicity of exposition, the CID algorithm in the main
text has the ordering method embedded in the pseudocode
itself. For the purposes of this section, however, it is con-
ceptually easier to create a meta algorithm that repeats the
following process: (i) first it creates a collection of valid
modified graphs G applying PUSHFORWARD according to
some ordering method; then, (ii) it applies an identification
algorithm to each of those modified graphs. This is given in
Algorithm 3, which we call CID*.

In Algorithm 3, the argument PFORDER represents a func-

Algorithm 3 Meta constrained ID algorithm.
1: function CID*(G,⌃,B,D, PFORDER, IDMETHOD)
2: repeat
3: G PFORDER(G,⌃,B,D)
4: for hG0,⌃0i 2 G do
5: D D [IDMETHOD(G0,⌃0,D)
6: end for
7: until all directed edges have been identified or no

edge has been identified in the last iteration
8: return D
9: end function

tion that takes as inputs a graph G, a covariance matrix ⌃, a
set of known bidirected edges B and a set of known directed
edges D. It then returns a collection G of valid modified
models hG0,⌃0i by iteratively applying PUSHFORWARD
following a particular ordering method (for example, topo-
logical ordering). The argument IDMETHOD refers to an
identification method for directed edges (for instance, QID).
It is a function that takes as inputs a graph G, a covariance
matrix ⌃ and a set of known directed edges D and it returns
the new set of known directed edges.

We can now create different functions for different ordering
methods. For instance, the function PFT described in Al-
gorithm 7 applies PUSHFORWARD in topological ordering
(as embedded in Algorithm 1 of the main text) and returns
all valid modified graphs. We now define three additional
ordering methods.

• PFO described in Algorithm 5. This function pushes
forward each bidirected edge only once, considering
the original graph. This method is the simplest ap-
plication of PUSHFORWARD, and serves as a base of
comparison to assess the gains of more elaborate meth-
ods.

• PFS described in Algorithm 6. This function tries to
apply PUSHFORWARD once to all subsets of bidirected
edges connected to each end node. This procedure has
exponential computational complexity.

• PFR described in Algorithm 8. This function recur-
sively tries every possible combination of applying
PUSHFORWARD for each bidirected edge connected
to the same end node (it tries each subset once, and of
those that can be pushed forward again, tries each sub-
set, and so on). This procedure has doubly exponential
computational complexity.

All these function return a collection G of valid modified
graphs, and can be used as the PFORDER argument in the
CID* function. Of these methdos, PFR is arguably the
most important for comparison with our current implemen-
tation of topological ordering. The results are shown in the

Sensitivity Analysis of Linear Structural Causal Models

3 NODES 4 NODES

PF order ID Alg. directed edges Directed Bidirected Both Directed Bidirected Both

none QID 19 - 68 14,952 - 170,304
PFO QID 19 101 304 14,952 43,526 505,076
PFS QID 19 105 308 14,952 46,630 517,036
PFR QID 19 109 320 14,952 50,708 555,758

(CID) PFT QID 19 109 320 14,952 50,708 555,758

none Complete 19 - 68 15,740 - 177,216
PFO Complete 19 101 304 15,740 44,680 524,846
PFS Complete 19 105 308 15,740 47,962 538,332
PFR Complete 19 109 320 15,740 51,992 578,758
PFT Complete 19 109 320 15,740 51,992 578,758

GROUND TRUTH 19 109 320 15,740 52,016 578,858

Table 2: Number of ✓-identifiable queries (only when ✓ 6= ;) per type of sensitivity parameters ✓, using different ordering
methods for PUSHFORWARD and different ID algorithm for the directed edges. Ground Truth is computed using Gröbner
bases. The first column defines the ordering method of PUSHFORWARD used for incorporating constraints on bidirected
edges—this is passed as the argument PFORDER in the general function CID*. The second column refers to the identification
algorithm used for directed edges—this is passed as the argument IDMETHOD in the general function CID*. “Complete”
means we used Gröbner bases to simulate a complete ID algorithm for directed edges running inside CID*. Note the first
row corresponds to QID and the boldfaced row corresponds to CID as presented in the main text applying PUSHFORWARD
in topological ordering. These two rows are the ones presented in Table 1 of the main text. A pseudocode for computing
these numbers is given in Algorithm 4.

first half of Table 2, which compares CID* using the same
ID method for directed edges (QID) but different order-
ing methods for applying PUSHFORWARD. Our preferred
version, which was presented in the main text as CID, cor-
responds to the boldfaced row with ordering method PFT
and ID method QID. As we can see, topological ordering
performs as well as the brute-force recursive search of all
subsets performed by PFR, which has doubly exponential
computational complexity.

Disentangling PF and QID

Finally, the incompleteness of CID can stem from two
sources: limitations of the graphical manipulations per-
formed by PUSHFORWARD or the incompleteness of the
identification algorithm for directed edges, QID. Separat-
ing the two can help guide efforts for future research. To
achieve that, we used algebraic methods to simulate how
CID would have performed if it had access to a complete
identification algorithm for directed edges instead of QID.

More precisely, we use Gröbner bases as our ID algorithm
for directed edges (IDMETHOD) in CID*, where, just like
QID, Gröbner bases only have access to constraints on bidi-
rected edges via the graphical manipulation performed by
PUSHFORWARD. That is, Gröbner bases is dealing with the
problem as if it were a “vanilla” identification problem, not
explicitly knowing that the bidirected edge is fixed. The
results can be seen in the second half of Table 2. The last

row indicates, for instance, that incorporating constraints
on bidirected edges using PUSHFORWARD in topological
order, in combination with a complete identification algo-
rithm for directed edges, would have identified over 99.99%
of 4-node sensitivity queries.

This suggests that: (i) the main bottleneck of the current im-
plementation of CID is QID itself; (ii) PUSHFORWARD with
topological ordering is an efficient procedure for dealing
with bidirected edges that can reap the benefits of improved
identification algorithms.

E. The missed cases
As discussed in the previous section, PUSHFORWARD in
topological order, in combination with a complete identifica-
tion algorithm for directed edges, would have identified over
99.99% of all 4-node sensitivity queries. In this section we
briefly discuss some of the missed cases, which may provide
guidance for further improvements of the CID algorithm.
We also provide all the missed cases for those interested in
exploring them further (Tables 3 and 4).

When iterating over modified graphs, the CID algorithm
feeds its next iteration only identification results for direct
effects (single coefficients), not of path specific effects or
total effects (sums of products of coefficients), which may
nevertheless be identified. Figure 8 shows two simple ex-
amples that illustrates how not exploiting the knowledge of

Sensitivity Analysis of Linear Structural Causal Models

x y

z
w

�
x
z

�xy

�
x
w

�wz

✏xy

✏
x
z

✏wz

(a)

x y

z
w

�
x
z

�xy

�
x
w

�wz

� w
y

✏xy

✏
x
z

✏wz

(b)

Figure 8: Examples of missed cases using PUSHFORWARD
with a complete identification algorithm of directed edges.
In both examples, �xy is ✏zx-identifiable, but the algorithm
fails due to lack of exploitation of identified total effects.
In example 8a, it turns out a simple marginalization of w
suffices for the ✏zx-identification of �xy using the current
implementation of the CID algorithm. However, marginal-
ization alone is often not enough, as shown in example 8b.

known total effects can result in a failure of identification.

Let us start with Figure 8a. In this example, our task is
to find a sensitivity curve for �xy in terms of ✏zx. First
note that z is not a valid instrument for �xy since it is a
descendant of x. However, pushing forward ✏zx allows us to
identify the total effect of x on z. This, in turn, permits the
creation of the auxiliary variable z⇤ = z�(�xz+�xw�wz)x
which is now a valid instrument for �xy . In the example of
Figure 8a, it turns out a simpler solution would also suffice—
marginalizing w. Note the marginalized DAG results in a
simple three node model which can be solved by the current
implementation of CID. Nevertheless, marginalization by
itself may not always be sufficient, as a simple variation of
this very example shows (Figure 8b).

In sum, ✓-identification in these cases require systematically
exploiting known total effects (for instance, creating AVs
subtracting out total effects) or known path-specific effects,
a task which still does not have a satisfactory solution in the

c

x
m

y�
xy

�xm

�
m
y

� c
x

�
c
m

✏xm

✏
c
m ✏

c
y

Figure 9: An interesting missed case example. Here �xy

is ✏cm-identifiable. All examples can be found in Ta-
bles 3 and 4.

literature. A final interesting (and challenging) example in
which CID failed to find the sensitivity curve is shown in
Fig .9.

F. Utility of descendants
Here we show that not pruning descendants of variable y
can be useful for identification. An example is given in
Fig. 10.

y

x

w

z
� x

y

✏
w
y

✏
wz

(a) Original

y

x

w

z

(b) PF w $ z

y

x

w

z

(c) Know y ! z

y

x

w

(d) Look at y

y

x

w

(e) PF w $ y

y

x

w

z⇤

(f) z⇤ = z � �yzy

y

x

w

z⇤

(g) PF w $ y

Figure 10: Take the graph in 10a. The red bidirected edges
(✏wy, ✏wz) are assumed to be known, and the target quantity
is �xy (blue). First, we can use knowledge of w $ z to use
w as an instrument for y ! z (10b,10c). This knowledge,
however, does not help in solving for x ! y (10d), even
when pushing forward w $ y (10e). The issue is that
we pruned z when pushing forward w $ y, since it is a
descendant of y. However, note we can create an AV z⇤,
which behaves as if it were not a descendant of y (10f). It
turns out that z⇤ is an instrument for x! y conditioned on
w in 10g, solving the problem!

Sensitivity Analysis of Linear Structural Causal Models

Algorithm 4 Pseudocode for checking performance of
CID* with different PUSHFORWARD orders and different
ID algorithm for directed edges. In the code, IDENTIFY-
DIRECTEDEDGES and ISIDENTIFIED are computed using
computer algebra (Gröbner bases), and give the ground-truth
values.

1: initialize Total 0
2: initialize PFtotal 0
3: S set of all possible connected DAGs, with all com-

binations of directed and bidirected edges.
4: for each graph hG,⌃i 2 S do
5: IDedges IDENTIFYDIRECTEDEDGES(G)
6: for all (x! y) 2 G where (x! y) /2 IDedges do
7: SPS All subsets of directed and bidirected

edges of G which do not contain (x! y)
8: for each set hD,Bi 2 SPS do
9: if ISIDENTIFIED(G, x! y,D,B) then

10: Total Total + 1
11: if (x ! y) 2 CID*(G,⌃,D,B, PFORDER,

IDMETHOD) then
12: PFTotal PFTotal + 1
13: end if
14: end if
15: end for
16: end for
17: end for
18: return PFtotal

Total

Algorithm 5 Push forward each bidirected edge once.
1: function PFO(G,⌃,B,D)
2: let By represent subset of B where all edges have y

as end point (By = {(x$ y) 2 B, 8x})
3: G {(G,⌃)}
4: for each node y 2 G do
5: for bidirected edge ✏xy 2 By do
6: if x /2 DE(y) or �yx 2 D then
7: add PF(G,⌃,D, ✏xy, x) to G
8: end if
9: end for

10: end for
11: return G
12: end function

Algorithm 6 Push forward all subsets once.
1: function PFS(G,⌃,B,D)
2: let By represent subset of B where all edges have y

as end point (By = {(x$ y) 2 B, 8x})
3: G {(G,⌃)}
4: for each node y do
5: for each B0

y
✓ By do

6: hG0,⌃0i hG,⌃i
7: for each ✏xy 2 B0

y
do

8: if x /2 DE(y) or �yx 2 D then
9: hG0,⌃0i PF(G0,⌃0,D, ✏xy, x)

10: for all z 2 CH(x) do
11: if �xz /2 D then
12: remove ✏zy from B0

y
if it was not yet

processed.
13: end if
14: end for
15: end if
16: end for
17: add hG0,⌃0i to G
18: end for
19: end for
20: return G
21: end function

Algorithm 7 Push forward in topological order.
1: function PFT(G,⌃,B,D)
2: let By represent subset of B where all edges have y

as end point (By = {(x$ y) 2 B, 8x})
3: G {(G,⌃)}
4: for each node y do
5: hG0,⌃0i hG,⌃i
6: for each ✏xy 2 By in topological order on x do
7: if x /2 DE(y) or �yx 2 D then
8: hG0,⌃0i PF(G0,⌃0,D, ✏xy, x)
9: add hG0,⌃0i to G

10: for all z 2 CH(x) do
11: if �xz /2 D then
12: remove ✏zy from By if it was not yet

processed.
13: else
14: add ✏zy to By

15: end if
16: end for
17: end if
18: end for
19: end for
20: return G [PFO(G,⌃,B,D)
21: end function

Sensitivity Analysis of Linear Structural Causal Models

Algorithm 8 Push forward all subsets recursively.
1: function PFR(G,⌃,B,D)
2: let By represent subset of B where all edges have y

as end point (By = {(x$ y) 2 B, 8x})
3: initialize G {(G,⌃, ;)}
4: for each node y do
5: PushSets {hG,⌃, B0

y
i for all B0

y
✓ By}

6: while PushSets not empty do
7: pop hG0,⌃0, B0

y
i from PushSets

8: PushAgain {}
9: for each ✏xy 2 B0

y
do

10: if x /2 DE(y) or �yx 2 D then
11: hG0,⌃0i PF(G0,⌃0,D, ✏xy, x)
12: for all z 2 CH(x) do
13: if �xz /2 D then
14: remove ✏zy from B0

y
if it was not yet

processed.
15: else
16: add ✏zy to PushAgain
17: end if
18: end for
19: end if
20: end for
21: add hG0,⌃0i to G
22: for allB00

y
✓ PushAgain do

23: add hG0,⌃0, B00
y
i to PushSets

24: end for
25: end while
26: end for
27: return G
28: end function

Sensitivity Analysis of Linear Structural Causal Models

Graph Target Quantity Sensitivity Parameters
1 1!2 1!3 1!4 2!4 1$3 1$4 2$4 1!3 1$4
2 1!2 1!3 1!4 2!4 1$3 1$4 2$4 1!3 1$4 1!2
3 1!2 1!3 1!4 2!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4
4 1!2 1!3 1!4 2!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 1!2
5 1!2 1!3 1!4 2!4 3!4 1$3 1$4 2$4 1!3 1$4 3!4
6 1!2 1!3 1!4 2!4 3!4 1$3 1$4 2$4 1!3 1$4 1!2 3!4
7 1!2 1!3 1!4 2!4 3!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 3!4
8 1!2 1!3 1!4 2!4 3!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 1!2 3!4
9 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 1!3 1$4

10 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 1!3 1$4 2!3
11 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 1!3 1$4 1!2
12 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 1!3 1$4 1!2 2!3
13 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4
14 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 2!3
15 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 1!2
16 1!2 1!3 2!3 1!4 2!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 1!2 2!3
17 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 1!3 1$4 3!4
18 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 1!3 1$4 3!4 1!2
19 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 1!3 1$4 2!3 3!4
20 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 1!3 1$4 2!3 3!4 1!2
21 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 3!4
22 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 3!4 1!2
23 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 2!3 3!4
24 1!2 1!3 2!3 1!4 2!4 3!4 1$3 1$4 2$4 3$4 1!3 1$4 3$4 2!3 3!4 1!2
25 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 2!4 1$3
26 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 2!4 1$3 1!2
27 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 3!4 1$3
28 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 3!4 1$3 1!2
29 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 3$4 2!4 1$3 3$4
30 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 3$4 2!4 1$3 3$4 1!2
31 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 3$4 3!4 1$3 3$4
32 1!2 1!3 2!3 2!4 3!4 1$3 2$3 1$4 3$4 3!4 1$3 3$4 1!2
33 1!2 1!3 2!3 1!4 1$3 2$3 1$4 1!4 1$3
34 1!2 1!3 2!3 1!4 1$3 2$3 1$4 1!4 1$3 1!2
35 1!2 1!3 2!3 1!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4
36 1!2 1!3 2!3 1!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 1!2
37 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 1!4 1$3
38 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 1!4 1$3 3!4
39 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 1!4 1$3 1!2
40 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 1!4 1$3 1!2 3!4
41 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4
42 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 3!4
43 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 1!2
44 1!2 1!3 2!3 1!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 1!2 3!4
45 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 1!4 1$3
46 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 1!4 1$3 2!4
47 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 1!4 1$3 1!2
48 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 1!4 1$3 1!2 2!4
49 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4
50 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 2!4

Table 3: Missed sensitivity queries of PUSHFORWARD in topological order, in combination with a complete identification
algorithm for directed edges. Part 1.

Sensitivity Analysis of Linear Structural Causal Models

Graph Target Quantity Sensitivity Parameters
51 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 1!2
52 1!2 1!3 2!3 1!4 2!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 1!2 2!4
53 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 3!4
54 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 3!4 1!2
55 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 2!4
56 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 1!2 2!4
57 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 3!4 2!4
58 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 3!4 1!2 2!4
59 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 1$4
60 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 1!4 1$3 1$4 1!2
61 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 2!4 1$3 1!4
62 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 2!4 1$3 1!2 1!4
63 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 2!4 1$3 1$4
64 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 2!4 1$3 1$4 1!2
65 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3!4 1$3 1!4
66 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3!4 1$3 1!2 1!4
67 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3!4 1$3 1$4
68 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3!4 1$3 1$4 1!2
69 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 3!4
70 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 3!4 1!2
71 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 2!4
72 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 1!2 2!4
73 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 3!4 2!4
74 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 3$4 3!4 1!2 2!4
75 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 1$4 3$4
76 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 1!4 1$3 1$4 3$4 1!2
77 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 2!4 1$3 3$4 1!4
78 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 2!4 1$3 3$4 1!2 1!4
79 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 2!4 1$3 1$4 3$4
80 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 2!4 1$3 1$4 3$4 1!2
81 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 3!4 1$3 3$4 1!4
82 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 3!4 1$3 3$4 1!2 1!4
83 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 3!4 1$3 1$4 3$4
84 1!2 1!3 2!3 1!4 2!4 3!4 1$3 2$3 1$4 3$4 3!4 1$3 1$4 3$4 1!2
85 1!2 2!3 2!4 3!4 1$2 1$4 3$4 1!2 1$4
86 1!2 2!3 2!4 3!4 1$2 1$4 3$4 1!2 1$4 2!3
87 1!2 2!3 2!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4
88 1!2 2!3 2!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4 2!3
89 1!2 2!3 1!4 2!4 3!4 1$2 1$4 3$4 1!2 1$4 1!4
90 1!2 2!3 1!4 2!4 3!4 1$2 1$4 3$4 1!2 1$4 2!3 1!4
91 1!2 2!3 1!4 2!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4 1!4
92 1!2 2!3 1!4 2!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4 2!3 1!4
93 1!2 1!3 1!4 3!4 1$2 1$4 3$4 1!2 1$4
94 1!2 1!3 1!4 3!4 1$2 1$4 3$4 1!2 1$4 1!3
95 1!2 1!3 1!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4
96 1!2 1!3 1!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4 1!3
97 1!2 1!3 1!4 2!4 3!4 1$2 1$4 3$4 1!2 1$4 2!4
98 1!2 1!3 1!4 2!4 3!4 1$2 1$4 3$4 1!2 1$4 1!3 2!4
99 1!2 1!3 1!4 2!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4 2!4

100 1!2 1!3 1!4 2!4 3!4 1$2 1$4 2$4 3$4 1!2 1$4 2$4 1!3 2!4

Table 4: Missed sensitivity queries of PUSHFORWARD in topological order, in combination with a complete identification
algorithm for directed edges. Part 2.

